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Abstract. This paper presents a new application for analyzing electroencephalogram
(EEG) signals. The signals are pre-filtered through MATLAB's EEGLAB tool. The
created application performs a convolution between the original EEG signal and a
complex Morlet wavelet. As a final result, the application shows the signal power value
and a spectrogram of the convoluted signal. Moreover, the created application
compares different EEG channels at the same time, in a fast and straightforward way,
through a time and frequency analysis. Finally, the effectiveness of the created
application was demonstrated by performing an analysis of the alpha signals of healthy
subjects, one signal created by the subject with eyes closed and the other, with which
it was compared, was created by the same subject with eyes open. This also served to
demonstrate that the power of the alpha band of the closed-eyed signal is higher than
the power of the open-eyed signal.

Keywords: Application, Wavelet, Electroencephalogram, Signal, Analysis.

Desarrollo de una aplicacién de analisis de sefiales de EEG a través de una
convolucion de una ondicula Morlet compleja: resultados preliminares.

Abstract. Este trabajo presenta una nueva aplicacién para el andlisis de sefales de
electroencefalograma (EEG). Las sefiales se prefiltran a través de la herramienta
EEGLAB de MATLAB. La aplicacién creada genera una convolucion entre la sefal
original del EEG y una ondicula Morlet compleja. Como resultado final, la aplicacién
muestra el valor de potencia de la sefial y un espectrograma de la sefial medida.
Ademas, la aplicacion creada compara diferentes canales de EEG al mismo tiempo,
de forma rapida y sencilla, a través de un analisis de tiempo y frecuencia. Finalmente,
se demostro la efectividad de la aplicacidon creada al realizar un analisis de las sefiales
alfa de sujetos sanos, una sefial creada por el sujeto con los ojos cerrados y la otra,
con la que se compard, fue creada por el mismo sujeto con los ojos abiertos. Esto
también sirvi6 para demostrar que la potencia de la banda alfa de la sefal de ojos
cerrados es mayor que la potencia de la sefal de ojos abiertos.

Palabras clave: Aplicacién, Ondicula, Electroencefalograma, Sefial, Analisis.
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1 Introduction

The analysis of EEG signals has become one of the most critical methods for obtaining
information regarding abnormal conditions or diseases in humans, e.g., epilepsy (Adeli,
Zhou, & Dadmehr, 2003), Alzheimer (Alberdi, Aztiria, & Basarab, 2016; Liu et al., 2017),
and attention deficit hyperactivity disorder (Mann, Lubar, Zimmerman, Miller, &
Muenchen, 1991), to name only some of them. This analysis has been achieved by
obtaining the most essential neuronal information provided by brain dynamics, obtained
through electrical signals produced by the brain (Omidvarnia et al., 2017). These
signals have been classified into different frequency waves (delta, theta, alpha, beta,
gamma) that when they present notable changes it is possible to define if the person
presents some type of abnormal condition, for example, some people with Alzheimer's
disease have had altered channel synchronization, loss of complexity, a slowing of
frequency and synchrony or correlation between EEG signals of the different parts of
the brain is reduced, which may be indicative of brain degeneration (Alberdi et al., 2016;
leracitano, Mammone, Bramanti, Hussain, & Morabito, 2019).

In order to study and classify the characteristics of EEG signals, different mathematical
algorithms have been used such as fast Fourier transform (FFT), discrete wavelet
transform, autoregressive (AR) model and entropy (Zhang, Liu, Ji, & Huang, 2016),
multivariate multi-scale sample entropy, support vector machines (SVM), intrinsic mode
functions (IMFs) (Bhattacharyya, Pachori, & Acharya, 2017), principal component
analysis (Mann et al., 1991), mentioning some of them. Of all these methods, wave
transforms was selected, because without discarding any of the aforementioned, wave
transforms can provide high precision of the main characteristics of EEG signals in time
and frequency (Adeli et al., 2003). Moreover, it allows an analysis within a specific
frequency range; because of its properties, it can decompose the original signal in its
different frequency sub-bands. This method was also selected because it is possible to
create a spectrogram from the waveform and obtain information by visual inspection of
the signal (Adeli et al., 2003).

