Métode Science Studies Journal
h 4 1 T@d B ISSN: 2174-3487
ISSN: 2174-9221
metodessj@uv.es

Universitat de Valéncia
Espana

Valverde, Sergi
The long and winding road: Accidents and tinkering in software standardization
Metode Science Studies Journal, vol. 11, 2021, -, pp. 91-97
Universitat de Valencia
Valencia, Espafa

DOI: https://doi.org/10.7203/metode.11.16112

Disponible en: https://www.redalyc.org/articulo.oa?id=511766954008

Cémo citar el articulo redla yC.b}“g
Numero completo Sistema de Informacion Cientifica Redalyc
Mas informacion del articulo Red de Revistas Cientificas de América Latina y el Caribe, Espafia y Portugal
Pagina de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

https://www.redalyc.org/comocitar.oa?id=511766954008
https://www.redalyc.org/fasciculo.oa?id=5117&numero=66954
https://www.redalyc.org/articulo.oa?id=511766954008
https://www.redalyc.org/revista.oa?id=5117
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=5117
https://www.redalyc.org/articulo.oa?id=511766954008

METODE SCIENCE STUDIES JOURNAL, 11 (2021): 91-97. University of Valencia.
https://doi.org/10.7203/metode.11.16112

ISSN: 2174-3487. elSSN: 2174-9221.

Submitted: 18/11/2019. Approved: 10/03/2020.

THE LONG AND WINDING ROAD

Accidents and tinkering in software standardization

Software is based on universal principles but not its development. Relating software to hardware
is never automatic or easy. Attempts to optimize software production and drastically reduce
their costs (like in hardware) have been very restricted. Instead, highly-skilled and experienced
individuals are ultimately responsible for project success. The long and convoluted path towards
useful and reliable software is often plagued by idiosyncratic accidents and emergent complexity.
It was expected that software standardisation would remove these sources of unwanted
diversity by aiming at controllable development processes, universal programming languages,
and toolkits of reusable software components. However, limited adoption of development
standards suggests that we still do not understand why software is so difficult to produce.
Software standardisation has been limited by our poor understanding of humans' role at the
origin of technological diversity.

Keywords: software standards, software development, programming language, complexity,
evolution of technology.

Imagine that, when writing a love letter, you were (and still is) intrinsically complex. Why 80 and not
forced to write sentences with a fixed number 166 or any other number of characters?

of characters. Forget about complex prose The origin of this puzzle is earlier than fixed-

or mentioning Shakespeare in your masterpiece: size screens. The root of this accident is the size

if you go beyond the limits, you will have to stop of punched cards used to process the US census

your sentence whether it is finished or not. This in 1890s. These stacks of punched cards with
happened to every student 80 characters per line were

of computer programming in the fed to the first IBM commercial
1980s and 1990s, including «The exponentia[trend computers in the 1950s.

myself. At that time, it was
necessary to break statements

Our personal computers

of hardware technology inherited the 80-column

longer than 80 characters has not been mirrored format, which became the de
in smaller chunks to fit . facto standard known by man
the limitations of text editors. by paraHEI Improvements of us. Even today, when ’
This was even more noticeable in software technology» high-resolution displays

when writing complex are commonplace, text editors
calculations in the respected maintain compatibility with
programming language Fortran. Sometimes hardware relics that we will never use again.

an equation could not be written in the space of a As exemplified above, historical accidents

single line, and we had to split the long mathematical can leave deep fingerprints in the evolution
expression into multiple statements. Insertion of technology (Arthur, 1994). Some of these

of annoying line breaks in the middle of your accidents can be harmless. But others generate
thoughts seemed like an unjustified complication inefficiencies associated to non-optimal tasks. How to
for a task — computer programming — that was guarantee optimality of technological choices?

METODE 91

Standards

One way is to check the collection of good
practices and recommendations in the
field. A technological standard removes
unnecessary elements from engineering
practices while preserving the «good
stuff». These standards have saved a lot

of effort by making sure that «materials,
products, processes, and services are fit
for their purpose», as the International
Organisation for Standardization (known
as ISO) declares. Many examples

of useful standards are found in industry
and engineering, where community

of experts define and update their corpuses
of solid recommendations. Crucially,

the quality of these standards depends

on experts’ ability to decide when

the norms and associated inventions

are still useful or no longer interesting.
Standardisation increases technological
efficiency, but it can also prolong existing technologies
to an excessive degree by inhibiting any investments

in novel developments (Tassey, 1999). Reaching

an optimal balance between efficiency and innovation
is extremely difficult, and our predictions

of technological innovations have been notoriously
poor. In particular, complex innovations face higher
obstacles for market success than simple ones (see
Figure 1) (Schnaars & Wymbs, 2004).

