DYNA
ISSN: 0012-7353

DYNA ISSN: 2346-2183

T B T A AN kT, b B S

Universidad Nacional de Colombia

Mora-Castafeda, Deybi Libardo; Ledn-Sanchez, Camilo Alexander; Lizarazo, Ivan
Optimization of urban land-cover classification workflow based
on geographic-object analysis using very-high-resolution imagery
DYNA, vol. 89, no. 220, 2022, January-March, pp. 43-53
Universidad Nacional de Colombia

DOI: https://doi.org/10.15446/dyna.v89n220.98902

Available in: https://www.redalyc.org/articulo.oa?id=49672695005

2 s
How to cite %f@&&‘yC.@ g
Complete issue Scientific Information System Redalyc
More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and

Journal's webpage in redalyc.org Portugal

Project academic non-profit, developed under the open access initiative


https://www.redalyc.org/comocitar.oa?id=49672695005
https://www.redalyc.org/fasciculo.oa?id=496&numero=72695
https://www.redalyc.org/articulo.oa?id=49672695005
https://www.redalyc.org/revista.oa?id=496
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=496
https://www.redalyc.org/articulo.oa?id=49672695005

UNIVERSIDAD

NACIONAL

DE COLOMBIA

DYNA

http://dyna.medellin.unal.edu.co/

Optimization of urban land-cover classification workflow based on
geographic-object analysis using very-high-resolution imagery
Deybi Libardo Mora-Castafieda®, Camilo Alexander Ledn-Sanchez® & Ivan Lizarazo ©

@Universidad Nacional de Colombia, Sede Bogota, Facultad de Ciencias Agrarias, Bogota, Colombia. dimorac@unal.edu.co
® Technische Universiteit Delft, 3D Geoinformation Research Group, Delft, The Netherlands, c.a.leonsanchez@tudelft.nl
¢Universidad Nacional de Colombia, Sede Bogota, Facultad de Ciencias Agrarias, Grupo de Investigacion Andlisis Espacial del Territorio y del Cambio
Global (AET-CG), Bogota, Colombia. ializarazos@unal.edu.co

Received: October 7%, 2021. Received in revised form: November 26%, 2021. Accepted: December 14, 2021.

Abstract

A recurring problem in Geographic-Object Based Image Analysis (GEOBIA) is the need to tune each one of the three phases involved in the process,
segmentation, feature selection, and classification. This paper presents the optimization of a GEOBIA-based urban land-cover classification workflow
using very-high-resolution imagery. Two classification workflows are evaluated: (i) a non-optimized workflow; and (ii) an optimized workflow. In
the segmentation and classification phases, both workflows used the multi-resolution segmentation algorithm and the random forest classification
algorithm. In addition, important spectral, geomorphometric, and textural features are identified as significant predictor variables for the final
classification. It is shown that the classification accuracy of every land-cover category increases with optimization, resulting in an overall accuracy
increase of 9.34% compared with no optimization. The results show the substantial impact that optimization has on final classification output and
suggest the importance of its adoption as a good practice in GEOBIA-based land-cover classification.

Keywords: geographic-object based image analysis; multiresolution segmentation; random forest; urban land-cover classification; optimization.

Optimizacion de un flujo de trabajo para clasificacion de coberturas
urbanas basado en analisis de objetos geograficos usando imagenes
de alta resolucion

Resumen

Un problema recurrente en el analisis de imagenes orientado a objetos geograficos (GEOBIA), es la necesidad de ajustar las tres fases involucradas en el
proceso, es decir, segmentacion, seleccion de atributos y clasificacion. Este articulo presenta la optimizacion del flujo de trabajo para clasificacion de
coberturas urbanas basado en GEOBIA empleando iméagenes de alta resolucién. Se evaltian dos flujos de trabajo para clasificacion: (i) no optimizado; y
(i) optimizado. Ambos utilizaron los algoritmos multi-resolution segmentation y random forest en las fases de segmentacion y clasificacion
respectivamente. Ademas, se identifican caracteristicas espectrales, geomorfométricas y texturales, como variables predictoras significativas para la
clasificacion final. Se muestra que la exactitud de la clasificacion en cada cobertura aumenta con la optimizacion, lo que resulta en un aumento de la
exactitud global de 9.34% respecto a la clasificacion no optimizada. Los resultados muestran el impacto que tiene la optimizacion en el resultado final de
la clasificacion y sugieren la importancia de adoptarla como buena practica en la clasificacion de coberturas basada en GEOBIA.

