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Abstract 
A recurring problem in Geographic-Object Based Image Analysis (GEOBIA) is the need to tune each one of the three phases involved in the process, 
segmentation, feature selection, and classification. This paper presents the optimization of a GEOBIA-based urban land-cover classification workflow 
using very-high-resolution imagery. Two classification workflows are evaluated: (i) a non-optimized workflow; and (ii) an optimized workflow. In 
the segmentation and classification phases, both workflows used the multi-resolution segmentation algorithm and the random forest classification 
algorithm. In addition, important spectral, geomorphometric, and textural features are identified as significant predictor variables for the final 
classification. It is shown that the classification accuracy of every land-cover category increases with optimization, resulting in an overall accuracy 
increase of 9.34% compared with no optimization. The results show the substantial impact that optimization has on final classification output and 
suggest the importance of its adoption as a good practice in GEOBIA-based land-cover classification. 

 
Keywords: geographic-object based image analysis; multiresolution segmentation; random forest; urban land-cover classification; optimization. 

 

 

Optimización de un flujo de trabajo para clasificación de coberturas 

urbanas basado en análisis de objetos geográficos usando imágenes 

de alta resolución 
 

Resumen 
Un problema recurrente en el análisis de imágenes orientado a objetos geográficos (GEOBIA), es la necesidad de ajustar las tres fases involucradas en el 
proceso, es decir, segmentación, selección de atributos y clasificación. Este artículo presenta la optimización del flujo de trabajo para clasificación de 
coberturas urbanas basado en GEOBIA empleando imágenes de alta resolución. Se evalúan dos flujos de trabajo para clasificación: (i) no optimizado; y 
(ii) optimizado. Ambos utilizaron los algoritmos multi-resolution segmentation y random forest en las fases de segmentación y clasificación 
respectivamente. Además, se identifican características espectrales, geomorfométricas y texturales, como variables predictoras significativas para la 
clasificación final. Se muestra que la exactitud de la clasificación en cada cobertura aumenta con la optimización, lo que resulta en un aumento de la 
exactitud global de 9.34% respecto a la clasificación no optimizada. Los resultados muestran el impacto que tiene la optimización en el resultado final de 
la clasificación y sugieren la importancia de adoptarla como buena práctica en la clasificación de coberturas basada en GEOBIA. 
 
Palabras clave: análisis orientado a objetos; segmentación multirresolución; bosques aleatorios; clasificación de coberturas urbanas; optimización. 

 

 
 

1. Introduction 
 
The classification of land-cover categories from remote 

sensing data is a task that has been developed for several 

 
How to cite: Mora-Castañeda, D.L., León-Sánchez, C.A. and Lizarazo, I., Optimization of urban land-cover classification workflow based on geographic-object analysis using 

very-high-resolution imagery.. DYNA, 89(220), pp. 43-53, January - March, 2022. 

decades [1-3]. Land-cover studies are relevant in different 
applications, including forest monitoring, water quality 
assessment, soil properties estimation, urbanization studies, 
among others [4-6]. 
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The particular research on urban land-cover classification 
experienced a steady increase in the last decades since it is a 
relevant topic for communities, territorial entities, and local 
governments [7]. This increase was mainly due to the public 
availability of very-high-resolution imagery (VHR) since the 
late 1990s [8]. Although these VHR images are the primary 
input data for this type of study, because of the heterogeneity 
of the urban environment, medium and low-resolution 
images do not allow to discriminate small and common 
elements such as trees, buildings, cars, and even people [2]. 
Furthermore, using these VHR images also poses technical 
challenges due to the internal spectral and spatial 
heterogeneity within urban land cover categories [9].  

Urban land-cover classification from remote sensing 
images is traditionally based on differences between pixel-
level spectral responses [1]. However, this approach has 
problems when the size of the objects under study is larger 
than the spatial resolution of the image [10]. Additionally, 
due to the high spectral variability of urban land-cover in 
VHR images, such an approach for classification generally 
obtains low accuracies due to effects such as salt and pepper 
or structural clutter [7]. It also highlights the most crucial 
problem of this type of classification, which ignores intrinsic 
urban land cover characteristics, such as spatial environment, 
geometry, and context [11]. 

The limitations mentioned above create the need to 
restructure how VHR image classification has been 
approached. The change from the basic unit of study, the 
pixel, to another unit, the object, can account for both spatial 
and spectral characteristics. Currently, apart from the per-
pixel approach, the most widely used approaches for land-
cover classification are the per-field, object-based, 
contextual-based, knowledge-based, and combinational 
approaches [12].  

