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Abstract: The S-box is a basic important component in symmetric key encryption,
used in block ciphers to confuse or hide the relationship between the plaintext
and the ciphertext. In this paper a way to develop the tfransformation of an input
of the S-box specified in AES encryption system through an arfificial neural
network and the mulfiplicative inverse in Galois Field is presented. With this
implementation more security is achieved since the values of the S-box remain
hidden and the inverse table serves as a distractor since it would appear to be
the complete S-box. This is implemented on MATLAB and HSPICE using a network
of perceptron neurons with a hidden layer and null error.

Keywords: Artificial Neural Network, Cryptography, Circuits, SPICE.

Resumen: La Caja-S es un componente bdsico en el cifrado de clave simétrica,
usado en los cifradores por blogques para confundir o esconder la relaciéon entre
el texto plano y el texto cifrado. Este trabajo presenta una manera de desarrollar
la transformacion de los valores de entrada de la Caja-S especificada en el
sistema de cifrado AES por medio de una red neuronal y los valores del inverso
multiplicativo en el campo de Galois. Con esta implementacion se logra mayor
seguridad debido a que los valores de la Caja-S permanecen ocultos mientras
que la tabla de los valores inversos en el dominio de Galois sirve de distractor
pareciendo ser la verdadera Caja-s. Este frabajo fue implementado en MATLAB
y HSPICE utilizando una red con neuronas del tipo Perceptron con una capa
oculta, obteniendo los valores esperados por la Caja-S original sin error.

Palabras clave: Circuitos, Criptografia, Red Neuronal Artificial, SPICE
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1. Infroduction

In cryptography, an S-box consists of a look up table with the corresponding 8-
bit word for each possible input in a non-linear transformation, in which the input
byte is considered the address of the table (Rodriguez-Henriquez, Saqgib, Diaz &
Koc 2007). The S-box represents a bricklayer non-linear function that can be
decomposed in several boolean functions operating independently on a subset
of bits from the input vector (Daemen & Rijmen, 2002). If the functions are linear
they are called D-boxes.

The operation of an S-box is as follows: when a transformation is required for a
certain input, this input enters the S-box and points, or directs to the previously
calculated output of its transformation and then the input is replaced, as shown
in fig.1, where the value a;; is substituted for the value bi; as it passes through
the S-box.

890 | 90,1 ao.b-]-go.a-]—‘ 0.4 a/os,/ S-box | ——[boo | b1 |bo2|bos|bos|bos
810|311 [3ip A Fra|dis bio R\U’t b,',l' Bia|bis
80| 82,1 (822|823 | 924|925 byo | a1 | b2z [ Do |Drs|b2s
830|931 (832|833 | 934 |9a5 byg| by |byz|Dys|bsy|bys

Figure 1. Graphic representation of the use of an S-box

Due to their importance, S-boxes are chosen and designed to be resistant to
cryptanalysis, in literature several proposals with different characteristics are
found, some of them based on neural networks, like the framework for the design
of S-boxes used in ciphers based on neural networks by Noughabi (Noughabi &
Sadeghiyan, 2010) and “a new scheme for implementing s-box based on neural
network” by X. Zhang (Zhang, Chen, Chen, & Cao, 2015), others that optimize
existing boxes such as the high speed implementation of S. Oukili for the AES S-
box (Oukili, Bri & Kumar, 2016) and low-area S-box implementation of Thomson
(Thomson, Siva, & Priya, 2014); even new proposals such as the evolutionary
design of S-Box of M. Yang (Yang, Wang, Meng & Han, 2011) and the based on
chaotics maps of C. I. Rincu (Rincu & lana, 2014).

This article presents a substitution of the S-box for another module that calculates
the AES S-box outputs with the use of a neural network and the multiplicative
inverse on Galois field 28 (GF (28)) of the input value to transform, or S-box input
value.