SOFTWARE BOTTLENECK

In the last century, we have witnessed a spectacular
acceleration in computing
performance, digital storage
capacity, and world-wide electronic
communications. The well-known
Moore’s law is the signature

of the evolution of information
technology (IT). This is the
consequence of solid theoretical
principles: the conceptual
foundations of computers remain the same since

the publication of Alan Turing’s classic works.

On the other hand, the exponential trend of hardware
technology has not been mirrored by parallel
improvements in software technology, which are still
measured in human timescales. Although both
hardware and software have grown in complexity,

there is an important asymmetry in their evolution
(Valverde, 2016). The current bottleneck in IT

is not the cost of computer hardware, but obtaining

the necessary software needed to run them (Ensmenger,

92 METODE

«Many software projects
are plagued by errors,
accidents and idiosyncratic
decisions»

Figure 1. Ever since the telephone was invented, its inventors
predicted long-distance visual interactions. In 1924,
Alexander Graham Bell said that «the day would come when
the man at the telephone would be able to see the distant
person to whom he was speaking». However, the attempted
commercialization of the Picturephone by AT&T in the 1960s
(see picture) was a market failure. AT&T invested so much

in this technology that if commitment alone were the key

to market success than the videophone should have been

as commonplace as the telephone many years ago.

2010). Software dictates the utility of IT and the
demand for software has created a huge economic
problem. Many software projects are plagued by errors,
accidents and idiosyncratic decisions (Brooks, 1975).
The recurring project failures urged the community
to define reliable approaches to high-quality software
(Charette, 2005).

Ever since the invention
of computer technology in the
1950s, standardisation has been
an aspiring goal for associations
of computer professionals
and users. As an emergent
field, computer professionals
were eager to demonstrate
their social utility. In particular, the programmers’
initial standardisation efforts focused on software
interoperability, i.e., the capacity to exchange
and reuse software between different computers.
For example, the standard operating system MS-
DOS led to widespread adoption of personal
computers (PC), which in turn allowed many
subsequent innovations, like the emergence of the
Internet and the World-Wide Web. The exponential
growth of the computer market and the proliferation
of incompatible computers increased the competition

for software. It was expected that standardisation
would lead not only to compatible but also affordable
software. To do so, standards focused in two main
aspects: writing and maintain software code (or
«software development») and the tools assisting in this
process (e.g., programming languages and toolkits

of reusable software components). But while software
interoperability has been a great success, the limited
adoption of software development standards suggests
the presence of poorly understood constraints.

UNPREDICTABLE SOFTWARE DEVELOPMENT

Initiatives led by the US Department of Defense
(DoD) are a good example of the obstacles faced
by software development standards. From the 1970s
to the 1980s, the DoD attempted to enforce software
standards to their contractors (McDonald, 2010).
The goal of the DoD was to reduce the huge costs
of software development. Underlying this (and other
parallel initiatives) has been
the (never-reached) aspiration
of replacing the human component
by a fully-automated, error-free,
process of software development.
In 1978, the DoD published
a series of software design
rules that had to be followed
by any software contractor: 1)
software should be developed
according to a top-down design
process from the global system
definition down to its functional parts (see Figure 2),
2) to improve the readability of software codes (and
thus reducing the chances of error) there was a
maximal size of individual software parts and the
usage of «harmful» machine instructions (like “GO
TO” instruction, which breaks the logical sequence
of software operations) were forbidden, and 3)
all software codes should be written using a listing
of approved high-level programming languages.
Surprisingly, the DoD faced much opposition when
enforcing these rules to contractors. Although
the standard reflected the conventions about well-
written software, many programmers felt it was
inadequate and obsolete, and an unnecessary burden
limiting their freedom. Due to increasing criticisms
and social pressure, by 1990s, the DoD abandoned
any attempt of contractually imposing software
standards.

