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THE HUMAN-COMPUTER CONNECTION

AN OVERVIEW OF BRAIN-COMPUTER INTERFACES

JOSE DEL R. MILLAN

This article introduces the field of brain-computer interfaces (BCl), which allows the control of
devices without the generation of any active motor output but directly from the decoding of the
user’s brain signals. Here we review the current state of the art in the BClI field, discussing the main

components of such an interface and illustrating ongoing research questions and prototypes for

controlling a large variety of devices, from virtual keyboards for communication to robotics systems
to replace lost motor functions and even clinical interventions for motor rehabilitation after a stroke.
The article concludes with some insights into the future of BCI.
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B INTRODUCTION

In a brain-computer interface (BCI), neural signals
recorded from the brain are fed into a decoding
algorithm that translates these signals into outputs
so that people with physical disabilities can control
a variety of devices such as virtual keyboards
(Birbaumer et al., 1999; Sellers, Ryan, & Hauser,
2014; Vansteensel et al., 2016), games (Perdikis,
Tonin, Saeedi, Schneider, &
Millan, 2018), arm and hand
robots (Collinger et al., 2013;
Hochberg et al., 2012) mobile
robots (Leeb et al., 2015), and
wheelchairs (Carslon & Millan,
2013; Ron-Angevin et al., 2017).
For instance, Figure 1 illustrates
a brain-controlled wheelchair.
Feedback from the prosthetic
device, conveyed to the user
either via normal sensory
pathways or directly through
brain stimulation, establishes a closed control loop.
BCI technology offers a natural way to augment
human capabilities by providing a new interaction
link with the outside world. In this respect, it is
particularly relevant as an aid for patients with severe
neuromuscular disabilities, although it also opens up
new possibilities in human-machine interaction for
able-bodied people.

«BRAIN-COMPUTER
INTERFACE TECHNOLOGY
OFFERS A NATURAL WAY

TO AUGMENT HUMAN
CAPABILITIES BY PROVIDING
A NEW INTERACTION LINK
WITH THE OUTSIDE WORLD»

The central tenet of a BCI is the capability to
distinguish between different patterns of brain
activity, each being associated with a particular
intention or mental command. Hence, adaptation
is a key component of a BCI, because, on the one
hand, users must learn to modulate their brainwaves
S0 as to generate distinct brain patterns, while, on
the other, machine learning techniques ought to
discover the individual brain patterns characterizing
the mental tasks executed by the
user. In essence, a BCI is a two-
learner system that must engage
in a mutual adaptation process
(Carmena, 2013; Perdikis et al.,
2018). This process starts by
selecting discriminant, stable
features — namely, user-specific
brain components that maximize
the separability between mental
commands and that, because of
the nonstationary nature of brain
signals, are stable over time —
to build optimal models to decode the user’s intention.
Examples of user-specific brain components that are
fed to personalized decoders are the power of some
frequency components or the amplitude of band-pass
filtered signals' over certain brain areas. These initial

' A band-pass filter passes frequencies within a particular range and rejects
the rest. The resulting signal is known as a band-pass filtered signal.
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features represent those brain components that the
user can naturally modulate and, via feedback received

during online BCI training, learn to control voluntarily.

As an example of this mutual learning approach
to BCI, a recent study investigated the hypothesis
that mutual learning is a critical factor for successful
BCI translational applications (Perdikis et al., 2018).
Contrary to a popular trend of focusing almost
exclusively on the machine learning aspects of BCI
training, a holistic mutual learning training approach
grounded symmetrically on all three learning pillars
(at the machine, subject, and application level) was the
optimal training apparatus for preparing two end-user
participants for the Cybathlon BCI race in 2016, the
first international BCI competition where users with
severe disabilities operated a device. In particular, two
severely impaired participants, both suffering from
chronic spinal cord injury, were trained to control their
avatar in a virtual BCI race game. The competition
outcomes substantiated the effectiveness of mutual
learning as one of them won the gold medal and the
two of them established the best three race times
(Figure 2). Most importantly, learning correlates could
be derived at all levels of the interface — application,
BCI output, and EEG neuroimaging — of the two
end-users, from sufficiently longitudinal evaluations
and, what is more, under real-world and even adverse
conditions.