Section 2 introduces the AES algorithm giving a brief introduction to history and

a complete description of the Rijndael-AES algorithm, in this section under the
subsection “The Round Transformation” highlights the sub-Bytes function that
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describe how the values of the S-box are calculated. Section 3 describes the
proposed method, this includes the neural network topology and the approach
for hardware implementation. The simulations are presented in section 4, this
section is an explanation of the implementation, behavior and results in MATLAB
and HSPICE. Finally conclusions are given in section 5.

2. AES, Advance Encryption Standard

Developed by Joan Daemen and Vincent Rijimen, Rijndael was finally chosen on
October 2000 by the National Institute of Standards and Technology (NIST)
among other encryption algorithms in an open process organized by the same
institute on January 1997 to become the new Advanced Encryption Standard
(AES) to replace Data Encryption Standard (DES) and triple-DES as encryption
standard (Daemen & Rijmen, 2002). Following NIST specifications, AES is a
symmetric block cipher algorithm with variable length of 128 bits, 192 bits and
256 bits, with a variable length key of 128 bits, 192 bits y 256 bits and easy on
hardware and software implementation (Daemen & Rijmen, 2002).

Although it is common to talk about AES and Rijndael indistinctly, being Rijndael
the selected algorithm for AES, there is a difference among them in the range of
values supported by the block length and key length to use. In Rijndael, the block
length and key length can be independently specified to any multiple of 32 bits,
with a minimum of 128 bits and a maximum of 256 bits. AES fixes the length
block and the length key to 128, 192 o 256 bits only (Daemen & Rijmen, 1999).

Independently of technical differences in the length of block and key permitted,
when talking about Rijndael or AES, we are talking about the same iterative block
cipher algorithm. Inputs and outputs of Rijndael-AES are considered to be one-
dimensional arrays of 8-bits. For encryption the input is a Plaintext block and a
cipher key, and the output is a ciphertext block. For decryption the inputs is a
ciphertext block and a cipher key, and the output is a Plaintext block (Daemen &
Rijmen, 2002).

The cipher can be divided in two parts with different functionality: the
transformation or encoding of the message, function called “The Round
transformation” and denoted as “Round” and “FinalRound”, this encryption
function is described in fig. 2 along with the functions that make it up, called steps;
and the transformation of the key called “Key schedule” given by the function
“‘KeyExpansion”.
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AddRoundKey [
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Figure 2. Flowchart of the AES encryption algorithm

The different transformation operates on an intermediate result called State
which is represented as a rectangular array of bytes, with four rows and Ny
number of columns.

_ blocklength (1)
Ny="m

Similarly, the cipher key is represented as a rectangular array with four rows and
Nk number of columns (Daemen & Rijmen, 1999), (Rodriguez-Henriquez et al.,
2007), (Daemen & Rijmen, 2002), (Katz & Lindell, 2008), where

wk:_‘fﬁ’i’gﬂ*h (2)

The number of rounds N, depends on the values of Ny and Nk as presented in the
table 1.
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Nb
N, 4 5 6 7 8
4 10 11 12 13 14
5 11 11 12 13 14
6 12 12 12 13 14
7 13 13 13 13 14
8 14 14 14 14 14

Table 1. Number Of Rounds N: As Function Of N, And Nk

2.1. The Round Transformation

As shown in the fig. 2, the round transformation is divided in Round and
FinalRound. Round is formed by a sequence of four different and invertible
mathematical transformations on GF(28) which are called steps: 1) SubBytes, 2)
ShiftRows, 3) MixColumn, 4) AddRoundKey (Daemen & Rijmen, 1999),
(Rodriguez-Henriquez et al., 2007), (Daemen & Rijmen, 2002). The FinalRound
is similar to round but without the MixColumns function.

2.1.1. subBytes.