A fundamental obstacle was the unrealistic
assumption by the top-down model that the trajectory
of software projects can be planned. Actual software

«A more pragmatical
approach conceptualizes
software as an incremental
and iterative process that
is not very different from
natural evolution»

Standards

(as well as many other complex engineering projects)
often involves expensive fixes in latter stages
of the project, that is, some of the initial design
choices become historical accidents (McDonald,
2010). Experience with software projects suggests
how difficult to meet functional requirements is,
i.e., determining the set of tasks to be performed
in software. In particular, any missing specification
in the initial design translates to expensive
modifications later in the project lifetime (Boehm,
1976). For example, users have an intuitive feeling
about how operating systems (like Microsoft Windows)
should work, but they have much difficulty describing
software functions they have never used.

A more pragmatical approach conceptualizes
software as an incremental and iterative process that
is not very different from natural evolution. This hopes
to minimize the amount of redundant design decisions.
For example, in the prototype-based model, users
and programmers actively cooperate when building
a large and stable software
system. Here, programmers’
changes are a source of natural
variation in the project. Users
act as the environment for the
software prototype by selecting
features according to their needs.
By repeating this iterative process,
users and the programmers
co-evolve a system that fits
the specifications. Software
prototyping agrees that, in a
changing environment, quick and dirty adaptability
is preferable over inadequate top-down planning.

AN ELECTRONIC TOWER OF BABEL

The tools used in software development have also

not reached the uniformity of other technological
fields, like electrical engineering. Technological
diversity is found in the public repositories of open-
source software, where there is not a single framework
for developing software but many. Here, we can

find many instances of the same problem solved

in software for different platforms (e.g., Windows,
Mac OSX or Linux), written in incompatible
programming languages (e.g., C++, Python, or Java),
and involving a mix of proprietary software libraries
(e.g., OpenGL or DirectX). These solutions are based
on the same ideas and concepts, but their underlying
technologies are often incompatible, which limits
their reusability. In this context, successful software
integration still depends on the goodwill and voluntary

METODE 93

MONOGRAPH
Standards

TOP-DOWN DEVELOPMENT

System
requirements

Software
requirements

Preliminary
design

Detailed design

Code
and debugging

Testing
and operation

Operation

ITERATIVE DEVELOPMENT and maintenance

. Testing
L7 e A and integration

Maintenance

Analysis

Sergi Valverde

Figure 2. Standards divide software development work into different phases, such as design, build, test, and maintenance. In the
1960s, the Department of Defense of the US tried to impose a sequential (or top-down) model of software development to its
contractors, with little success. Iterative software development is more flexible and can reduce misunderstandings between

software users and programmers.

94 METODE

Basic Pascal Python Java
Common
Lisp
C
Scheme Ada
ALGOL

Sergi Valverde

Lisp Fortran

Figure 3. This schematic illustrates the branching evolution

of programming languages. The target of early programming
languages in the 1960s were mainly industry and businesses.
Languages of this era, like ALGOL, were designed

by private committees of experts. However, general adoption
of information technology accelerated the diversification

of programming languages. Popular languages like C or Python
have been developed by distributed communities of software
practitioners. Different branches influence ongoing evolution
of programming languages.

collaboration among programmers. The situation
of programming languages is particularly telling.
In 1936, Alan Turing showed there are no theoretical
barriers to the unification of programming languages,
i.e., there is a universal computer capable of doing
any task. However, the reality
is that we have thousands
of different programming
languages at our disposal (see
Figure 3). Why we cannot just
create a universal language with
many functionalities?
Standardisation of programming
languages has been attempted
many times, but none of them
has been universally accepted.
For example, the aim of the standard language Ada was
to replace the myriad of programming languages used
in DoD software projects (more than 450 languages
were used in these Army projects by the 1970s). Unlike
many languages designed by private committees (like
COBOL), the design of Ada was the outcome of an
international competition subject to external review
(which included academic experts of programming
languages). A design goal of Ada was to prevent human
errors in software development, which features strict
requirements of safety and concurrency rarely present
in other languages. In spite of these benefits, Ada never
gained the popularity of less robust languages like

«The tools used in software
development have also
not reached the uniformity
of other technological fields,
like electrical engineering»

Standards

C++, which appeared in 1985. Some twenty years later,
ISO standardised the language C++ for the first time (it
is a de facto standard). Again, this suggest how success
is not predictable no matter how much effort we spent
in the initial design. Many factors influence the success
of programming languages, including popularity,
complexity and economics.