Blaschke and Strobl [13] state that the change from pixel 
to object, as a basic unit in remote sensing image analysis, 
significantly improves classification results, even in complex 
scenarios represented in VHR images. These objects are 
analyzed using concepts and techniques recently developed, 
which contribute to defining the Geographic-Object Based 
Image Analysis (GEOBIA) for land cover classification 
[8,12,14]. 

These techniques segment images and generate image 
objects created from groups of neighboring pixels, which are 
similar to each other or share some common meaning [15]. 
In addition to the spectral response of the objects, it also 
considers their spatial, textural, temporal, multi-scale, 
geometric, and contextual characteristics, a crucial aspect for 
the classification of urban land-cover [16,17]. These objects 
are created within the GEOBIA workflow by three main 
stages: segmentation, which groups pixels to form objects; 
feature analysis which extracts relevant attributes from 
objects; and classification, which evaluates and decides the 
land-cover class to which the object belongs [18,19]. 

Research like that of Myint et al. [10] compared the 
performance of pixel- and object-based methods in an urban 
environment using VHR images, finding that the overall 
accuracy of object-oriented classification improves by 
around 27% compared to pixel-based classification. This is 
primarily due to the advances these methods have had in 

enhancing their segmentation and classification phases. 
Segmentation is the crucial process of GEOBIA methods 

[9]. A great variety of algorithms carry out this activity, 
including Mean Shift, Chessboard, Quadtree, Contrast Split, 
Spectral Difference, or Contrast Filter [20]. However, the 
vast majority of investigations related to the classification of 
VHR images in urban environments agree that the multi-
resolution segmentation (MRS) algorithm is the one that 
obtains the best results [21]. The principle of this algorithm 
is the grouping of pixels through seeds distributed throughout 
an image based on criteria established by its hyperparameters 
scale (SP), Shape, and Compactness [22]. Its great advantage 
is that it produces objects with high internal homogeneity 
more efficiently than other segmentation methods [21], 
essential for the final land-cover classification. 

On the other hand, the classification algorithms 
performing best within GEOBIA are Machine Learning (ML) 
algorithms. Among these, the one that has obtained the best 
results is Random Forest (RF) [23]. RF is a structured 
collection of decision trees, where each tree is built with data 
and variables chosen at random. Then, each casts a vote 
regarding a given classification, and the result with the 
highest number of votes is the final prediction [24]. Its most 
favorable characteristic is that it only needs to configure a 
few parameters for its operation. As a result, it is faster than 
other ML algorithms, such as support vector machines or 
artificial neural networks [25]. 

Ruiz Hernández and Shi [26] conducted GEOBIA 
classification using the MRS and RF algorithms to map urban 
land-cover with VHR images, obtaining overall thematic 
accuracy results of 92.3%. Similarly, Baker et al. [27] 
classified urban domestic gardens, combining VHR image 
data with vector data, obtaining an overall thematic accuracy 
(OA) of 82%. However, these two studies did not conduct 
any tuning of the GEOBIA phases, which could have caused 
the results obtained not to reach higher accuracy. 

The scope of this paper is to compare the overall accuracy 
obtained by two workflows based on GEOBIA, one non-
optimized and the other with optimizations in each phase. 
The International Society for Photogrammetry and Remote 
Sensing (ISPRS) provides the input data used and the ground 
truth to evaluate the results [28].  

The central hypothesis is that optimizing the phases of a 
workflow based on GEOBIA improves the overall accuracy 
and the efficiency of the process. The main contributions of 
this paper are: (i) it demonstrates that the inclusion of 
relevant variables and object attributes derived from primary 
data improves the overall accuracy of urban land-cover 
classification; (ii) it establishes the impact the optimization 
of the segmentation and classification phases has on the 
overall accuracy of the workflow; and (iii) it demonstrates 
the importance of implementing a general optimization of the 
phases of a GEOBIA workflow, as a good practice in the 
urban land-cover classification. Optimization of the image 
classification process means paying attention to all phases of 
the GEOBIA approach, that is, (i) image segmentation, (ii) 
feature selection, and (iii) image classification. 

This article is organized as follows. Section 2 presents 
and describes the study area, the input data, and the methods 
used to extract urban land-cover categories. Section 3 
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presents the results obtained using the described methods. 
Section 4 discusses the results found, and Section 5 presents 
the conclusions obtained from the research. 