It is a non-linear transformation where each input byte of the state matrix is
replaced by another byte produced by the transformation. This Transformation is
defined in two steps (Daemen & Rijmen, 1999):

e Multiplicative inverse:
The input byte a is replaced by its multiplicative inverse x =a?, withx=0
fora=0.

e Affine transformation:
Defined by y = M x x @b, where M is a constant matrix of 8 x 8 bits, x
represents the value to transform while b is a constant byte equal to 6316
(01100011, ) (Daemen & Rijmen, 2002).

The matrix representation of the transformation is shown in (3), where M is
replaced by the constant matrix of 8x8 bits, x is expanded to the polynomial
representation of a byte, starting with the most significant bit; and b the binary
constant.

Y71 11 1 1 1 0 0 07 %7 L
Yol [0 111 1 1 0 of [x]| |12
ys|] o o 11 1 1 1 of [xs| |1
yaf_lo 0 0 1 1 1 1 1] fxal0 )
ys|7f1t 0 0 0 1 1 1 1[7|xs|¥|o
v2[ [t 10 0 0 1 1 1f [x| [o
il 11100 0 1 1f [x] |1
yol 11 1 1 1 0 0 0o 1l Lxl Ll
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Another way to implement this transformation is to use the corresponding S-Box
shown in fig. 3 replacing the input value (row, column) by the value that crosses
them.

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
CA 82 C9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO
B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
04 C7 23 C3 18 96 05 9A 07 12 B8O E2 EB 27 B2 75
09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 2F 84
53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A CF
DO EF AA FB 43 4D 33 85 45 F9 02 7F 50 9F A8
51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 F3 D2
CD 0C 13 EC 5F 97 44 17 C4 A7 3D 64 5D 19 73
60 81 4F DC 22 2A 90 88 46 EE 14 DE 5E OB DB
EO 32 3A 0A 49 06 24 5C C2 D3 62 91 95 E4 79
E7 C8 37 6D 8D D5 4E A9 6C 56
BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
70 3E B5 66 48 03 F6 OE 61 35 57 B9 86 Cl1 1D 9E
E1l F8 98 11 &9 D9 BE 94 9B 1E 87 E9 CE 55 28 DF
8C Al B89 OD BF E6 42 68 41 99 2D OF BO 54 BB 16

Figure 3. AES S-box
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The inverse operation, called InvSubBytes, consists of the use of the inverse S-
Box of fig. 4 for each byte of the state.

1 2 3. 4L 5 4 F B 9 A BE ¢ d e f
52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
JC E3 39 82 9B 2F FF 87 34 83 43 44 C4 DE E9 CB
54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA (C3 4E

0B 2E Al 66 28 D9 24 B2 76 5B A2 49 6D BB D1 25
72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 Bs 92
6C 70 48 50 FD ED BY DA 5E 15 46 57 A7 8D 9D 84
90 D8 AB 00D 8C BC D3 OA F7 E4 58 05 B8 B3 45 06
X Do 2C 1E 8F CA 3F OF 02 C1 AF BD 03 01 13 8A 6B
3A 91 11 41 4F 67 DC EA 97 F2 CF CE FO B4 E6 73

96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
47 F1 1A 71 1D 29 C5 B89 6F B7 62 OE AA 18 BE 1B
FC 56 3E 4B C6 D2 79 20 9A DB CO FE 78 CD 5A F4
1F Db A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5SF
60 51 J7F A9 19 B5 4A OD 2D E5 7A 9F 93 C9 9C EF
A0 EO 3B 4D AE 2A F5 BO C8 EB BB 3C 83 53 99 61
17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0OC 7D

Figure 4. AES Inverse S-box

== 0 O oW wvwo~sNounmbhwmhn 2O
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The inverse S-box is obtained by the applying the inverse of the affine
transformation, shown in ec. 3 followed by taking the multiplicative inverse in
GF(28). The inverse of (3) is represented in (4) (Daemen & Rijmen, 2002).