B HOW TO RECORD BRAIN
SIGNALS FOR BCI

What kind of brain signals can
be exploited to directly control
devices? Electrical activity is
the natural candidate because
of its excellent time resolution

«ENDOGENOUS BRAIN-
COMPUTER INTERFACES
NATURALLY SUIT
APPLICATIONS SUCH AS
CONTROL OF ROBOTICS
DEVICES AND MOTOR

are similar in nature, although at
different spatial levels — microscopic,
mesoscopic, and macroscopic,
respectively.

Invasive approaches carry very
detailed information about users’
intended actions. However, they
damage brain tissue and provide
a limited coverage, while motor
and decision-making processes
involve large brain networks. For
humans, however, non-invasive
approaches are ideal to bring BCI
technology to a large population.
Electroencephalography also provides
coverage of large cortical areas. But its
signals suffer from a reduced spatial
resolution and increased noise when
measurements are taken on the scalp.
In summary, brain recordings at all
three levels provide complementary
advantages, and a combination of
technologies may be necessary in
order to achieve the ultimate goal of
controlling neuroprostheses capable
to replicate any kind of body movement as easily as
able-bodied people control their natural limbs (Milldn

& Carmena, 2010).

EPFL-CNBI / Alban Kakulya

B VOLUNTARY ACTIVITY VS
EVOKED POTENTIALS

A BCI can exploit two kinds

of brain phenomena. One

of them is related to signals
associated with external sensory
stimulation — such as visual

REHABILITATION»

— changes in brain activity can
be monitored at the millisecond
range. We can record the electrical
brain activity invasively or non-invasively (Figure 3).
The former technique employs microelectrode arrays
implanted in the brain that record the activity of single
neurons — or from small neuronal populations that give
rise to local field potentials. The overall concerted
activity of neuronal populations can also be recorded
invasively with electrodes placed on the surface of
the brain, the so-called electrocorticography. Non-
invasive BCIs mainly use electroencephalographic
activity recorded from electrodes placed on the scalp
to measure the synchronous activity of millions of
cortical neurons. These signals in local field potentials,
electrocorticography, and electroencephalography

136 METODE

flashes or auditory tones —, while

the other is connected with

endogenous voluntary decision
processes — such as the imagination of movements.
In the former case, the brain reacts with so-called

«evoked potentials». One of such evoked potentials is

the P300 (Sellers et al., 2014) which is elicited by an
awaited infrequent event that appears at centro-parietal
locations along the midline of the scalp, independently
of the sensory stimulation modality. As its name
indicates, it is a positive wave peaking around 300
milliseconds after task-relevant stimuli. The amplitude
of the P300 depends on the frequency of stimulus
occurrence — less frequent stimuli produce larger
responses — and task relevance. Evoked potentials are,
in principle, easy to pick up. Nevertheless, the necessity



Figure 1. Using a brain-computer interface (BCl), users can drive

a brain-controlled wheelchair by voluntarily modulating their

brain signals recorded at the micro-, meso- or macro-level
(electroencephalogram, a prominent example of the latter, in

the example of this figure). A BCl decodes individual patterns

of brain activity associated with different mental commands.
These commands are transformed into reliable and safe actions

of the wheelchair thanks to the incorporation of shared control
techniques that incorporate contextual information (external input
plus internal state of the wheelchair). This wheelchair illustrates the
future of intelligent brain-controlled devices that, like our spinal
cord and musculoskeletal system, works in tandem with motor
commands decoded from the user’s brain cortex. This relieves users
from the need to continuously deliver all the necessary low-level
control parameters and, so, reduces their cognitive workload.

of external stimulation severely limits the applicability
of evoked potentials to tasks requiring continuous
control such as in robotics.

In the case of endogenous BCls, users can voluntarily
modulate brain activity at different frequency ranges —
or rhythms. Populations of neurons can form complex
networks with feedback loops, which give rise to
oscillatory activity. In general, the frequency of such
oscillations becomes slower the larger the size of the
synchronized neuronal assemblies. A particularly
relevant rhythm can be recorded from the central
region of the scalp overlying the sensorimotor cortex
during the imagination of body movements. Correlates
of imaginary movements can be recorded at any scale:
microscopic (single unit activity and local field points),

Interlinked

mesoscopic (electrocorticography), and
macroscopic (electroencephalography).
Apart from their different degrees of spatial
resolution, microscopic and mesoscopic
signals also have a broader bandwidth (up
to 300—-500 Hz) than macroscopic signals
(normally, less than 100 Hz). Endogenous
BClIs naturally suit applications such as
control of robotics devices and motor
rehabilitation.