 

2. Data and methods 
 

2.1 Study area 
 
The study area is located in Vaihingen an der Enz, a small 

town in the Ludwigsburg district of the federal state of Baden  
 

 
Figure 1. The study area (RGB color composition using Near Infrared-NIR, 

Red, and Green bands). The image is composed of 5340085 pixels 
covering an area of 43254.69 square meters. 

Source: The authors. 

 
 

 
Figure 2. Data set from Area 26. Top-Left: True Orthophoto. Top-Right: 

Digital Surface Model. Bottom-Left: Ground Truth 

Source: The authors. 

 

Table 1. 

TOP and DSM specifications. 
 TOP DSM 

Spatial Resolution (m) 0.09 0.09 
Bands 3 (NIR, Red, Green) 1 (Heights) 

Radiometric Resolution (bits) 8 32 

Extent (x, y) (m) (269.55, 160.47) 

Source: The authors. 
 
 

Table 2. 

Land-cover classes description. 
Class Number Class RGB coding Colour 

1 Impervious Surfaces 255, 255, 255 White 
2 Buildings 0, 0, 255 Blue 

3 Low Vegetation 0, 255, 255 Cyan 

4 Trees 0, 255, 0 Green 

5 Cars 255, 255, 0 Yellow 

6 Background 255, 0, 0 Red 

Source: The authors. 
 
 

- Württemberg in Germany (Fig. 1). It is northwest of the city 
of Stuttgart; an urban area characterized by residential and 
recreational land use [28]. Although its urban structure 
presents low-rise buildings that are widely separated from 
each other, it also shows a large amount of urban vegetation 
(rows of trees, bushes, and grass). This structure represents a 
typical old town in Germany [29]. 

 

2.2  Data 
 
The study area is subdivided into 33 areas distributed in 

the city center, from which true orthophotos (TOP), digital 
surface models (DSM), and ground truth (GT) of the surface 
objects corresponding to area 26 were taken (Fig. 2). The 
dataset is a subset of the data used for the digital aerial camera 
test performed by the German Association of 
Photogrammetry and Remote Sensing (DGPF) [30]. 

 

2.1.1  True Orthophoto (TOP) and Digital Surface Model (DSM) 
 
The process of acquiring the images necessary to generate 

the TOPs and DSMs was carried out and coordinated by the 
Institute of Photogrammetry of the University of Stuttgart under 
the supervision of the DGPF. It was carried out by executing a 
flight plan of seven strips, with a block with five parallel and 
overlapping strips and two crossed strips at the ends of the block 
[29]. The flight days for taking the images were July 24 and 
August 6, 2008, and a DMC camera from the Intergraph/ZI 
company was used [30]. Once the DGPF took the aerial 
photographs, Rottensteiner et al. [29] generated a TOP and 
DSM of the entire study area, from which individual TOP and 
DSM were extracted for each of the 33 areas. The TOP and 
DSM specifications for area 26 are described in Table 1. 

 

2.1.2 Ground Truth (GT) 
 
The GT was obtained from ISPRS [28] in TIFF files with 

three bands (red, green, and blue - RGB), which were only 
assigned values of 0 and 255, this to be able to encode the six 
classes in which the areas are classified and described in Table 
2. 
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The urban land cover classes used here are the most 
commonly found in an urban environment. The impervious 
surface class included roads, pedestrian paths, parking lots, and 
all kinds of surfaces made of asphalt or concrete at ground level. 
The building class covered the entire estate spectrum, such as 
houses, warehouses, and any residential, commercial, 
industrial, or institutional structure found. The Low vegetation 
class refers to all biomass found at ground level, for example, 
grass, living fences, or small shrubs. The tree class covered all 
the large vegetation existing in the areas. The car class 
contained all the fleet of vehicles that could be found. Finally, 
the background class included water surfaces and other objects 
that look different from everything previously classified 
(swimming pools, containers, tennis courts, among others) [28]. 

The training and validation processes samples were taken 
through a stratified random sample, where each stratum is 
equivalent to each of the urban land-cover classes. Simple 
random sampling was carried out for each stratum. 30% of 
the total area 26 was taken for the training process, and the 
remaining 70% was used in the validation. 

 

2.3  Method 
 
The GEOBIA-based workflow shown in Fig. 3 was 

divided into two parts. A non-optimized workflow takes 
default values in each phase of the workflow and another 
with the proposed optimization. In each phase, variables, 
attributes, and hyperparameters are added or optimized as the 
case may be. Both workflows comprise four main phases and 
a preprocessing phase: In phase 0, the variables derived from 
TOP and DSM were calculated; in phase 1, the segmentation 
process was carried out using the MRS algorithm; in phase 2, 
the object's features were calculated; in phase 3, the RF 
algorithm was used to carry out the classification; In phase 4, 
the classification obtained was evaluated by calculating the 
confusion matrix and its accuracy indexes. 