Y71 001 0 1 0 0 1 0] [X77 [O]
Y| [0 0 1 0 1 0 0 1| [x]| [1
ys|] [1 0 o1 01 0 of [xs| [1
Ya[_{0 1 0 0 1 0 1 0f |%|g]o0 4)
ys|]7[o 0o 1 0 0 1 0 1|7|x]|¥]o
v2l [1 0 0100 1 of [x]| [o
il [o 10 010 0 1| [« [1
vol 11 01 0 0 1 0 ol Lxod L4

2.1.2. ShiffRows

In ShiftRows, the rows of the state are shifted cyclically to the left in different
proportions. Row 0 does not changes, but the remaining rows follow an offset of
C1, Cz and Cs bytes respectively, this proportion depends only of the block length
Np (Daemen & Rijmen, 2002). The inverse operation, called InvShiftRows,
consists in a cyclic shift of the three bottom rows over Nb = C1, Np = C2y Np — Cs
bytes respectively. The table 2 shows the value of C, per each possible Ne.

N, C, ¢, G C,
4 0 1 2 3
5 0 1 2 3
6 0 1 2 3
7 0 1 2 3
8 0 1 2 3

Table 2. Shifted Bytes In Shiftrows Per Block Lenght

2.1.3. MixColumns

The MixColumns step is a bricklayer permutation operating on the state column
by column. In Mixcolumns the state columns are considered as polynomials in
GF (28) and multiplied modulo x4 + 1 with the fixed polynomial c(x) given by c¢(x)
= (0316 )x3 + (01l16)x2 + (0O1l16)x + 0216 . This operation can be written as a matrix
multiplication, let b(x) = ¢(x) a(x) mod x* +1 as is show in (5).

bﬂ 0216 0315 0115 0115 Ay
by _|0116 0216 0336 O0ligf (a1 (5)
bz 0116 0116 0215 0315 ﬂ.z

bg 0316 {}116 0115 0215 as

The inverse of MixColumns is called InvMixColumns. It is similar to MixColumns.
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The transformation is performed by multiplying each column by the polynomial
d(x) = (0Bis)xs + (0Dis)x2 + (0916)x + OEis, represented in (6) as a matrix
multiplication (Daemen & Rijmen, 1999), (Daemen & Rijmen, 2002), (Parikh &
Narkhede, 2016).

Ay 0E16 0316 0016 0916 bo

ay| _[096 OE;s 0Big 0Dy - by (6)
b,
bs

-

a2 OD16 0916 OEI6 0316
as 0316 0016 0916 0516

2.1.4. AddRoundKey

In this transformation the state is modified with the bitwise XOR operation with
the round key derived from the cipher key and the function Key Schedule. The
length of round key is equal to the block length N, (Daemen & Rijmen, 1999).
The inverse of AddRoundKey is called InvAddRoundKey, and is applied in the
same way as AddRoundKey applying the keys in reverse order (Rodriguez-
Henriquez et al., 2007).

2.2. Key Schedule

Consists in the expansion of the key and in the key selection round (Daemen &
Rijmen, 2002). The key expansion specifies how the expanded key is calculated
from the cipher key. The number of bits in the expanded key is equal to the block
length multiplied by the number of rounds N; plus one, generating a total of Ny x
(Nr + 1) words, or N + 1 subkeys, one per each round (Bonadero, Liberatori, Bria
& Villagarcia, 2005).

The cipher key is expanded inside of the Expanded key. Round keys are taken
from Expanded key as follows: the first round key consists on the initial N words,
the second on the subsequent N, words, and so on (Daemen & Rijmen, 1999).

2.2.1 KeyExpansion.

Expanded Key is a four byte linear array denoted by W [Ny x (N:+ 1)]. The first
Nk words contain the cipher key, while all other words are defined recursively.
KeyExpansion depends of the Nk value and is calculated as in fig. 5, employing
the functions subBytes, Rotbyte and Rcon (Daemen & Rijmen, 1999), (Daemen
& Rijmen, 2002).