Within the literature analyzed to carry out this study, there has not been found an
application similar to the one created, that performs an EEG signal analysis using a
Morlet Wavelet Transform, in a fast and straightforward way, providing a visual
(spectrogram) and numerical response. Little information was found in the literature
about a quick and easy way, for analyzing and generating a spectrogram of an EEG
signal. Therefore, in this paper, an application that develops an analysis by performing
a convolution is presented (Fig. 1). The left command window has a button at the top
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to upload a .mat file, also has a panel to insert the parameters of the wavelet within
which are the number of cycles and an option to select the frequency band to analyze.
In addition, the user is allowed to indicate the dataset number and the EEG channel
number that will be analyzed. Finally, on the same left command window the button to
start the analysis is found. The graphical spaces Al and A2 show the spectrograms of
the first channel, meanwhile spaces B1 and B2 show the spectrograms of the second
channel. The comparison between both channels on the rank frequencies from 0 to 40
Hz can be seen in the right side figures. The panels on the left (1) show the zoom of a
frequency band from each panel on the right (2), respectively.

The original signal and the complex Morlet wavelet are convoluted to generate the
spectrogram of an EEG signal. Also, the created application calculates the power of
each frequency band of the EEG signal to provide more accurate results.

Deita v taset 1
Parula v Time » . 1
o

Wavelet ;

Parameters Start
Button

Figure 1. Main application interface created with MATLAB. The left command window
has a button at the top to upload a file, a panel to insert the parameters of the wavelet
and a button to start the analysis. The graphical spaces Al and A2 show the
spectrogram of the first channel. Spaces B1 and B2 show the spectrogram of the
second channel.

B1-4



2 Methods
Signal pre-processing

Because the program does not filter the data, the data must be previously filtered with
the EEGLAB toolbox provided by MATLAB or another filter (Fig. 2). For this study, the
power of the alpha band (8 - 14 Hz (Lobier, Palva, & Palva, 2017)) will be analyzed,
therefore a high-pass filter at 0.5 Hz is useful and recommended to minimize slow drifts
(X Cohen, 2014), and 40 as the edge of the low-pass filter can help to remove high-
frequency artifacts (X Cohen, 2014), it will also help to attenuate electrical line noise
that occurs at 60 Hz in Mexico and 50 Hz in Europe produced by the power supply
current. EEGLAB works with the created application, saving the most relevant
information of the EEG signals that will be used to run the application. For example, the
location of the electrodes must be saved with the number of each one, not just with the
letter (e.g., Fz) in order that the application will know the number of the channel to
analyze.

12 . = v ” . v . 12

-
=)
=3
o

©

Amplitude of FFT
o

Amplitude of FFT
o

£

0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 40 45
Frequency (Hz) Frequency (Hz)

Figure 2. A) the Fast Fourier Transform of the unfiltered Pz channel signal, B) EEG
signal but after applying a 0.5 to 40 Hz filter.

Algorithm

This program performs a convolution between EEG signals and a Complex Morlet
Wavelet (Fig. 3), an algorithm described in (X Cohen, 2014).
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Original signal and Kernel
signal in the time domain

[

r ~ s ~
Convolution between Fast Fourier Transform of
signals in the time domain each separated signal
Signal convoluted in time Both signals in frequency
domain domain
6 Multiplication between
Fast Fourier Transform of signals in the frequency
the convoluted signal domain
Signal convoluted in
Final signal in the frequency domain
frequency domain

!

Inverse Fast Fourier
Transform of the
convoluted signal

!

Final signal in the time
domain

Figure 3. Flowchart of the interchangeability of convolution in the time domain and
frequency domain multiplication. The signals resulting from the processes shown within
the blue box are the same, as are the signals resulting from the processes within the
red box (X Cohen, 2014); using a shorter computation time the cycle on the right side
of the flow chart.

The convolution method was chosen together with a wavelet transform, since the FFT
method does not allow to visualize an analysis based on the time domain, whereas with
the wavelet cycles a decomposition of the data in the frequency domain, in the time
domain or both, can be performed (Pattnaik, Dash, & Sabut, 2016; X Cohen, 2014).
Due to the limitations that the wavelets present as a band-pass filter, it was necessary
to use a complex Morlet wavelet described in (X Cohen, 2014), which is created by
multiplying, point by point, a Gaussian window and a complex sine wave:
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Complex Morlet Wavelet (CMW) = Ae t2/25% . gi2nft

(1)

with A being a frequency band-specific scaling factor, e a constant called Euler's
number, t is time, i is the imaginary operator (X Cohen, 2014), f is frequency (Hz) and
s is the standard deviation of the Gaussian:

= 5nf

(2)

where n is the number of wavelet cycles.