Palabras clave: analisis orientado a objetos; segmentacion multirresolucion; bosques aleatorios; clasificacion de coberturas urbanas; optimizacion.

1. Introduction decades [1-3]. Land-cover studies are relevant in different

applications, including forest monitoring, water quality

The classification of land-cover categories from remote assessment, soil properties estimation, urbanization studies,
sensing data is a task that has been developed for several among others [4-6].
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The particular research on urban land-cover classification
experienced a steady increase in the last decades since it is a
relevant topic for communities, territorial entities, and local
governments [7]. This increase was mainly due to the public
availability of very-high-resolution imagery (VHR) since the
late 1990s [8]. Although these VHR images are the primary
input data for this type of study, because of the heterogeneity
of the urban environment, medium and low-resolution
images do not allow to discriminate small and common
elements such as trees, buildings, cars, and even people [2].
Furthermore, using these VHR images also poses technical
challenges due to the internal spectral and spatial
heterogeneity within urban land cover categories [9].

Urban land-cover classification from remote sensing
images is traditionally based on differences between pixel-
level spectral responses [1]. However, this approach has
problems when the size of the objects under study is larger
than the spatial resolution of the image [10]. Additionally,
due to the high spectral variability of urban land-cover in
VHR images, such an approach for classification generally
obtains low accuracies due to effects such as salt and pepper
or structural clutter [7]. It also highlights the most crucial
problem of this type of classification, which ignores intrinsic
urban land cover characteristics, such as spatial environment,
geometry, and context [11].

The limitations mentioned above create the need to
restructure how VHR image classification has been
approached. The change from the basic unit of study, the
pixel, to another unit, the object, can account for both spatial
and spectral characteristics. Currently, apart from the per-
pixel approach, the most widely used approaches for land-
cover classification are the per-field, object-based,
contextual-based, knowledge-based, and combinational
approaches [12].

Blaschke and Strobl [13] state that the change from pixel
to object, as a basic unit in remote sensing image analysis,
significantly improves classification results, even in complex
scenarios represented in VHR images. These objects are
analyzed using concepts and techniques recently developed,
which contribute to defining the Geographic-Object Based
Image Analysis (GEOBIA) for land cover classification
[8,12,14].

These techniques segment images and generate image
objects created from groups of neighboring pixels, which are
similar to each other or share some common meaning [15].
In addition to the spectral response of the objects, it also
considers their spatial, textural, temporal, multi-scale,
geometric, and contextual characteristics, a crucial aspect for
the classification of urban land-cover [16,17]. These objects
are created within the GEOBIA workflow by three main
stages: segmentation, which groups pixels to form objects;
feature analysis which extracts relevant attributes from
objects; and classification, which evaluates and decides the
land-cover class to which the object belongs [18,19].

Research like that of Myint et al. [10] compared the
performance of pixel- and object-based methods in an urban
environment using VHR images, finding that the overall
accuracy of object-oriented classification improves by
around 27% compared to pixel-based classification. This is
primarily due to the advances these methods have had in
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enhancing their segmentation and classification phases.

Segmentation is the crucial process of GEOBIA methods
[9]. A great variety of algorithms carry out this activity,
including Mean Shift, Chessboard, Quadtree, Contrast Split,
Spectral Difference, or Contrast Filter [20]. However, the
vast majority of investigations related to the classification of
VHR images in urban environments agree that the multi-
resolution segmentation (MRS) algorithm is the one that
obtains the best results [21]. The principle of this algorithm
is the grouping of pixels through seeds distributed throughout
an image based on criteria established by its hyperparameters
scale (SP), Shape, and Compactness [22]. Its great advantage
is that it produces objects with high internal homogeneity
more efficiently than other segmentation methods [21],
essential for the final land-cover classification.

On the other hand, the classification algorithms
performing best within GEOBIA are Machine Learning (ML)
algorithms. Among these, the one that has obtained the best
results is Random Forest (RF) [23]. RF is a structured
collection of decision trees, where each tree is built with data
and variables chosen at random. Then, each casts a vote
regarding a given classification, and the result with the
highest number of votes is the final prediction [24]. Its most
favorable characteristic is that it only needs to configure a
few parameters for its operation. As a result, it is faster than
other ML algorithms, such as support vector machines or
artificial neural networks [25].