RotByte returns a word that results from a cyclical permutation from the input
word, e.g., for an input {a,b,c,d} the output is {b,c,d,a}.
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The constant Rcon is independent of N k and is defined in (7) as:

Reon[i]=(RC/[i],00,,00,:00,) (7)

where RCIi] represents an element in GF (28) with value xV such that:

RC[1]=x"=01,, (8)
RC[H:J{]:DEm (9)
RC[jl=xxRC[j-1]=X", j>2 (10)

Keyword [4*NK]

o I < Nk

W[i]=(key[4*i] key[4*i+1], key[4*i+2] key[4*i+3] )

temp= W[i—1]

temp = subByte( rotByte( temp ) ) * Rcon[i/ Nk ]

temp = subByte( temp )

\4

WI[i]=(W[i-Nk]"temp)
I
Figure 5. Flowchart diagram for KeyExpansion function
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3. Proposed Method

The modification consists in substituting the AES S-box for an Artificial Neural
Network (ANN) that solves the transformation using as input the corresponding
multiplicative inverse value GF (28) of the original S-box input value. To obtain
the corresponding inverse a lookup table is used. The S-box is substituted for a
module formed by a table with the inverse values obtained from (Pelzl & Paar,
2010), (Srebrny, Koscielny & Kurkowski, 2013) and a neural network as is shown
in fig. 6. With this method two advantages are obtained, the first one is that the
values of the S-box are hidden, and the second one is that it's possible to change
the values of the S-box just by a simply changing the weights.

— S-Box F—

a)

Y

ANN

\ J

»! Inv GF(2%)

S-Box

b)
Figure 6. a) S-box representation. b) Representation of the S-box proposed

The neural network topology was proposed by means of observation. The
transformation is performed bitwise, nevertheless another arrangement is also
acceptable. The neural network consists of eight subnetworks, one per bit, each
one as illustrated in fig. 7 is composed by seven perceptron neurons in three
layers: input layer, hidden layer and output layer. Based on neural networks that
perform AND and XOR behaviors each neuron has two inputs and a pulse
activation function given by (11).

ENTRADA

Figure 7. Neural network with one bit output
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_lif x=1, 1]

FX=it x1 o) (1)

The circuit implementation was developed in HSPICE which is an electric circuit
simulator (synopsys, 2003), (Piuri, 1991). In hardware implementation,
Operational Transconductance Amplifiers (OTA) are used as proposed in
(Kawaguchi, Umeno & Ishii, 2014), (Ghosh, LaCour & Jackson, 1994) in order
to manage current signals and simplify the sum of the synaptic weights.

The OTA is a voltage controlled current source (VCCS). Its main characteristics
are high input impedance and high output impedance (Barclay & Wood, 1994),
(Qing-Lin, Jian-You & Mei-Lun, 1991). The OTA macromodel is shown in fig. 8,
where Vin1 and Vin2 are the voltage inputs, the voltage difference of these sources
is reflected in nodes a and b.

Vior ——

Vi )2 o l{
| r

: Rig Ro |

Em(Vin1 = Vin2) :

|

Figure 8. Macromodel for the Operational Transconductance Amplifier

The output current lou IS proportional to the difference between these voltages as
in eqn. 12.

 p :gmlivm:iriuc_vnegaﬂw} {12}
where gm Is the transconductance gain, Vin1 the positive input voltage, Vin2 the
negative input voltage and lout the output current.

The OTA s used to represent the neuron inputs, converting (in the input layer) or
keeping (in the remaining layers) the input signal into a current signal and using
the amplifiers gain (gm) as the corresponding synaptic weight. The signals are
summed by simply connecting the OTAs outputs to a wire line which is then the
input to the activation function.
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4. Simulations

The proposed network was simulated in Matlab, where it was tested and the
expected operation for the S-box specified for AES was verified. An
implementation using OTAs in HSPICE was performed, where the gain is
equivalent to the corresponding weights. Simulating the electric behavior of the
system. In the next subsections details of its implementation and results are
given.