Also, this wavelet will serve to extract power information from the EEG data (X Cohen,
2014). Furthermore, the result of convolution in the time domain can be represented by
a multiplication between two vectors in the frequency domain. To achieve this, the FFT
of the original signal and the CMW (kernel) is calculated separately. Finally, both
resulting FFT signals are multiplied and the IFFT of the convoluted signal is calculated:

Final signal = IFFT (FFT (original signal) - FFT (kernel))

3)

For this study, multiplication in the frequency domain was chosen because it reduces
the computing time (X Cohen, 2014) of MATLAB. It is important to mention that the
created application uses automatically the frames per epoch and the trials of each
dataset to execute the convolution, so the result will be the same as the length of the
kernel plus the length of the original signal minus one, as stated in (X Cohen, 2014).
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After convolution, the real part of the final signal is introduced into a matrix, and a filled
contour plot is created with the isolines of the final signal power values. In which it will
be observed in the axis of the ordinate the range of the frequency bands, from 1 up to
40 Hz; in the axis of the abscissa, it will be appreciated the time, that in this case are
milliseconds.

Database

An EEG motor movement database (Schalk, Mcfarland, Hinterberger, Birbaumer, &
Wolpaw, 2004) was used for evaluating the performance of the application. The used
database consists of one hundred nine subjects performed different experiments,
including opening and closing the fists of the hands, both physically and imaginatively,
in order to distinguish these movements through the EEG signals (Goldberger et al.,
2000). These signals were taken from an EEG of 64 channels, placed on the scalp
according to the 10-20 international system and, each signal was sampled at 160
samples per second. The BCI2000 system was used to acquire the signals, developed
and tested in (Schalk et al., 2004), which incorporates any brain signals, signal
processing methods, output devices, and operating protocols. However, for this study,
only the two baselines of the study were taken into account, which were created by the
subject keeping eyes closed (without motor movement) for one minute and the other
baseline keeping eyes open, for one minute as well.

Moreover, at a later stage, different analyses will be performed taking into account the
potentials evoked due to imaginary movements, as well as the analysis of other mental
states, in order to validate the application and demonstrate that it can be used as part
of a multimodal system in order to find uniqgue biomarkers that serve for the early
diagnosis of different diseases such as Alzheimer's, autism, tumours, etc (Alberdi et al.,
2016; Siuly & Zhang, 2016).
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3 Results

The created application compares different EEG channels at the same time, in a fast
and straightforward way, through a time and frequency analysis. The baselines of the
EEG database were selected with the idea of demonstrating that the alpha waves have
a higher power when the subject has closed eyes than when the subject has open eyes,
this following the established in different previous studies (Butler & Glass, 1974; Kan,
Croarkin, Phang, & Lee, 2017; Morgan, Mcdonald, & Macdonald, 1971; Teplan, 2002;
Valipour, Shaligram, & Kulkarni, 2013). Moreover, the PZ (51), CZ (11), FZ (34), and
02 (63) electrodes were selected, because they are commonly used since they have
given significant results (Hussain et al., 2017; Rushby et al., 2016; Wyckoff, Sherlin,
Ford, & Dalke, 2015) in terms of the power of the alpha band. Just to demonstrate the
functionality of the application, 3 random subjects were taken into consideration to
verify that the power of the alpha band is greater when moving the electrode from the
front to the parietal lobe (Valipour et al., 2013).

The created application asks the user to select the necessary characteristics for the
analysis of EEG signals, i.e.: dataset number, channel number, number of wavelet
cycles, the time range to be displayed on the plot (the application generates the analysis
using the full-time range, not just the one selected by the user). Also, the colormap can
be selected: Parula o Jet. Both colormaps have been proposed because colormaps in
which their brightness function is linear, such as Parula (the default since MATLAB
version R2014b), are still subject to usability problems (Helfman, 2015). However, the
aim is for future researchers to be able to test both colormaps and have more reliable
results. By the other hand, it is important to declare that the total number of wavelet
frequencies used in the created application is 40, in a range from 0.5 to 40 Hz, since
the frequencies of interest are within this range and the wave frequencies cannot be
above the Nyquist frequency (half the sampling frequency) (X Cohen, 2014). The
created application uses the sampling rate (Hz) of each dataset to select the center of
the wavelets as a zero.

Figure 4 shows the Pz (51) channel spectrograms after having performed an analysis
using seven cycles for the wavelet and selecting a time from 0 to 1000 ms to display
on the plot. Dataset number 1 was defined by the baseline with the eyes closed, while
the number 2 was created while the eyes were kept open, both datasets belong to the
test subject number 1. The color limits for these graphics are set by the range values
of the frequency band selected by the user (see Figure 4). Therefore, the areas with
the highest power within the same frequency band can be identified.
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Theta Wavelet Cycles | 7
Timerange | 0 |-[1000
{Beta Parameters
ﬁ?‘f"ma Dataset | 2
Channel Number | 51
Wavelet Cycles | 7
Parula _v) Timerange| 0 1000

°

Select Channel @

- Band Frequency Anslysis.
- Band Frequency
- All Frequencies
- All Frequencies

- Band Power Curve

- Band Power Curve

Original Signal Second Ch. Total Power

o|[=|)[=|[][=][~) SR

9
8

- Original Signal | |«” 3088836.017

Figure 4. Analysis of channel Pz (51). Time range selected to display from 0 to 1000
ms. Both spectrograms at the top belong to the dataset of subject 1 with closed eyes.
The two spectrograms at the bottom belong to the dataset of subject 1 with open eyes.
On the left, it can be seen the drop-down menu with the six frequency bands which are
selectable for different analyses.