Ruiz Hernandez and Shi [26] conducted GEOBIA
classification using the MRS and RF algorithms to map urban
land-cover with VHR images, obtaining overall thematic
accuracy results of 92.3%. Similarly, Baker et al. [27]
classified urban domestic gardens, combining VHR image
data with vector data, obtaining an overall thematic accuracy
(OA) of 82%. However, these two studies did not conduct
any tuning of the GEOBIA phases, which could have caused
the results obtained not to reach higher accuracy.

The scope of this paper is to compare the overall accuracy
obtained by two workflows based on GEOBIA, one non-
optimized and the other with optimizations in each phase.
The International Society for Photogrammetry and Remote
Sensing (ISPRS) provides the input data used and the ground
truth to evaluate the results [28].

The central hypothesis is that optimizing the phases of a
workflow based on GEOBIA improves the overall accuracy
and the efficiency of the process. The main contributions of
this paper are: (i) it demonstrates that the inclusion of
relevant variables and object attributes derived from primary
data improves the overall accuracy of urban land-cover
classification; (ii) it establishes the impact the optimization
of the segmentation and classification phases has on the
overall accuracy of the workflow; and (iii) it demonstrates
the importance of implementing a general optimization of the
phases of a GEOBIA workflow, as a good practice in the
urban land-cover classification. Optimization of the image
classification process means paying attention to all phases of
the GEOBIA approach, that is, (i) image segmentation, (ii)
feature selection, and (iii) image classification.

This article is organized as follows. Section 2 presents
and describes the study area, the input data, and the methods
used to extract urban land-cover categories. Section 3
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presents the results obtained using the described methods.
Section 4 discusses the results found, and Section 5 presents
the conclusions obtained from the research.

2. Data and methods

2.1 Study area

The study area is located in Vaihingen an der Enz, a small
town in the Ludwigsburg district of the federal state of Baden
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Figure 1. The study area (RGB color composition using Near Infrared-NIR,
Red, and Green bands). The image is composed of 5340085 pixels
covering an area of 43254.69 square meters.

Source: The authors.
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Figure 2. Data set from Area 26. Top-Left: True Orthophoto. Top-Right:
Digital Surface Model. Bottom-Left: Ground Truth
Source: The authors.
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Table 1.
TOP and DSM specifications.
TOP DSM

Spatial Resolution (m) 0.09 0.09
Bands 3 (NIR, Red, Green) 1 (Heights)
Radiometric Resolution (bits) 8 32
Extent (X, y) (m) (269.55, 160.47)

Source: The authors.

Table 2.

Land-cover classes description.
Class Number Class RGB coding Colour
1 Impervious Surfaces 255, 255, 255 White
2 Buildings 0,0, 255 Blue
3 Low Vegetation 0, 255, 255 Cyan
4 Trees 0,255,0 Green
5 Cars 255, 255, 0 Yellow
6 Background 255,0,0 Red

Source: The authors.

- Wirttemberg in Germany (Fig. 1). It is northwest of the city
of Stuttgart; an urban area characterized by residential and
recreational land use [28]. Although its urban structure
presents low-rise buildings that are widely separated from
each other, it also shows a large amount of urban vegetation
(rows of trees, bushes, and grass). This structure represents a
typical old town in Germany [29].

2.2 Data

The study area is subdivided into 33 areas distributed in
the city center, from which true orthophotos (TOP), digital
surface models (DSM), and ground truth (GT) of the surface
objects corresponding to area 26 were taken (Fig. 2). The
dataset is a subset of the data used for the digital aerial camera
test performed by the German Association of
Photogrammetry and Remote Sensing (DGPF) [30].

2.1.1 True Orthophoto (TOP) and Digital Surface Model (DSM)

The process of acquiring the images necessary to generate
the TOPs and DSMs was carried out and coordinated by the
Institute of Photogrammetry of the University of Stuttgart under
the supervision of the DGPF. It was carried out by executing a
flight plan of seven strips, with a block with five parallel and
overlapping strips and two crossed strips at the ends of the block
[29]. The flight days for taking the images were July 24 and
August 6, 2008, and a DMC camera from the Intergraph/ZI
company was used [30]. Once the DGPF took the aerial
photographs, Rottensteiner et al. [29] generated a TOP and
DSM of the entire study area, from which individual TOP and
DSM were extracted for each of the 33 areas. The TOP and
DSM specifications for area 26 are described in Table 1.