 

 
Figure 3. GEOBIA-based workflow. The nomenclature used (GEOBIA: 
Geographic-Object Based Image Analysis, TOP: True Orthophoto, DSM: 

Digital Surface Model, GT: Ground Truth, MRS: Multiresolution 

Segmentation, RF: Random Forest). 
Source: The authors. 

2.3.1  Phase 0: Preprocessing 
 
First, the position, scale, and orientation verification of 

the TOP and DSM of area 26 were carried out. 
For the optimized GEOBIA workflow, variables derived 

from TOP and DSM were calculated, such as textural 
variables from the gray level co-occurrence matrix (GLCM) 
[31]; the normalized digital surface model (nDSM); the slope 
[32], and the normalized difference vegetation index (NDVI) 
[33]. 

The GLCM textural variables calculated were Contrast 
(CON), Dissimilarity (DIS), Homogeneity (HOM), Angular 
Second Moment (ASM), Entropy (ENT), Mean (MEN), 
Standard Deviation (STD), and Correlation (COR). These 
variables are defined as shown in eq. (1)-(8) respectively 

 

𝐶𝑂𝑁 =∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2
𝑁−1

𝑖,𝑗=0
 (1) 

  

𝐷𝐼𝑆 =∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|
𝑁−1

𝑖,𝑗=0
 (2) 

  

𝐻𝑂𝑀 =∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0
 (3) 

  

𝐴𝑆𝑀 =∑ 𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0
 (4) 

  

𝐸𝑁𝑇 =∑ 𝑃𝑖,𝑗(− 𝑙𝑛 𝑃𝑖,𝑗)
𝑁−1

𝑖,𝑗=0
 (5) 

  

𝑀𝐸𝑁 = 𝜇𝑖,𝑗 =
∑ 𝑃𝑖,𝑗
𝑁−1
𝑖,𝑗=0

𝑁2  (6) 

  

𝑆𝑇𝐷 = 𝜎𝑖,𝑗 = √∑ 𝑃𝑖,𝑗(𝑖, 𝑗 − 𝜇𝑖,𝑗)
𝑁−1

𝑖,𝑗=0
 (7) 

  

𝐶𝑂𝑅 =∑ 𝑃𝑖,𝑗 [
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

𝜎𝑖𝜎𝑗
]

𝑁−1

𝑖,𝑗=0
 (8) 

 
where 𝑖, 𝑗 represent the number of rows and columns of 

GLCM, 𝑃𝑖,𝑗 is the probability in the pixel 𝑖, 𝑗, and 𝑁 is the 
number of rows or columns of GLCM. Variables such as 
CON, DIS, ENT, and STD show the local variation degree in 
an image. For their part, variables such as HOM, MEN, COR, 
and ASM are a measure of image homogeneity [31]. 

The nDSM represents the relative height to the ground of 
objects above the earth's surface and is defined as shown by eq. (9). 

 
𝑛𝐷𝑆𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀 (9) 
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where 𝐷𝑆𝑀, is the digital surface model and 𝐷𝑇𝑀, is the 
digital terrain model. 

Slope is the inclination of a given point on a topographic 
surface [32]. This was calculated from the DSM according to 
eq. (10), 

 

𝑆𝑙𝑜𝑝𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(√(
𝑑𝑧

𝑑𝑥
)
2

+ (
𝑑𝑧

𝑑𝑦
)
2

) (10) 

 

where 
𝑑𝑧

𝑑𝑥
 and 

𝑑𝑧

𝑑𝑦
 describes the elevation change 𝑍 in the 𝑋 

and 𝑌 axes direction, respectively. 

The NDVI is the vegetation index most used in urban 

land-cover studies since it allows differentiation of vegetal 

land-cover from other present land-cover classes [7]. Its 

calculation is established by the difference of reflectance in 

the infrared and red bands divided by their sum, as shown in 

eq. (11). 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (11) 

 
where 𝑁𝐼𝑅 and 𝑅𝐸𝐷 are reflectance values in the TOP 

image corresponding to near-infrared and red bands, 
respectively. 