4.1. Simulation and Results in MATLAB

In the simulation the inverse value in GF(28) was used as input of the system and
the results were compared and verified with its corresponding S-box values. For
a better visualization of the results, the binary values were converted to decimal
and are presented in fig. 9 highlighting that the values obtained correspond to
those expected with an error of 0%.

Expecied value vs obtained value

300

—o Obtalned value
—+ Expected value

a3
43
s & ”
= - S 2
= 2 &k »
—;; P

T
o

Output value

,‘5.

i ‘
i::
|!.

100 150 250 300
Number of input

Figure 9. Expected vs. obtained values. Inputs from 0 to 255

The synaptic weights used are shown in table 3, these values were obtained from
neural networks with AND and XOR behaviors, hence there was no previous
training of the network.
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Network

no. Synaptic weights
Bit 0 Input layer |n,,=1,n,,=0,n,,=0,n,,=0,n,,=1,n,,=1,n,,=1,n,,="1
Hidden layer[Ns: = 1. N, = 1, ng,=1, ng,=1
Output layer [n;, =1, n,, =1
Bias n,=0,n,=0,n,=0,n,=0,n;=0,n; =0,n, =0
Bit 1 Input layer |n,,=1,n,,=1,n,,=0,n,,=0,n;,=0,n;,=1,n,,=1,n,,=1
Hidden layer|Ns; = 1, Ns, = 1, ng,=1, ng,=1
Output layer |n,, =1, n,, =1
Bias n,=0,n,=0,n,=0,n,=0,n;=0,n;=0,n, =0
Bit 2 Input layer [N, =1,n,,=1,n,,=1,n,,=0,n,,=0,n,,=0,n,,=1, n,,=1
Hidden layer[Ns; = 1, ng, = 1, ng;,=1, ng,=1
Output layer | N7, =1, n;, = 1
Bias n,=0,n,=0,n,=0,n,=0,n,=0,n;, =0,n, =0
Bit 3 Input layer |ny,=1,n,,=1,n,,=1,n,,=1,n;,=0,n;, =0, n,,=0, n,,=1
Hidden layer|ns,; =1, ns, =1, ng ,=1, ng ,=1
Output layer [N, =1, n,, =1
Bias n,=0,n,=0,n;=0,n,=0,n;=0,ng; =0, n, =0
Bit 4 Input layer |n,;=1,n,=1,n,,=1,n,,=1,n;, =1, n;, =0, n, ,=0, n, ;=0
Hidden layer|ns, =1, ns, =1, ng =1, ng ;=1
Output layer | n;; =1, n,, =1
Bias n,=0,n,=0,n;=0,n,=0,n;=0,n; =0, n, =0
Bit 5 Input layer |n,;,=0,n,,=1,n,,=1,n,,=1,n,,=1,n,,=1,n,,=1,n,,=0
Hidden layer|ns, =1, ng, =1, ng =1, ng ,=1
Output layer |n,, =1,n,, =1
Bias n,=0,n,=0,n;=0,n,=0,n;=0,n; =0,n, =0
Bit 6 Input layer |n,,=0,n,,=0,n,,=1,n,,=1,n,,=1,n,,=1,n,,=1,n,,=0
Hidden layer|Ns, = 1, Ny, = 1, N, =1, Ny, =1
Output layer | Ny, =1, n;, =1
Bias n,=0,n,=0,n;,=0,n,=0,n;=0,n; =0,n, =0
Bit 7 Input layer |n,,=0,n,,=0,n,,=0,n,,=1,n;,=1,n;,=1,n,,=1, n,,=1
Hidden layer|ns; =1, ng, =1, ng,=1, ng,=1

Output layer

n,,=1,n,,=1

Bias

n,=0,n,=0,n;=0,n,=0,n;=0,n; =0,n, =0

Table 3 Synaptic Weight Values
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4.2. HSPICE Implementation and Results

According to the structure proposed in fig. 7 the architecture shown in fig. 10 is
implemented in HSPICE, where V1 through V8 represent the input signals, the
weight, W, are represented by the transconductance of the OTAs, the sums are
represented by linking the OTAs outputs, and finally the activation function
described in (11) is applied.

