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WHEN THE STATE OF THE ART IS AHEAD
OF THE STATE OF UNDERSTANDING

UNINTUITIVE PROPERTIES OF DEEP NEURAL NETWORKS

JOAN SERRA

Deep learning is an undeniably hot topic, not only within both academia and industry, but
also among society and the media. The reasons for the advent of its popularity are manifold:

unprecedented availability of data and computing power, some innovative methodologies, minor

but significant technical tricks, etc. However, interestingly, the current success and practice of deep

learning seems to be uncorrelated with its theoretical, more formal understanding. And with that,

deep learning’s state-of-the-art presents a number of unintuitive properties or situations. In this note,

| highlight some of these unintuitive properties, trying to show relevant recent work, and expose the

need to get insight into them, either by formal or more empirical means.
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B INTRODUCTION

In the last years, neural networks have resurfaced
from their ashes, yielding impressive outcomes

in tasks where traditional approaches were
systematically underperforming (LeCun, Bengio,

& Hinton, 2015). The reasons for this success are
manifold, and they are still a matter of debate. Clearly,
there are data and technological
components that have decisively
contributed, namely the
availability of unprecedented
volumes of data and the
ubiquitous access to greater
computing power. However,
besides those more practical
components, I would say it is
safe to claim that one of the key
enablers of the current success of neural networks has
been the introduction of minor but significant «tricks
of the trade». Some examples were the initialization
of the neurons’ weights by unsupervised pre-training,
the substitution of sigmoid activations by rectified
linear units to alleviate the problem of vanishing
gradients, or the systematic and extensive use of
convolutional architectures to tackle translations
while reducing the number of trainable weights.

«IN THE LAST YEARS,
NEURAL NETWORKS HAVE
RESURFACED FROM THEIR

ASHES, YIELDING IMPRESSIVE
OUTCOMES»

Interestingly, a majority of these enabler tricks do
not stem from a unified theory of neural networks nor
from rigorous mathematical developments. Instead,
they stem from intuition, empirical investigation
and, ultimately, trial and error (or brute-force search).
In this sense, deep learning research seems to
follow Wolfram’s «new kind of science» paradigm
(Wolfram, 2002), under which «the optimal design
of [deep learning] systems
can only be approached by a
combinatorial search over the
vast number of all possible
[network] configurations». In fact,
some researchers have directly
embraced this mantra and
started the search, with the help
of automatic and/or structured
methodologies to partially guide
it. For example, Zoph and Le (2016) discover novel
network configurations using evolutionary strategies.

But the empirically-driven advancement of the
field should not prevent the development of more
formal theories (or proto-theories) that would
allow us to comprehend what is going on and,
eventually, provide a more holistic understanding
of it. In particular, such understanding could take
ground from a number of open issues or unintuitive
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properties of neural networks that puzzle the research
community (Larochelle, 2017). In the remaining of the
article, I will present and try to briefly explain some of
these unintuitive properties.

B NEURAL NETWORKS CAN MAKE DUMB ERRORS

It is now well known that neural networks can
produce totally unexpected outputs from inputs with
perceptually-irrelevant changes, which are commonly
called adversarial examples. Humans can also be
confused by «adversarial examples»: we all have
seen images that we guessed were something (or a
part of something) and later we were told they were
not. However, the point here is that human adversarial
examples do not correspond to those of neural
networks because, in the latter case, they can be
perceptually the same. Szegedy et al. (2014) showed
that a network could misclassify an image by just
applying «a certain hardly perceptible perturbation»
to it. Not only that, but they also found that the

same perturbation on that particular image caused
misclassification even when the image was not in the
training set, that is, when the network was trained
with a different subset of images. Complementarily,
Nguyen, Yosinski, and Clune
(2015) showed that it is possible

to produce artificial images that
are completely unrecognizable by
humans but that, nonetheless, deep
neural networks believe to be real-
world recognizable objects with a
99.99% confidence.

The problem of adversarial
examples is interesting because
they contradict one of the most
renowned and extensively
demonstrated qualities of neural
networks: their large generalization capability (or, in
other words, their outstanding performance on unseen
data). Knowledge on possible adversarial attacks is
increasing (Papernot et al., 2017), and with it, new
techniques to tackle the problem appear. Incipient
theories have arised, and recent work suggests that
adversarial examples are directly related to model
performance (Gilmer et al., 2018). However, to day, a
general understanding of the phenomenon is missing.