 

2.3.2  Phase 1 – Segmentation 
 
In this phase, the MRS algorithm implemented in the 

eCognition 9.0 software was used [34]. For the non-
optimized workflow, the default values of the SP, Shape and 
Compactness hyperparameters were used (10, 0.1 and 0.5, 
respectively). This phase's optimization consisted of 
determining the best value combination of the three 
hyperparameters through several iterations. The typical land-
cover sizes in the scene were considered in the SP setting, 
especially the car land-cover, the smallest of all. The Shape 
and Compactness hyperparameters vary between 0 and 1; 
however, in this phase, values between 0.1 and 0.9 were 
taken for both according to recommendations from previous 
studies [34]. To observe the behavior of Shape and 
Compactness, high, medium, and low values were taken. 

 

2.3.3 Phase 2 – Feature Analysis  
 
The features or attributes calculated for each object output 

by the segmentation phase correspond to the textural type 
(GLCM); geomorphometric (DSM, nDSM, and Slope), and 
spectral (TOP, NDVI, Max.Diff, and Brightness), as shown 
in Table 3. Max.Diff and Brightness were calculated 
according to the terms of [34]. 

First, for the non-optimized workflow, Mean_NIR, 
Mean_RED, Mean_GREEN, and Mean_DSM attributes 
were calculated in each object generated by the segmentation. 

Feature analysis for workflow optimization comprises 
calculating spectral, geomorphometric, and textural features 
for each object. Feature selection was then carried out using 
the Regularized Random Forest (RRF) [35-37] and Recursive  
 

Table 3. 

Object features calculated for feature analysis. 
Type Object Feature 

Spectral 
Mean_NDVI, Mean_NIR, Mean_RED, 
Mean_GREEN, SD_NDVI, SD_NIR, SD_RED, 

SD_GREEN, Brightness, Max_Diff 

Geomorphometric 
Mean_nDSM, Mean_Slope, SD_nDSM, 
SD_Slope 

GLCM Texture 

ASM_nDSM, CON_nDSM, COR_nDSM, 

DIS_nDSM, ENT_nDSM, HOM_nDSM, 
MEN_nDSM, STD_nDSM, ASM_NDVI, 

CON_NDVI, COR_NDVI, DIS_NDVI, 
ENT_NDVI, HOM_NDVI, MEN_NDVI, 

STD_NDVI 

Source: The authors. 

 
 

Feature Elimination (RFE) algorithms [38]. These algorithms 
make it possible to select the best group of features, 
considering elimination parameters such as redundancy or 
collinearity between them [39]. In addition, this phase sought 
to find the attributes set that produced the best accuracy in 
the final classification, minimizing the problems associated 
previously. For the GRRF and GRF algorithms, the gamma 
penalty parameter ranged from 0.1 to 1 [36,37]. 

 

2.3.4  Phase 3 – Classification 
 
Before entering the classification phase, the training and 

test samples selection was carried out as stated in section 
2.2.2. 

The RF algorithm was implemented for the classification 
phase. To evaluate the data and variables' performance, RF 
uses two importance indexes, Mean Decrease Accuracy 
(MDA) and Mean Decrease Gini (MDG). MDA measures the 
overall accuracy reduction of RF concerning the absence of 
a given variable, and MDG accounts for the impact that 
excluding a variable has on the rapid choice of the decision 
tree [25]. 

RF was initially run without optimization, using the default 
values for its hyperparameters: number of trees (ntree), 
number of attributes for each tree (mtry), and minimum node 
size to be divided (min.node.size), within the R randomForest 
library [40]. Subsequently, the RF hyperparameters were 
adjusted simultaneously by successive iterations between 
possible value combinations. Following Belgiu and Dragut 
[25], the values of the RF hyperparameters were chosen as 
follows: ntree values less than 500, mtry values greater than 5, 
and min.node.size values greater than 1. 

 

2.3.5  Phase 4 – Validation 
 
For the validation, the confusion matrix was calculated, a 

square matrix whose numerical values in the rows and 
columns represent the number of study units assigned to a 
given class, based on the GT reference classification [41]. 
The overall accuracy index (OA) and F1-score index are 
calculated to quantify the obtained accuracies from the 
confusion matrix, as shown in eq. (12,13) respectively  

 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 
where TP are the correctly classified objects; TN, the 

correctly non-classified objects; FP, the classified objects in 
a class that was not the true one; and FN, the non-classified 
objects in the true class [42]. 

 

3. Results 
 

3.1  Non-optimized workflow implementation 
 
Table 4 shows the input data values for each phase described 

above, taken without making adjustments or processing. 
In phase 0, we do not perform processing on the TOP and DSM 

bands, which we take as input data for segmentation. For phase 1, 
we use the default values of MRS algorithm to generate the 
segmented objects. In phase 2, we calculate the object attributes 
corresponding to the mean response of each variable in each object. 