2.1.2 Ground Truth (GT)

The GT was obtained from ISPRS [28] in TIFF files with
three bands (red, green, and blue - RGB), which were only
assigned values of 0 and 255, this to be able to encode the six
classes in which the areas are classified and described in Table
2.
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The urban land cover classes used here are the most
commonly found in an urban environment. The impervious
surface class included roads, pedestrian paths, parking lots, and
all kinds of surfaces made of asphalt or concrete at ground level.
The building class covered the entire estate spectrum, such as
houses, warehouses, and any residential, commercial,
industrial, or institutional structure found. The Low vegetation
class refers to all biomass found at ground level, for example,
grass, living fences, or small shrubs. The tree class covered all
the large vegetation existing in the areas. The car class
contained all the fleet of vehicles that could be found. Finally,
the background class included water surfaces and other objects
that look different from everything previously classified
(swimming pools, containers, tennis courts, among others) [28].

The training and validation processes samples were taken
through a stratified random sample, where each stratum is
equivalent to each of the urban land-cover classes. Simple
random sampling was carried out for each stratum. 30% of
the total area 26 was taken for the training process, and the
remaining 70% was used in the validation.

2.3 Method

The GEOBIA-based workflow shown in Fig. 3 was
divided into two parts. A non-optimized workflow takes
default values in each phase of the workflow and another
with the proposed optimization. In each phase, variables,
attributes, and hyperparameters are added or optimized as the
case may be. Both workflows comprise four main phases and
a preprocessing phase: In phase 0, the variables derived from
TOP and DSM were calculated; in phase 1, the segmentation
process was carried out using the MRS algorithm; in phase 2,
the object's features were calculated; in phase 3, the RF
algorithm was used to carry out the classification; In phase 4,
the classification obtained was evaluated by calculating the
confusion matrix and its accuracy indexes.
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Figure 3. GEOBIA-based workflow. The nomenclature used (GEOBIA:
Geographic-Object Based Image Analysis, TOP: True Orthophoto, DSM:
Digital Surface Model, GT: Ground Truth, MRS: Multiresolution

Segmentation, RF: Random Forest).
Source: The authors.
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2.3.1 Phase 0: Preprocessing

First, the position, scale, and orientation verification of
the TOP and DSM of area 26 were carried out.

For the optimized GEOBIA workflow, variables derived
from TOP and DSM were calculated, such as textural
variables from the gray level co-occurrence matrix (GLCM)
[31]; the normalized digital surface model (nDSM); the slope
[32], and the normalized difference vegetation index (NDVI)
[33].

The GLCM textural variables calculated were Contrast
(CON), Dissimilarity (DIS), Homogeneity (HOM), Angular
Second Moment (ASM), Entropy (ENT), Mean (MEN),
Standard Deviation (STD), and Correlation (COR). These
variables are defined as shown in eq. (1)-(8) respectively

N-1
Zi,j:o

1
N-1
DIS=Z__ Py jli —jl (2)
i,j=0
HOM ZN_I iz
S Lupj=ol+ (i —j)? ©)
N1
ASM = Zi,j:opi'j (4)
N-1
ENT = Zi,j=0 P j(—InPy)) (5)
N1 p,.
MEN = ;= =25 (6)
N-1
STD=o0;; = Z BRI A D)) @)
i,j=0
N-1 (= )G — 1))
COR=Z‘ Py [T (8)
1,j=0 7]

where i, j represent the number of rows and columns of
GLCM, P, ; is the probability in the pixel i, j, and N is the
number of rows or columns of GLCM. Variables such as
CON, DIS, ENT, and STD show the local variation degree in
an image. For their part, variables such as HOM, MEN, COR,
and ASM are a measure of image homogeneity [31].

The nDSM represents the relative height to the ground of
objects above the earth's surface and is defined as shown by eg. (9).

nDSM = DSM — DTM 9)
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where DSM, is the digital surface model and DTM, is the
digital terrain model.

Slope is the inclination of a given point on a topographic
surface [32]. This was calculated from the DSM according to
eq. (10),

sl _ . <dz>2 + <dz>2
ope = arctan Ix &

where Z—i and Z—; describes the elevation change Z in the X

(10)

and Y axes direction, respectively.

The NDVI is the vegetation index most used in urban
land-cover studies since it allows differentiation of vegetal
land-cover from other present land-cover classes [7]. Its
calculation is established by the difference of reflectance in
the infrared and red bands divided by their sum, as shown in

eq. (11).