From a historical perspective, it seems the path
from the language C to C++ was easier to follow
than adopting a high-quality (but relatively unknown)
standard (see Figure 4). Commitment to the «lesser»
option did not translate in market lock-in or shortage
of innovations because programming languages
are continuously evolving and influencing each
other. At some point, the large community of C++
users benefited from Ada innovations, while keeping
compatibility with existing technology. It seems
programmers prefer to live with imperfect software that
to rebuild everything from scratch.

EMERGENT COMPLEXITY

In complex engineering processes, €.g., those involving
software, engineers cannot always decide the best
course of action. Instead, engineers are “driven”
by the emergent complexity of their inventions. Both
the evolution of technology and biology cannot avoid
tinkering and accidents when complexity is very high.
In the early 1990s, the heterogeneous diversity
of hardware, operating systems
and programming languages
was an obstacle for software
interoperability. Engineers
and managers saw component-
based reuse as the natural
solution to this problem. Instead
of building software from scratch,
an existing repository of building
blocks (or components)
of common software functions
could be reused. This approach requires the definition
of a software interoperability standard, such
as CORBA (or Common Object Request Broker
Architecture). In CORBA, software components
written in different languages, e.g. Java and C, can still
exchange information by adhering to a common
software protocol. This standard was defined as the
«next generation technology for e-commerce» and it
gained a lot of popularity at the beginning. However,
technical deficiencies and design flaws difficulted
its market consolidation, and eventually CORBA
was displaced by Web-related technologies, like XML
(Henning, 2008).

METODE 95

SergiValverde

Standards

Figure 4. The path towards the adoption of technologies
depends on many factors, including their cost. And the fact that
some programming languages have been carefully designed

by committees of experts does not automatically imply their
widespread adoption. The standard language Ada (right path)

is recognized as a high-quality language (with many unique
features rarely present in other programming languages).
However, the popularity of the operating system Unix catalysed
adoption of its programming language C, and also its object-
oriented successor, C++ (left path). These two programming
languages —both standardised by ISO—have come to dominate
the market while Ada has remained a niche solution.

The failure of CORBA
has been mainly associated
to quality issues. At a deeper
lever, it exemplifies the difficult
task of defining a standard
interface between software
components. Component-
based software development
is very similar to the idea
of the Lego construction game.
Lego bricks are interoperable
thanks to the patented interlocking mechanism
(see Figure 5). That is, we can connect any pair
of bricks with independence of their shape, colour
or function. This is not the case in software. Many
historical examples teach us painful lessons about
unwanted interactions between software components.
To prevent this, we have been forced to test (and
debug) any interaction, which takes a lot of time

96 METODE

«Uncertainty affects
the evolution of many
technologies, but in software
this is aggravated
due to the absence of a
physical embedding»

and effort. This is unavoidable and imposes a hard
limit on scalable software development.

EVOLVING THE FUTURE

In a very short amount of time, we have transitioned
from a science fiction-like view of all-powerful
computers to a mundane commodity in the

hands of everybody. This widespread adoption

of information technology turned software into

a key component of our society. There is a pressing
need for more reliable and cheaper ways to develop
software at faster rates. Software standardisation
has been proposed as the solution to this problem,
paralleling the thousands of essential standards
needed to run our society.

Can we define universal rules to control software
development? Recent history shows that reliable
software development remains an elusive goal.

A main problem is the uncertainty found at each stage
of the software development process. When designing
a software system, there are many different options.
Deciding what is the best option at each stage is far
from obvious. We cannot be sure about the long-
term uses of technology because their success relies
on unpredictable environmental changes. Uncertainty
affects the evolution of many technologies (Petroski,
1992), but in software this is aggravated due to

the absence of a physical embedding. Software does
not decay or break in the same way as technologies
do. Knowledge of the principles underlying physical
systems allowed spectacular advances in engineering
and industry. But the situation is quite different

in software, where the scientific
approach to software
development currently lies
behind practice. There is a
need for maturation of software
development, which depends
on the availability of scientific
results (Glass, 2009).

The obstacles to software
standardisation suggest
a recurring theme: human
ingenuity cannot be replaced
by standard parts. At the moment, brains
are an essential component of translating human
requirements to the computer language. We do

not fully understand how humans program computers.