 
Table 4. 

Default values for non-optimized workflow input data. 
Input Data Default Value 

Variables NIR, RED, GREEN, DSM 

MRS Hyperparameters SP=10, Shape=0.1, Compactness=0.5 

Feature Objects 
Mean_NIR, Mean_RED, Mean_GREEN, 

Mean_DSM 

RF Hyperparameters ntree=500, mtry=5, min.node.size=1 

Source: The authors. 

 
 

 
Figure 4. Non-optimized workflow classification results for Area 26. OA = 

77.68%. Top: Final classification. Bottom: GT. 

Source: The authors. 

 
Figure 5. Non-optimized workflow classification importance indexes. 

Source: The authors. 

 
 

Table 5. 

Summary of classification accuracy indexes. 
Class F1-score (%) 

Impervious Surfaces 73.89 

Buildings 83.49 

Low Vegetation 49.51 
Trees 88.14 

Cars 31.75 

Background 68.84 

OA (%) 77.68 

Source: The authors. 

 
 
For phase 3, we trained RF with 30% of the objects 

obtained, and we used the default values of the R 
randomForest library. Then, we carried out the classification 
with the remaining 70% of the objects, and we obtained the 
result shown in Fig. 4. 

The MDA and MDG importance indexes are shown in 
Fig. 5, where it is revealed that the best attributes are 
Mean_NIR and Mean_RED. MDA values of 0.32 and 0.27 
for Mean_RED and Mean_NIR, respectively, indicated the 
decreased degree in accuracy with the absence of these 
attributes. On the other hand, MDG values of 2230 and 2000 
for Mean_NIR and Mean_RED, respectively, indicated the 
impact that the exclusion of the attribute has on the speed of 
the RF decision in the classification. 

The overall accuracy for the non-optimized classification 
workflow is shown in Table 5, where after evaluating the 
confusion matrix, we calculated the OA and the F1-score 
indexes for each land-cover class.  

We observe that the OA of the classification is 77.68%, 
where the classes with the highest thematic accuracy (F1-
score) are Trees, Buildings, and Impervious Surfaces with 
88.14%, 83.49%, and 73.89% values, respectively. On the 
other hand, we found that the lowest F1-score values were 
presented in the Cars, Low Vegetation, and Background 
classes with 31.75%, 49.51%, and 68.84% values, 
respectively. 

 

3.1.1  Optimized workflow implementation 
 

The workflow optimization is carried out for each phase, 

and in each one, we evaluate the OA applying the workflow 

of section 3.1 with the accumulated optimizations per phase. 
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3.1.2  Phase 0 – Preprocessing 
 
We calculate three types of derived variables from the 

input variables: spectral, geomorphometric, and texture, 
which are listed in Table 6. 

For the GLCM texture variables calculation, we chose a 
3X3 window size and the NIR variable. Then, we calculate 
the OA of the inclusion of the new variable, evaluating first 
the inclusion only of GLCM textural variables, then only the 
geomorphometric and spectral variables, finally, the entire 
set of variables with a result 81.78%, 82.39 %, and 84.59% 
respectively. 

 

3.1.3  Phase 1 – Segmentation 
 
Table 7 shows the different values used for the MRS 

hyperparameters adjustment. We evaluate each combination 
of values using the non-optimized workflow developed in 
section 3.1, including the NDVI, NIR, RED, GREEN, 
nDSM, Slope, MEN, STD, HOM, and CON DIS, ENT, 
ASM, and COR variables calculated in section 3.2.1. 

We obtained 54 possible combinations of 
hyperparameters. The best result was obtained with the 
values of SP = 10, Shape = 0.9, and Compactness = 0.9 with 
an OA = 86.63%. 

 

3.1.4  Phase 2 – Feature Analysis 
 
We calculate a total of 30 object attributes from the 

entered variables and evaluate their performance by applying 
the optimizations of phases 0 and 1 to the workflow of section 
3.1. Table 8 shows the results and the number of attributes 
selected for each algorithm used. 

 
Table 6. 

Summary of input data variables. 
Type Variable 

Spectral NDVI, NIR, RED, GREEN 
Geomorphometric nDSM, Slope 

GLCM Texture MEN, STD, HOM, CON, DIS, ENT, ASM, COR 

Source: The authors. 

 
 

Table 7. 
MRS hyperparameters values. 

MRS Hyperparameter Values 

SP 10, 12, 14, 16, 18, 20 

Shape 0.1, 0.5, 0.9 
Compactness 0.1, 0.5, 0.9 

Source: The authors. 
 