NIR — RED

YT (11)
NIR + RED

NDVI =

where NIR and RED are reflectance values in the TOP
image corresponding to near-infrared and red bands,
respectively.

2.3.2 Phase 1 — Segmentation

In this phase, the MRS algorithm implemented in the
eCognition 9.0 software was used [34]. For the non-
optimized workflow, the default values of the SP, Shape and
Compactness hyperparameters were used (10, 0.1 and 0.5,
respectively). This phase's optimization consisted of
determining the best value combination of the three
hyperparameters through several iterations. The typical land-
cover sizes in the scene were considered in the SP setting,
especially the car land-cover, the smallest of all. The Shape
and Compactness hyperparameters vary between 0 and 1;
however, in this phase, values between 0.1 and 0.9 were
taken for both according to recommendations from previous
studies [34]. To observe the behavior of Shape and
Compactness, high, medium, and low values were taken.

2.3.3 Phase 2 — Feature Analysis

The features or attributes calculated for each object output
by the segmentation phase correspond to the textural type
(GLCM); geomorphometric (DSM, nDSM, and Slope), and
spectral (TOP, NDVI, Max.Diff, and Brightness), as shown
in Table 3. Max.Diff and Brightness were calculated
according to the terms of [34].

First, for the non-optimized workflow, Mean_NIR,
Mean_RED, Mean_GREEN, and Mean_DSM attributes
were calculated in each object generated by the segmentation.

Feature analysis for workflow optimization comprises
calculating spectral, geomorphometric, and textural features
for each object. Feature selection was then carried out using
the Regularized Random Forest (RRF) [35-37] and Recursive
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Table 3.
Object features calculated for feature analysis.
Type Obiject Feature
Mean_NDVI, Mean_NIR, Mean_RED,
Spectral Mean_GREEN, SD_NDVI, SD_NIR, SD_RED,
SD_GREEN, Brightness, Max_Diff
. Mean_nDSM, Mean_Slope, SD_nDSM,
Geomorphometric
SD_Slope
ASM_nDSM, CON_nDSM, COR_nDSM,
DIS_nDSM, ENT_nDSM, HOM_nDSM,
GLCM Texture MEN_nDSM, STD_nDSM, ASM_NDVI,
CON_NDVI, COR_NDVI, DIS_NDVI,
ENT_NDVI, HOM_NDVI, MEN_NDVI,
STD_NDVI

Source: The authors.

Feature Elimination (RFE) algorithms [38]. These algorithms
make it possible to select the best group of features,
considering elimination parameters such as redundancy or
collinearity between them [39]. In addition, this phase sought
to find the attributes set that produced the best accuracy in
the final classification, minimizing the problems associated
previously. For the GRRF and GRF algorithms, the gamma
penalty parameter ranged from 0.1 to 1 [36,37].

2.3.4 Phase 3 — Classification

Before entering the classification phase, the training and
test samples selection was carried out as stated in section
2.2.2.

The RF algorithm was implemented for the classification
phase. To evaluate the data and variables' performance, RF
uses two importance indexes, Mean Decrease Accuracy
(MDA) and Mean Decrease Gini (MDG). MDA measures the
overall accuracy reduction of RF concerning the absence of
a given variable, and MDG accounts for the impact that
excluding a variable has on the rapid choice of the decision
tree [25].

RF was initially run without optimization, using the default
values for its hyperparameters: number of trees (ntree),
number of attributes for each tree (mtry), and minimum node
size to be divided (min.node.size), within the R randomForest
library [40]. Subsequently, the RF hyperparameters were
adjusted simultaneously by successive iterations between
possible value combinations. Following Belgiu and Dragut
[25], the values of the RF hyperparameters were chosen as
follows: ntree values less than 500, mtry values greater than 5,
and min.node.size values greater than 1.

2.3.5 Phase 4 — Validation

For the validation, the confusion matrix was calculated, a
square matrix whose numerical values in the rows and
columns represent the number of study units assigned to a
given class, based on the GT reference classification [41].
The overall accuracy index (OA) and F1-score index are
calculated to quantify the obtained accuracies from the
confusion matrix, as shown in eq. (12,13) respectively

TP+TN

OA = b Y TN+ FP+ FN

(12)
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2TP

T TR (13)
2TP + FP + FN

F, — score =

where TP are the correctly classified objects; TN, the
correctly non-classified objects; FP, the classified objects in
a class that was not the true one; and FN, the non-classified
objects in the true class [42].