The structure in fig. 10 has one bit output, hence it's necessary to replicate the
structure in order to have an eight bit output. It should be noted that it is not
necessary to replicate the voltage sources and their resistance, i.e. the inputs,
only the current source, their resistance and the activation functions.

OTAl

+ R-1§ <I> ?Rol
10k 10k
(VRil

IRL1

Afl

I}
n21
% RIZ§ ? OTA2
10k i:;/\l(VR 02
- n22 l

n31
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Figure 10. S-box structure with 1 bit output
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Circuit operation steps

1.

2.

©0o~NOOA

The input value is placed in the voltage sources V1 through V8 for the S-
box value that wants to be obtained.

The voltage difference between nodes n11 and n12 is the voltage in source
V1. This difference is multiplied by the gain (weight). This is repeated in
voltage source V2 to V8.

Since the outputs from the OTAs are given in current, they can be summed
by joining them as follows:

OTA1 output and OTAZ2 output are linked in Irl1

OTAS3 output and OTA4 output are linked in Irl2

OTAGS output and OTAG6 output are linked in Irl3

OTA7 output and OTAS8 output are linked in Irl4

Activation function (11) is applied in Afl through Af4.

Afl output is linked with Af2, and Af3 with Af4

Activation function is applied in Af5 and Af6

Af5 and Af6 outputs are linked

8) Activation function is applied in Af7

9) Af7 output corresponds to bitO

As mentioned previously, the structure is replicated to obtain the eight output bits,
therefore the same steps are repeated to obtain bitl to bit7.

To verify the circuit operation, tests were performed with the input values shown
in table 1V, the table displays some of the values found in the S-box and the result
to those inputs, the next two columns show the input value for the proposed
network which corresponds to the multiplicative inverse in GF(28) and the result
obtained from that input. The results obtained from the network are identical, thus
the operation of the network is validated.

In figs. 11 and 12 the results obtained from the circuit for four inputs of the table
are shown.
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Figure 12. Obtained result for input 34 16 and 11 16 in GF (28)

e.g. On the left side in fig. 11 the obtained result from the circuit to input 00 16 in
GF(28) is 6316 , the result is verified in table 4. Similarly on the left side the result
EC1s6 is obtained for an input 8016 in GF(28).
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S-Box GF(29
input(Hex) | Result(Hex) | input(Hex) | Result(Hex)
0 63 0 63
11 82 B4 82
22 93 5A 93
33 C3 6C C3
44 IB 2D 1B
55 FC 24 FC
66 33 36 33
77 F5 3C F5
88 C4 9B C4
83 EC 80 EC
F3 0D 34 0D
C4 1C DA 1C
5D 4C EC 4C
E7 94 AD 94
8F 73 A4 73
78 BC B6 BC
BD 7A BC 7A
CcC 4B 1B 4B

Table 4. Test Values For The Circuit Implemented In HSPICE

5. Conclusion

An implementation of an S-box using a neural network in MATLAB and HSPICE
is presented, this neural network is based on the operations used to obtain the
values of the S-box through 8 perceptron subnetworks and a lookup table with
the inverse in GF(28). Even if this method of calculating S-box values for AES
does not present an advantage reducing resources, since storing the inverse
values for each possible input represent hundred percent of the necessary
resources to store the original S-box, the values computed by a neural network
offers greater security by maintaining the transformation values hidden and using
a distractor or an apparently S-box that contains the inverse values in GF(28).
The simulation results show that the implementation presents a null error,
thereafter if the neural network were applied, it will not show changes in the
results expected within the encryption algorithm because it simulates without
error the operation of the S-box.
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