 
Table 8. 
Feature selection results. GRRF and GRF, the gamma penalty parameter was 

varied from 0.1 to 1 according to [36, 37]. Time is the processing time of 

each algorithm. 
Algorithm # Features Time (s) OA (%) 

RF 30 127.81 86.67 

RRF 30 227.45 86.77 

GRRF (0.1) 30 1680.24 86.80 
GRF (0.1) 30 1170.76 86.78 

RFE 17 98159.01 86.84 

Source: The authors. 

 
Figure 6. Optimized workflow classification importance indexes. 
Source: The authors. 

 
 
We found that the best result was obtained with the RFE 

algorithm with an OA = 86.84% and a feature set size of 17. 
Next, we evaluate the performance of the selected attributes 
as shown in Fig. 6, where the attributes with the highest 
incidence in the classification were Mean_NDVI and 
Mean_nDSM. 

 

3.1.5  Phase 3 – Classification 
 
Once the optimal set of attributes was obtained, we 

adjusted the RF hyperparameters for subsequent 
classification. We simultaneously adjusted the ntree, mtry 
and min.node.size hyperparameters , whose values can be 
seen in Table 9. 

We evaluated 224 combinations of hyperparameters 
entirely, from which we obtained two combinations with the 
best performance, as shown in Table 10. 

We chose the C1 combination because it has the shortest 
processing time. Therefore, we obtained the final 
classification with this combination, and the result is shown 
in Fig. 7. 

 
Table 9. 

RF hyperparameters values. 
RF Hyperparameter Values 

ntree 200, 250, 300, 350, 400, 450, 500 
mtry 6, 7, 8, 9 

min.node.size 2, 3, 4, 5, 6, 7, 8, 9 

Source: The authors. 
 
 

Table 10. 
RF hyperparameters combinations with the best result. Time is the 

processing time of each combination. 
Combination ntree mtry min.node.size OA (%) Time (s) 

C1 350 9 4 87.02 104.00 
C2 450 9 3 87.02 133.86 

Source: The authors. 
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Figure 7. Optimized workflow classification results for Area 26. OA = 
87.02%. Top: Final classification. Bottom: GT. 

Source: The authors. 

 
 

Table 11. 

Summary of classification accuracy indexes. 
Class F1-score (%) 

Impervious Surfaces 83.80 

Buildings 92.92 

Low Vegetation 71.64 
Trees 91.56 

Cars 52.89 

Background 83.83 

OA (%) 87.02 

Source: The authors. 
 
 

3.1.6  Phase 4 – Validation 
 
We evaluate thematic accuracy indexes for the 

classification and compare the results with those of the 
workflow in section 3.1. Table 11 shows the overall accuracy 
value and F1-score values for each land-cover class. 

We obtained an OA value for the classification of 87.02%. The 
land-cover classes with the highest thematic accuracy (F1-score) are 
Buildings, Trees, Background and Impervious Surfaces with 92.92%, 
91.56%, 83.83% 83.80%, respectively. Moreover, we found that the 
lowest values of the F1-score were presented in the Cars and Low 
Vegetation classes, with values 52.89% and 71.64%, respectively. 

 

4. Discussion 
 

We compared the overall accuracy values between the non-

optimized and optimized workflow and found an increase 

 

 
Figure 8. OA increases in each phase (OA OW = OA Optimized Workflow, 

OA NOW = OA Non-Optimized Workflow). 

Source: The authors. 

 
 

in OA of 9.34%. In addition, we showed that the optimization 
of each phase of a GEOBIA workflow significantly increased 
the accuracy of the land-cover classification in VHR images. 

Fig. 8 shows the variation of the OA increase of the 
workflow as each phase was optimized. Starting from the OA 
reference of the non-optimized workflow (77.68%), 
successive increases in OA were observed as each phase was 
optimized, with values 6.91%, 2.04%, 0.21%, and 0.18% for 
phases 0, 1, 2, and 3, respectively. 

The optimized phase that most contributed to the increase 
in OA was phase 0, where it was evidenced that, by 
themselves, variables such as GLCM texture or NDVI and 
nDSM increased OA by 4.1% and 4.71%, respectively. The 
above demonstrated the importance of the preprocessing 
phase and the appropriate choice of variables derived from 
the input data, confirming the conclusions reached by Salehi 
et al. [7] and Jennifer et al. [43]. 