3. Results
3.1 Non-optimized workflow implementation

Table 4 shows the input data values for each phase described
above, taken without making adjustments or processing.

In phase 0, we do not perform processing on the TOP and DSM
bands, which we take as input data for segmentation. For phase 1,
we use the default values of MRS algorithm to generate the
segmented objects. In phase 2, we calculate the object attributes
corresponding to the mean response of each variable in each object.

Table 4.
Default values for non-optimized workflow input data.
Input Data Default Value
Variables NIR, RED, GREEN, DSM

MRS Hyperparameters  SP=10, Shape=0.1, Compactness=0.5
Mean_NIR, Mean_RED, Mean_GREEN,
Mean_DSM

ntree=500, mtry=5, min.node.size=1

Feature Objects

RF Hyperparameters
Source: The authors.

Impervious Surfaces - Trees
=== Bufldings Cars
Figure 4. Non-optimized workflow classification results for Area 26. OA =
77.68%. Top: Final classification. Bottom: GT.

Source: The authors.
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Figure 5. Non-optimized workflow classification importance indexes.
Source: The authors.

Table 5.
Summary of classification accuracy indexes.
Class F1-score (%)

Impervious Surfaces 73.89
Buildings 83.49
Low Vegetation 49,51
Trees 88.14
Cars 31.75
Background 68.84
OA (%) 77.68

Source: The authors.

For phase 3, we trained RF with 30% of the objects
obtained, and we used the default values of the R
randomForest library. Then, we carried out the classification
with the remaining 70% of the objects, and we obtained the
result shown in Fig. 4.

The MDA and MDG importance indexes are shown in
Fig. 5, where it is revealed that the best attributes are
Mean_NIR and Mean_RED. MDA values of 0.32 and 0.27
for Mean_RED and Mean_NIR, respectively, indicated the
decreased degree in accuracy with the absence of these
attributes. On the other hand, MDG values of 2230 and 2000
for Mean_NIR and Mean_RED, respectively, indicated the
impact that the exclusion of the attribute has on the speed of
the RF decision in the classification.

The overall accuracy for the non-optimized classification
workflow is shown in Table 5, where after evaluating the
confusion matrix, we calculated the OA and the F1-score
indexes for each land-cover class.

We observe that the OA of the classification is 77.68%,
where the classes with the highest thematic accuracy (F1-
score) are Trees, Buildings, and Impervious Surfaces with
88.14%, 83.49%, and 73.89% values, respectively. On the
other hand, we found that the lowest F1-score values were
presented in the Cars, Low Vegetation, and Background
classes with 31.75%, 49.51%, and 68.84% values,
respectively.

3.1.1 Optimized workflow implementation
The workflow optimization is carried out for each phase,

and in each one, we evaluate the OA applying the workflow
of section 3.1 with the accumulated optimizations per phase.
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3.1.2 Phase 0 — Preprocessing

We calculate three types of derived variables from the
input variables: spectral, geomorphometric, and texture,
which are listed in Table 6.

For the GLCM texture variables calculation, we chose a
3X3 window size and the NIR variable. Then, we calculate
the OA of the inclusion of the new variable, evaluating first
the inclusion only of GLCM textural variables, then only the
geomorphometric and spectral variables, finally, the entire
set of variables with a result 81.78%, 82.39 %, and 84.59%
respectively.

3.1.3 Phase 1 — Segmentation

Table 7 shows the different values used for the MRS
hyperparameters adjustment. We evaluate each combination
of values using the non-optimized workflow developed in
section 3.1, including the NDVI, NIR, RED, GREEN,
nDSM, Slope, MEN, STD, HOM, and CON DIS, ENT,
ASM, and COR variables calculated in section 3.2.1.

We obtained 54 possible  combinations  of
hyperparameters. The best result was obtained with the
values of SP = 10, Shape = 0.9, and Compactness = 0.9 with
an OA = 86.63%.

3.1.4 Phase 2 — Feature Analysis

We calculate a total of 30 object attributes from the
entered variables and evaluate their performance by applying
the optimizations of phases 0 and 1 to the workflow of section
3.1. Table 8 shows the results and the number of attributes
selected for each algorithm used.

Table 6.
Summary of input data variables.
Type Variable
Spectral NDVI, NIR, RED, GREEN

Geomorphometric
GLCM Texture
Source: The authors.

nDSM, Slope
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Figure 6. Optimized workflow classification importance indexes.