B THE SOLUTION SPACE IS A MYSTERY

As with many other machine learning algorithms, the
training of neural networks proceeds by finding a
combination of numbers, called network parameters
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«IT IS INTERESTING THAT
A RESEARCH FIELD
LIKE DEEP LEARNING
CAN PRESENT SO MANY
BREAKTHROUGHS AND,
AT THE SAME TIME, SO MANY
PUZZLING SITUATIONS»
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Artificial neural networks are modelled after the neural system of a
biological brain. Each node in the structure represents one of the
neurons located at different levels (input, hidden, and output layers)
processing the «training» data in the deep learning process.

—
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Adapted from Wikipedia

or weights, that yields the highest performance or,
more properly, the minimum loss on some data. If we
had only a single weight, training the network would
consist in finding the value of that weight which
results in the minimum loss of information. There are
well known methodologies to find such a minimum
for a few parameters with theoretical guarantees.
However, deep neural networks are typically in the
range of millions of parameters, for which a suitable
combination that minimizes a certain loss must be
found. The number of parameters per se would not

be a serious problem if the loss
was convex, that is, that it had a
single minimum and that, roughly
speaking, all strictly descending
paths reached that minimum.
However, this is not the case. The
losses of current deep networks
are non-convex, with multiple
local minima.

In this scenario, there are not
many theoretical guarantees
about the ability of most known
methodologies to find a good
minimum (ideally the smallest minimum over all
minima). In general, the loss landscapes induced by
deep networks are totally unknown, and the explored
fraction of the solution space is tiny. Apart from multiple
local minima, loss landscapes are supposed to include
saddle points (Dauphin et al., 2014) and other obstacles
that theoretically hinder the «navigation» of current
minimum-finding algorithms. Nonetheless, extremely
basic minimum-finding algorithms reach good solutions;
as good as to break the state-of-the-art in well-studied
problems, and as to tackle newly proposed, previously
unthinkable machine learning tasks. Why is that?

A common hypothesis is that the vast majority
of local minima are almost of a similar loss, that is,
all of them imply equally good solutions (Kawaguchi,
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Both artificial neural networks and the human mind can be confused by «adversarial examples», images we identify as something (or as a
part of something) and are later found to be something else. However, an artificial network can misclassify an image just by applying some
barely perceptible disturbance. In the picture, a collage inspired by the meme «chihuahua or muffin?» which gained popularity in 2016 as
an example of the potential confusions affecting artificial intelligence neural networks.

METODE 129



Wikipedia

Interlinked

2016). Another hypothesis is that saddle points and
other obstacles are not encountered during minimum
search with current methods (Goodfellow, Vinyals,

& Saxe, 2015). It is also very possible that some
architectures or design priors introduce convexity (Li,
Xu, Taylor, & Goldstein, 2017). All these could explain
why random weight initializations, together with the
simplest minimum-finding algorithms, actually work.
In fact, such algorithms seem to perform best when
badly conditioned, or when some noise is introduced in
the process.

B NEURAL NETWORKS CAN EASILY MEMORIZE

Even a not-so-deep neural network belongs to the class
of what is called universal function approximation
algorithms (Cybenko, 1989). That means, in plain
words, that neural networks have enough power
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The potential for compression of neural networks has obvious
practical consequences, especially when the goal is to implement
them in devices with limited resources, such as mobile phones, or
systems with limited hardware, such as cars. In the picture, tests for
an autonomous BMW car.

«EVEN IF THE DATA IS NOT TOTALLY
RANDOM, NEURAL NETWORKS
ARE CAPABLE OF EXTRAPOLATING
THEIR MEMORIES TO UNSEEN CASES AND
GENERALIZE»



to represent any data set. Recent work
empirically shows that finite-sized networks
can model any finite-sized data set, even if
this is made of shuffled data, random data,

or random labels (Zhang, Hardt, Recht, &
Vinyals, 2017). This has the implication that
neural networks can remember the labels of
any training data, no matter the nature of that
data. And remembering training data means

What is not so obvious is that, still, if the
data is not totally random, neural networks
are totally capable of extrapolating their
memories to unseen cases and generalize.
Doing so when the number of model
parameters is several orders of magnitude
larger than the number of training instances
is what is intriguing and not yet formally
justified. It contradicts the classical machine
learning rule of thumb to prefer simple
models (in the sense of having few learnable
parameters) in order to achieve good
generalization capabilities. It also contradicts
conventional wisdom that some more or less
explicit form of irrelevant parameter pruning,
commonly called regularization, should be
employed when a model is much bigger than
the number of training instances (Zhang et
al., 2017).