Figure 5 shows the results of the Cz (11) channel analysis. For this analysis, the full-
time range of the signal (60000 ms) was selected to be displayed on the plot. It can be
seen that the dataset with closed eyes has the power of the alpha band higher than
that of open eyes. However, in the lower part of the section where the user specifies
the characteristics for analysis, the application provides a result with the value of the
power of the band that the user has previously selected, in this case, the values shown
belong to the alpha band.
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Figure 5. Analysis of channel Cz (11). Time range selected to display from 0 to 60000
ms. Both spectrograms at the top belong to the dataset of subject 1 with closed eyes.
The two spectrograms at the bottom belong to the dataset of subject 1 with open eyes.

Figure 6 shows the spectrograms of channel Fz (34). Again it is observed that the
dataset with closed eyes (1) has higher power than the dataset with open eyes (2). For
this analysis, seven cycles were also used for the wavelet and the results from 20000
to 40000 ms were shown. Also, the colormap jet was selected only as a demonstration
object for the reader's knowledge.

- Band Frequency
- Band Frequency

All Frequencies

Band Power Curve
- Band Power Curve
- Original Signal

1
2
1
2 - All Frequencies
1
2
1
2

Original Signal | '*.

Time (ms)

Figure 6. Analysis of channel Fz (34). Time range selected to display from 20000 to
40000 ms. Both spectrograms at the top belong to the dataset of subject 1 with closed
eyes. The two spectrograms at the bottom belong to the dataset of subject 1 with open
eyes.
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Figure 7 shows another of the capabilities of the created application, which is to
compare four channels at the same time. In this case, the channels O2 (63), PZ (51),
CZ (11), and FZ (34) were compared. It can be seen from each of the spectrograms
that the power is more significant as we move closer to the electrodes at the back of
the brain, following the conclusions stipulated in [14]. Also, to have a more precise
response, the application created shows the total value of the power of the EEG band
previously selected for each of the analyzed channels (uV).

B

Cl Second Channel
Upload mat file
b
First Channel Parameters 3 o
a

Dataset

Figure 7. Analysis of O2 (top left), Pz (top right), Cz (bottom left), and Fz (bottom right)
channels. Time range selected to display from 45000 to 60000 ms. Frequency range
from 8 to 14 (alpha wave).

The number of cycles of the wavelet can be changed and defined every time before the
analysis performed by the application. Figure 8 presents an analysis performed on the
02 (63) channel, increasing the cycles for the wavelet to demonstrate the differences
produced by these cycles in each analysis. In order to achieve better temporal precision
using fewer cycles (e.g., 3), or if greater frequency precision is required more cycles
can be selected (e.g., 10). Finally, an average analysis can be performed by selecting
an intermediate number of cycles (e.g., 7).
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Figure 8. Analysis of channel O2 (63). Time range selected to display from 20000 to
30000 ms. Different numbers of wavelets cycles selected: 3 (top left), 7 (top right), 10
(bottom left), and 13 (bottom right).

Figure 9 shows how the created application can enlarge the spectrograms for more
accurate analysis. Also, it is possible to observe each of the curves of the power bands
created after convolution (Fig. 10), taking into account only the values provided by the
band selected in the drop-down menu. Finally, if the user wishes to observe the original
signal, the application allows this by selecting one of the last options from the bottom
panel on the left side of the application (Fig. 11).
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Figure 10. Signal created after convolution, taking into account only the values present
within the range of the frequency band selected by the user.
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Figure 11. Original EEG signal from channel O2 (63).
4  Conclusions

A new application was described in this paper, which performs a convolution between
the signals of an EEG and a complex Morlet wavelet, an algorithm described in (X
Cohen, 2014). In addition, the application shows the spectrogram of each EEG signal
and is able to calculate the power of each frequency band of the EEG signal. The
created application allows the user to select the basic characteristics needed for an
EEG signal analysis and to select the EEG channel number, in order to compare
different EEG channels at the same time.
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