B BCls AT WORK

Researchers expand a BCI, especially
those based on electroencephalography,
with a few principles to support robust
control of devices. The most important
one is «shared control» or context
awareness, demonstrated in a large

variety of devices such as mobile robots,
wheelchairs, telepresence robots, lower
limb exoskeletons, virtual keyboards, and
games. In a shared autonomy framework,
the outputs of the BCI are combined with
the information about the environment
(e.g., obstacles perceived by the robot sensors in the
case of a wheelchair, or written letters in the case of

a virtual keyboard) and the robot itself (position and
velocities) to better estimate the user’s intent, or even
override the mental commands in critical situations
(Carslon & Milldn, 2013). Shared control is not only
an efficient engineering solution, but it is also rooted
in the fact that human motor control results from the
combined activity of the cerebral cortex, subcortical
areas, and spinal cord. In fact, many elements of skilled
movements, from manipulation to walking, are mainly
handled at the brainstem and spinal cord level with
cortical areas mainly providing an abstraction of the
desired command. This organization supports the
hypothesis that complex tasks can be achieved using
the low-dimensional output of a BCI, provided the
BClI is coupled to an intelligent robotic device that
executes the detailed sequence of low-level commands
mimicking the role of subcortical and spinal cord levels
in human motor control. As a result, shared control also
reduces users’ cognitive workload.

A brain-controlled wheelchair (Carslon & Milldn,
2013; Ron-Angevin et al., 2017) (Figure 1) illustrates
the future of intelligent neuroprostheses that, like
our spinal cord and musculoskeletal system, work in
tandem with motor commands decoded from the user’s
brain cortex. Users can drive it reliably and safely
over long periods of time thanks to the incorporation

METODE 137




Interlinked

of shared control techniques. This relieves
users from the need to continuously
deliver all the necessary low-level control
parameters and, so, reduces their cognitive
workload and facilitates split attention
between different tasks like driving the
chair and checking the environment.

Another principle used to increase the
robustness of a BCI is to decode, and
integrate into the neuroprosthetic control
loop, neural correlates of the user’s
«cognitive perceptual processes» resulting
from actions executed by the brain-
controlled device and that are crucial for
volitional interaction. A major example of
such correlates is awareness to errors made
by the BCI in decoding the user’s intention
(Chavarriaga, Sobolewski, & Milldn, 2014).
Detection of these error-related potentials,
indicating when the user perceives BCI
errors, can be then used to correct and
improve the system’s performance.

A further component that facilitates
intuitive and natural control of motor
neuroprosthetics is the incorporation of
rich multimodal feedback and neural
correlates of perceptual processes
resulting from this feedback. Realistic
sensory feedback must convey artificial
tactile and proprioceptive information

—i.e., the awareness of the position and
movement — of the neuroprosthesis.
This type of sensory information has
potential to significantly improve the
control of the prosthesis by allowing
the user to feel the environment
in cases in which natural sensory
afferents are compromised — either
through other senses or by stimulating
the body or even the nervous system
directly to recover the lost sensation
(Raspopovic et al., 2014). Furthermore, rich multimodal
feedback is essential to promote the user’s agency and
ownership of the prosthesis.

B BCls FOR MOTOR REHABILITATION AFTER A
STROKE

In addition to motor substitution, where a BCI bypasses
a central nervous injury to control a neuroprosthesis,
BCI technology can also facilitate motor rehabilitation
(Figure 4). This is an emerging area of research and
application, especially for stroke. The rationale for

138 METODE

ETH Zurich / Alessandro Della Bella

Figure 2. A brain-computer interface (BCl) is a system with two
learners in a process of mutual adaptation. Users must learn to
modulate their brain waves to generate different brain patterns,
while machine learning techniques should discover the individual
brain patterns that characterize the mental tasks performed by
their users. A holistic approach that took this mutual learning
process into account proved to be the optimal training system
to prepare two users who participated in the Cybathlon BCl race
in 2016, the first international BCl competition in which users
with severe disabilities operate a device. Both participants (in
the pictures) were members of the Brain Tweakers team and

had sustained serious chronic spinal injuries, and they entered
the competition to control their avatar in a virtual BCl racing
game. The two of them scored the top three times in the ICC
competition and one of them won the gold medal.