Source: The authors.
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We found that the best result was obtained with the RFE
algorithm with an OA = 86.84% and a feature set size of 17.
Next, we evaluate the performance of the selected attributes
as shown in Fig. 6, where the attributes with the highest
incidence in the classification were Mean NDVI and
Mean_nDSM.

3.1.5 Phase 3 — Classification

Once the optimal set of attributes was obtained, we
adjusted the RF hyperparameters for subsequent
classification. We simultaneously adjusted the ntree, mtry
and min.node.size hyperparameters , whose values can be
seen in Table 9.

We evaluated 224 combinations of hyperparameters
entirely, from which we obtained two combinations with the
best performance, as shown in Table 10.

We chose the C1 combination because it has the shortest

processing time. Therefore, we obtained the final
Table 7. classification with this combination, and the result is shown
MRS hyperparameters values. in Fig. 7.
MRS Hyperparameter Values
SP 10, 12, 14, 16, 18, 20 Table 9.
Shape 0.1,0.5,09 RF hyperparameters values.
Compactness 0.1,05,0.9 RF Hyperparameter Values

Source: The authors.

Table 8.

Feature selection results. GRRF and GRF, the gamma penalty parameter was
varied from 0.1 to 1 according to [36, 37]. Time is the processing time of
each algorithm.

Algorithm # Features Time (s) OA (%)
RF 30 127.81 86.67
RRF 30 227.45 86.77
GRRF (0.1) 30 1680.24 86.80
GRF (0.1) 30 1170.76 86.78
RFE 17 98159.01 86.84

Source: The authors.
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ntree 200, 250, 300, 350, 400, 450, 500
mtry 6,7,8,9
min.node.size 2,3,4,56,7,89

Source: The authors.

Table 10.
RF hyperparameters combinations with the best result. Time is the
processing time of each combination.

Combination ntree  mtry min.node.sizec  OA (%) Time (s)
C1 350 9 4 87.02 104.00
Cc2 450 9 3 87.02 133.86

Source: The authors.
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[T Low Vegetation
I Background
Figure 7. Optimized workflow classification results for Area 26. OA =
87.02%. Top: Final classification. Bottom: GT.

Source: The authors.
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Table 11.
Summary of classification accuracy indexes.
Class F1-score (%)

Impervious Surfaces 83.80
Buildings 92.92
Low Vegetation 71.64
Trees 91.56
Cars 52.89
Background 83.83
OA (%) 87.02

Source: The authors.

3.1.6 Phase 4 — Validation

We evaluate thematic accuracy indexes for the

classification and compare the results with those of the
workflow in section 3.1. Table 11 shows the overall accuracy
value and F1-score values for each land-cover class.

We obtained an OA value for the classification of 87.02%. The
land-cover classes with the highest thematic accuracy (F1-score) are
Buildings, Trees, Background and Impervious Surfaces with 92.92%,
91.56%, 83.83% 83.80%, respectively. Moreover, we found that the
lowest values of the F1-score were presented in the Cars and Low
Vegetation classes, with values 52.89% and 71.64%, respectively.

4. Discussion

We compared the overall accuracy values between the non-
optimized and optimized workflow and found an increase

86.63 86.84 87.02

84.59

e — Lod SR J LJd

Phase 0 Phase 1 Phase 2 Phase 3
PHASES
Figure 8. OA increases in each phase (OA OW = OA Optimized Workflow,
OA NOW = OA Non-Optimized Workflow).
Source: The authors.

in OA of 9.34%. In addition, we showed that the optimization
of each phase of a GEOBIA workflow significantly increased
the accuracy of the land-cover classification in VHR images.

Fig. 8 shows the variation of the OA increase of the
workflow as each phase was optimized. Starting from the OA
reference of the non-optimized workflow (77.68%),
successive increases in OA were observed as each phase was
optimized, with values 6.91%, 2.04%, 0.21%, and 0.18% for
phases 0, 1, 2, and 3, respectively.

The optimized phase that most contributed to the increase
in OA was phase 0, where it was evidenced that, by
themselves, variables such as GLCM texture or NDVI and
nDSM increased OA by 4.1% and 4.71%, respectively. The
above demonstrated the importance of the preprocessing
phase and the appropriate choice of variables derived from
the input data, confirming the conclusions reached by Salehi
et al. [7] and Jennifer et al. [43].