B NEURAL NETWORKS CAN BE
COMPRESSED

Parameter pruning or explicit regularization
is not needed for generalization. However,
it is well known that one can drastically reduce the
number of parameters of a trained neural network
and still maintain its performance on both seen

and unseen data (Han, Mao, & Dally, 2016). Even
ensembles of neural networks can be «distilled» into
a smaller network without a noticeable performance
drop (Hinton, Vinyals, & Dean, 2014). In some cases,
the amount of pruning or compression is surprising:
up to 100 times depending on the data set and
network architecture.

The possibility of severely compressing neural
networks has obvious practical consequences,
specially when such networks need to be deployed in
low-resource devices, like mobile phones, or limited-
hardware systems, like cars. But besides practical
considerations, it also poses several questions: do
we need a large network in the first place? Is there
some architecture twist that combined with current

performing with 100% accuracy on such data.
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minimum-finding algorithms allows to discover good
parameter combinations for those small networks?
Or is it just a matter of discovering new minimum-
finding algorithms?

B LEARNING IS INFLUENCED BY INITIALIZATION
AND EXAMPLE ORDER

As with human learning, current network learning
depends on the order in which we present the
examples. Practitioners know that different sample
orderings yield different performances and, in
particular, that early examples have more influence on
the final accuracy (Erhan et al., 2010). Furthermore,
it is now a classic trick to pre-train a neural network
in an unsupervised way or to transfer knowledge
from a related task to benefit from additional sources
(Yosinski, Clune, Bengio, & Lipson, 2014). In
addition, it is easy to show that even though random
initializations of the networks’ weights converge

to a good solution, changing the initial weights’
distributions or the distributions’ parameters can
affect the final accuracy or, in the worst case, just
prevent the network to learn at all (LeCun, Bottou,
Orr, & Miiller, 2002). There is a lack of knowledge
on mathematically-motivated initialization schemes,
as well as on optimal orderings of training samples.
A general theory seems difficult to find and, as the
variety of neural network architectures grows every
day, individual, mathematically-motivated policies
struggle to catch up.

B NEURAL NETWORKS FORGET WHAT THEY
LEARN

In stark contrast to humans, neural networks forget
what they learn. This phenomenon is known as
catastrophic forgetting or catastrophic interference,
and has been studied since the beginning of the
nineties (McCloskey & Cohen, 1989). Essentially,
when a neural network that has been trained for a
certain task is reused for learning a new task, it
completely forgets how to perform the former. Beyond
the relatively philosophical objective of mimicking
human learning and whereas machines should be

able to do so or not, the problem of catastrophic
forgetting has important consequences for the current
development of systems that consider a large number
of (potentially multimodal) tasks, and for those which
aim towards a more general concept of intelligence.
As for now, it looks unrealistic that such systems may
be able to learn from all possible relevant data at once,
or in a parallel fashion.
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The Painting Fool. Uneasy, 2012. Digital image.
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With years, there have been various attempts to
overcome catastrophic forgetting. Some of the most
common strategies include the use of memories,
rehearsal or «dreaming» parallels, attention
strategies, or constraining the plasticity of neurons
(Serra, Suris, Miron, & Karatzoglou, 2018). In a more
general vein, the problem of catastrophic forgetting
may stem from the backpropagation algorithm itself,
which represents the very essence of modern neural
network training. Perhaps an elegant solution to the
issue requires of a major rethinking of the current
paradigm.

B CONCLUSION

It is interesting that a research field like deep learning,
which drives such an enormous amount of attention
(from academia to industry or the media), can present
so many breakthroughs and, at the same time, so
many puzzling situations. The state of the art may

be quite ahead of the state of understanding, and this
situation may continue like that for years. Nonetheless,
it could also well be that even a minor theoretical
advancement forces a paradigm shift that later

fosters a more formal and mathematically-grounded
approach to deep learning. Until then, empirical
exploration will continue to be the major way through,
and the main tool to bridge the gap between practice
and understanding, remembering of the new kind of
science approach.
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