The optimization process of the MRS hyperparameters 
showed the importance of choosing their best possible 
combination. For example, fig. 9 shows the distribution of 
OA through the 54 combinations of hyperparameters, where 
it was found that the combinations with higher and lower OA 
were obtained with SP = 10, indicating that the mere fact of 
adjusting SP does not ensure the best possible segmentation 
[6,44]. 

From 30 calculated object features, a set of 17 features 
was selected as the most optimal, considering that RFE chose 
this number of features based on the best accuracy result 
among all possible features subsets, and in this subset, the 
importance indexes of each feature were calculated. Fig. 6 
shows that the most relevant object feature was Mean_NDVI 
and Mean_nDSM. These attributes presented differences in 
importance index values regarding the other attributes of 0.15 
(MDA) and 4160 (MDG) for Mean_NDVI and of 0.09 
(MDA) and 3560 (MDG) for Mean_nDSM. Otherwise, the 
object features with the lowest performance were those of 
GLCM texture. Only 6 of the 14 calculated ones were 
selected for the final classification, and these six presented 
the lowest performance. These results support the findings 
from the study by Aguilar et al. [45] and Aguilar et al. [46], 
whose objective was to demonstrate the VHR images 
potential to classify urban land-covers through different 
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Figure 9. OA distribution for the MRS hyperparameters combinations. 

Source: The authors. 

 
 

classes of variables, and where it was established that the 
spectral indexes and the relative heights to the ground 
(OA=83.6%), help to better classify the urban land-covers, in 
comparison with the texture measurements (OA=77.9%). 

Regarding the feature selection algorithms, the most 
significant difference between the OAs reported in Table 8 
was 0.17%, between the RFE algorithm and RRF family 
algorithms, in contrast to the processing times, where RFE 
had an increase of 59 times (approximately 27 hours) 
compared to the RRF family algorithms. These results 
showed that although the RFE algorithm presented the best 
performance, its computational cost is not comparable with 
that of the RRF algorithms' family. Processing time was 
calculated using a computer with a four-core processor, each 
with a 2.20Ghz processing speed and 8GB RAM. 

The RF hyperparameters optimization found that in the 
224 combinations performed; the OA had a maximum 
variation of 0.19%. Therefore, it was demonstrated that RF is 
a robust ML method that is not affected by its performance 
by the hyperparameters adjusting [25,47]. However, we 
found that this setting improved the workflow processing 
time, especially the ntree setting. Fig. 10 shows that the 
processing time can be up to four times longer, depending 
mainly on the value of ntree. This result confirms the finding 

 

 
Figure 10. Time processing distribution for the RF hyperparameters 

combinations. 

Source: The authors. 

of Probst et al. [48], where after a certain ntree value, the OA 
stabilizes so that an increase of this kind only increases the 
processing time. Conversely, for mtry and min.node.size, no 
indication was found in the results confirming the increase in 
OA suggested by Probst et al. [48]. 

Finally, we observed F1-score index value increases of 
9.91%, 9.43%, 22.13%, 3.42%, 21.14, and 14.99% in the 
land-cover classes, Impervious Surfaces, Buildings, Low 
Vegetation, Trees, Cars and Background, respectively. These 
results showed that the overall workflow optimization had a 
greater impact on classes such as Low Vegetation, Cars, and 
Background. However, the OA values are lower with respect 
to the other classes, so it is found that there are land-cover 
classes that are more sensitive to the GEOBIA optimization 

 

5. Conclusions 
 
The results obtained in this research confirmed that 

spectral, geomorphometric, and texture variables derived 
from primary data improve the quality of the VHR image 
segmentation process in urban environments. Furthermore, 
as demonstrated, including these variables in the process 
before segmentation increased the GEOBIA workflow 
overall accuracy by 6.91%. This figure was the largest 
increase per phase, so special attention must be paid to the 
type of input data and possible variables derived from these, 
according to the kind of land cover to be classified. 

The MRS hyperparameter optimization in the 
segmentation phase allowed establishing the importance of 
this adjustment in the resulting objects. The literature 
consulted gives more importance to the SP hyperparameter, 
however, it was found that the appropriate choice of Shape 
and Compactness values can increase the OA of the 
workflow by up to 2%. 

The RF hyperparameters optimization and feature 
selection in the classification phase indicated an incidence in 
the processing times more than in the OA of the workflow. 
The ntree hyperparameter was found to be the most relevant, 
so it is advisable to set it around 350 to improve processing 
time. 

Finally, research results demonstrated the importance of 
implementing optimization processes in GEOBIA 
workflows, the increase of around 10% in OA verified that 
this activity should not only be adopted as good practice but 
should be thoroughly analyzed depending on the case study. 
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