Developing useful and reliable software requires
ingenuity and considerable expertise. Inexpert
programmers cannot rely on their intuition to assess
whenever software is large or small, simple

Public domain

Chet 2, THE] B K. O IRISTIANESY 3,005 282
T Rl
O Besk-Hmpl 1
=, B2

SR TR

Gndtfred Kirk Chrisilansan

s (irmnity P Py

ATTORNIT Y

Figure 5.1n 1961, US Patent 3005282A proposed a design
for a «toy building bricky, also known as LEGOs. This
document describes an ingenious interlocking mechanism
that allows many different toy structures to be assembled.
A universal interface like this has never been achieved

in software.

«We do not fully understand how humans
program computers»

Standards

or complex, because it is invisible. Only when we spent
a lot of time programming (and mostly debugging)
computers, we start to grasp the sheer complexity

of software. Beyond our intelligence and skills,

we can only develop complex technology thanks to all
the knowledge gathered by our society over the years
(Basalla, 1988; Messoudi, 2011). The evolution

of complex technologies like the programming
language C++ has been the outcome of accumulating
information by many people over many years in open-
source communities. Some defend the idea that
software development will be soon obsolete, and that
artificial intelligence will replace entire communities
of human programmers. This seems very unlikely
without a full understanding of how humans program
computers. In either case, one thing seems certain:
software will not be designed, but evolved.

REFERENCES

Arthur, W. B. (1994). Increasing returns and path dependence in the economy.
Michigan University Press.

Basalla, G. (1988). The evolution of technology. Cambridge University Press.

Boehm, B. W. (1976). Software engineering. I[EEE Transactions on Computers,
25(12), 1226-1241.

Brooks, F. (1975). The mythical man-month: Essays on software engineering.
Addison-Wesley.

Charette, R. N. (2005, September 2). Why software fails. I[EEE Spectrum.

Ensmenger, N. L. (2010). The computer boys take over. Computers,
programmers, and the politics of technical expertise. The MIT Press.
Glass, R. L. (2009). Doubt and software standards. I[EEE Software, 26(5), 104.

Henning, M. (2008). The rise and fall of CORBA. Communications of the
ACM, 51(8),52-57.

McDonald, C. (2010). From art form to engineering discipline? A history of
US military software development standards, 1974-1998. IEEE Annals
of the History of Computing, 32(4), 32-47.

Messoudi, A. (2011). Cultural evolution: How Darwinian theory can explain
human culture and synthesize the social sciences. University of Chicago Press.

Petroski, H. (1992). To engineer is human: The role of failure in successful
design. Vintage Books.

Schnaars, S., & Wymbs, C. (2004). On the persistence of lackluster demand:
The history of the video telephone. Technological Forecasting and
Social Change, 71(3), 197-216.

Tassey, G. (1999). Standardization in technology-based markets. Research
Policy, 29(4-5), 587-602.

Valverde, S. (2016). Major transitions in information technology. Philosophical
Transactions of the Royal Society B, 371(1701), 20150450.

SERGI VALVERDE. Expert in complex systems with a PhD in Applied
Physics and researcher at the Institute of Evolutionary Biology (UPF-CSIC),
Barcelona (Spain), where he leads the Evolution of Technology Lab (ETL).
His research group is a pioneer in the study of major evolutionary transitions
by comparing biological and artificial systems. His multidisciplinary research
integrates various areas of knowledge, from network theory to theoretical
ecology and the computational simulation of evolutionary processes. He is a
board member for the Catalan Network for the Study of Complex Systems

() X

METODE 97

http://doi.org/10.3998/mpub.10029
http://doi.org/10.1017/CBO9781107049864
http://doi.org/10.1109/TC.1976.1674590
https://spectrum.ieee.org/computing/software/why-software-fails
https://spectrum.ieee.org/computing/software/why-software-fails
http://doi.org/10.1109/MS.2009.126
http://doi.org/10.1145/1378704.1378718
http://doi.org/10.1109/MAHC.2009.58
http://doi.org/10.1109/MAHC.2009.58
http://doi.org/10.1016/S0040-1625(02)00410-9
http://doi.org/10.1016/S0040-1625(02)00410-9
http://doi.org/10.1016/S0048-7333(99)00091-8
http://doi.org/10.1016/S0048-7333(99)00091-8
http://doi.org/10.1098/rstb.2015.0450
http://doi.org/10.1098/rstb.2015.0450
http://complexitat.cat
mailto:sergi.valverde@ibe.upf-csic.es