The optimization process of the MRS hyperparameters
showed the importance of choosing their best possible
combination. For example, fig. 9 shows the distribution of
OA through the 54 combinations of hyperparameters, where
it was found that the combinations with higher and lower OA
were obtained with SP = 10, indicating that the mere fact of
adjusting SP does not ensure the best possible segmentation
[6,44].

From 30 calculated object features, a set of 17 features
was selected as the most optimal, considering that RFE chose
this number of features based on the best accuracy result
among all possible features subsets, and in this subset, the
importance indexes of each feature were calculated. Fig. 6
shows that the most relevant object feature was Mean_NDVI
and Mean_nDSM. These attributes presented differences in
importance index values regarding the other attributes of 0.15
(MDA) and 4160 (MDG) for Mean_NDVI and of 0.09
(MDA) and 3560 (MDG) for Mean_nDSM. Otherwise, the
object features with the lowest performance were those of
GLCM texture. Only 6 of the 14 calculated ones were
selected for the final classification, and these six presented
the lowest performance. These results support the findings
from the study by Aguilar et al. [45] and Aguilar et al. [46],
whose objective was to demonstrate the VHR images
potential to classify urban land-covers through different
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classes of variables, and where it was established that the
spectral indexes and the relative heights to the ground
(OA=83.6%), help to better classify the urban land-covers, in
comparison with the texture measurements (OA=77.9%).

Regarding the feature selection algorithms, the most
significant difference between the OAs reported in Table 8
was 0.17%, between the RFE algorithm and RRF family
algorithms, in contrast to the processing times, where RFE
had an increase of 59 times (approximately 27 hours)
compared to the RRF family algorithms. These results
showed that although the RFE algorithm presented the best
performance, its computational cost is not comparable with
that of the RRF algorithms' family. Processing time was
calculated using a computer with a four-core processor, each
with a 2.20Ghz processing speed and 8GB RAM.

The RF hyperparameters optimization found that in the
224 combinations performed; the OA had a maximum
variation of 0.19%. Therefore, it was demonstrated that RF is
a robust ML method that is not affected by its performance
by the hyperparameters adjusting [25,47]. However, we
found that this setting improved the workflow processing
time, especially the ntree setting. Fig. 10 shows that the
processing time can be up to four times longer, depending
mainly on the value of ntree. This result confirms the finding
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Figure 10. Time processing distribution for the RF hyperparameters
combinations.
Source: The authors.
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of Probst et al. [48], where after a certain ntree value, the OA
stabilizes so that an increase of this kind only increases the
processing time. Conversely, for mtry and min.node.size, no
indication was found in the results confirming the increase in
OA suggested by Probst et al. [48].

Finally, we observed F1-score index value increases of
9.91%, 9.43%, 22.13%, 3.42%, 21.14, and 14.99% in the
land-cover classes, Impervious Surfaces, Buildings, Low
Vegetation, Trees, Cars and Background, respectively. These
results showed that the overall workflow optimization had a
greater impact on classes such as Low Vegetation, Cars, and
Background. However, the OA values are lower with respect
to the other classes, so it is found that there are land-cover
classes that are more sensitive to the GEOBIA optimization

5. Conclusions

The results obtained in this research confirmed that
spectral, geomorphometric, and texture variables derived
from primary data improve the quality of the VHR image
segmentation process in urban environments. Furthermore,
as demonstrated, including these variables in the process
before segmentation increased the GEOBIA workflow
overall accuracy by 6.91%. This figure was the largest
increase per phase, so special attention must be paid to the
type of input data and possible variables derived from these,
according to the kind of land cover to be classified.

The MRS hyperparameter optimization in the
segmentation phase allowed establishing the importance of
this adjustment in the resulting objects. The literature
consulted gives more importance to the SP hyperparameter,
however, it was found that the appropriate choice of Shape
and Compactness values can increase the OA of the
workflow by up to 2%.

The RF hyperparameters optimization and feature
selection in the classification phase indicated an incidence in
the processing times more than in the OA of the workflow.
The ntree hyperparameter was found to be the most relevant,
S0 it is advisable to set it around 350 to improve processing
time.

Finally, research results demonstrated the importance of
implementing  optimization processes in GEOBIA
workflows, the increase of around 10% in OA verified that
this activity should not only be adopted as good practice but
should be thoroughly analyzed depending on the case study.
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