R. Alex Durbin / United States Air Force




BClI-based motor rehabilitation is twofold.
Firstly, and perhaps more pragmatically,
contrary to most other well-established
rehabilitation paradigms requiring
some degree of residual mobility, BCI
technology can assist stroke patients
even in the absence of residual motor
activity. Secondly, and most importantly,
it can promote neuroplasticity so that lost
functions due to stroke can be recoded in
perilesional cortical areas.

A BCI can boost beneficial functional
activity-dependent plasticity provided
it delivers rich somatosensory and
proprioceptive feedback contingent to
suitable motor-related cortical activity
associated with the movement attempt
of the paralyzed limb. A recent study
shows that BCI coupled to functional
electrical stimulation (FES) elicits
significant, clinically relevant, and
lasting motor recovery of arm and hand
function in chronic stroke survivors more
effectively than sham FES (Biasiucci et
al., 2018). Such recovery is associated with

ETH Zurich / Nicola Pitaro

Figure 3. The electrical activity of the brain can be recorded
invasively or non-invasively. One of the invasive techniques is
electrocorticography, which involves a surgical procedure to place
anumber of electrodes like those shown in the picture on the right
on the surface of the brain. Non-invasive brain-computer interfaces
often use electroencephalography, which records the synchronized
activity of millions of cortical neurons using electrodes located on
the scalp, as seen in the example of the picture above.
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quantitative signatures of functional neuroplasticity.
BCI patients exhibited a significant functional recovery
after the intervention which remained six-to-twelve
months after the end of therapy. As an example,

two patients in the BCI group had a complete hand
paralysis and, in one case, the patient participated in
the BCI-FES therapy fifteen years after a stroke, for
whom a recovery of hand activity is exceptional. Both
patients regained voluntary muscular contraction
resulting in wrist extension and signs of fingers
extension. On the contrary, none of the plegic sham-
FES patients showed signs of recovery.

Furthermore, electroencephalography analysis
pinpointed significant differences in favor of the BCI
group, mainly consisting in an increase in functional
connectivity between motor areas in the affected
hemisphere. This increase was significantly correlated
with functional improvement. Altogether, these results
illustrate how a BCI-FES therapy can drive significant
functional recovery and purposeful plasticity thanks
to the contingent activation of the body natural
efferent (motor-related brain activity) and afferent
(somatosensory and proprioceptive feedback) pathways.

Mark Stone / University of Washington
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The Painting Fool. Concrete nude, 2014. Digital image.
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B CONCLUSIONS

Current BCI technology, in particular
electroencephalography-based, enables
the operation of relatively simple brain-
actuated devices. No doubt, this represents
an important achievement for motor-
disabled people. Yet, robust and natural
brain interaction with more complex
devices remains a major challenge.

A related issue is to demonstrate the
benefit of BCI for disabled people outside
laboratory conditions. Only a few studies
have been conducted up to now (Perdikis
et al., 2018; Vansteensel et al., 2016).

In parallel, as the BCI field is entering

a more mature phase of development,
time is ripe to design new interaction
modalities for able-bodied people. The idea is not to
directly control a device via the BCI, but to enhance
the interaction experience by predicting actions the
user will do (or not do) as well as decoding the user’s
cognitive state. This will allow the intelligent device
to assist the user in the most convenient way, thus
achieving a seamless personalized interaction. An
example of this emerging research avenue is the use
of BClIs for enhancing the car driving experience
(Chavarriaga et al., 2018).

Finally, such future BCI systems will require better
recording technology for both invasive and non-
invasive brain signals. In the former case, one area
of active research is the design of safe biophysical
interfaces that, in addition, should be ultra-low power
and wireless. In the latter case, examples of new
technology are dry electrodes that do not require any
gel and can be integrated into aesthetic helmets and
skin sensors that can remain operational for months.

Santa Lucia Foundation
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