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ABSTRACT:

A new finite control volume in a Lagrangian-Eulerian framework is presented (see papers [1, 28]), in which a local space-time
domain is studied, in order to design a locally conservative scheme. Such scheme accounts for the delicate nonlinear balance
between the numerical approximations of the hyperbolic flux and the source term for balance law problems linked to the
purely hyperbolic character of conservation laws. Furthermore, by combining the ideas of this new approach, we give a formal
construction of a new algorithm for solving several nonlinear hyperbolic conservation laws in two space dimensions. Here, a set
of pertinent numerical experiments for distinct models is presented to evidence that we are calculating the correct qualitatively
good solutions.

KEYWORDS: Conservation laws, Lagrangian-Eulerian, finite volume.

RESUMEN:

Un nuevo volumen finito de control es presentado en un enfoque Lagrangiano-Euleriano (ver articulos [1, 28]), en este, un
dominio de espacio-tiempo es estudiado con el fin de disenar un esquema localmente conservativo. Tal esquema tiene en cuenta
el delicado balance no linear, entre las aproximaciones numéricas del flujo hiperbélico y el término fuente, en problemas de ley
de balance ligados con leyes de conservacion puramente hiperbdlicas. Ademds, combinando algunas ideas de este nuevo enfoque,
hacemos una construccién formal de un nuevo algoritmo para resolver importantes problemas de leyes de conservacién en dos
dimensiones espaciales. Un conjunto pertinente de experimentos numéricos para diferentes modelos es presentado para mostrar
evidencia que soluciones cualitativamente correctas son aproximadas.

PALABRAS CLAVE: Leyes de conservacion, Lagrangiano-Euleriano, volumen finito.

1. INTRODUCTION

In this work we explore a locally conservative and spacetime finite control volume in a Lagrangian-Eulerian
framework (see [13, 14, 15, 26]), first developed in the context of purely hyperbolic conservation laws, in
order to design a locally conservative scheme to account the balance between numerical approximations of
the hyperbolic flux function and the source term linked to steady solutions. In [1, 28], such Lagrangian
framework was extended to design a locally conservative Lagrangian-Eulerian scheme to account the balance
between numerical approximations of the hyperbolic flux function and the source term linked to steady-
state solutions for one-dimensional nonlinear balance law problems —scalar and system — given by:
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du(x, t) i af (u(x,t)) _

at ax -~ W
u(x,0) = @(x),
—00 < X < COo, t =0, (1)

We made use of the innovative ideas of [13, 14, 15, 26] to develop a locally conservative by construction
Lagrangian-Eulerian approach as an alternative way to define accurate approximation for purely advection
(hyperbolic) problems in two dimensions, virtually free of numerical diffusion [2, 14, 20]. The new
Lagrangian-Eulerian scheme is aimed to be independent of any particular structure of the source term.
The designed scheme makes no use of Riemann solvers for the resolution of (local) Riemann problems,
but, if Riemann solutions are available for a particular problem it is somewhat natural to incorporate such
information into the procedure. This yields flexibility to the development of distinct numerical strategies
upon the specific model under consideration.

We are interested in numerically solving balance law problems linked to the homogeneous purely
hyperbolic conservation law counterpart. In this work, we aim to present a Lagrangian-Eulerian scheme
in a cell-centered framework devoted to this task. This scheme consists on another attempt to deal with
the difficult issue of the wellbalancing between the computation of the numerical flux function and the
source term by means of a natural unbiased upwinding approach, which in turn is Riemann solver-free and
seems to be able to handle nonlinear scalar and system problems. A variety of efficient numerical schemes
for hyperbolic systems of conservation laws has been developed in the recent past for different problem
settings. These schemes evolved following the natural understanding of fundamental concepts from the
theory of nonlinear hyperbolic conservation laws concerning the characteristic surfaces properties, existence,
uniqueness, and solution of the Riemann problemy; see, e.g, [4, 7, 10, 22, 24, 25, 32].

In addition, for a scalar balance law, the solution strongly depends on certain properties of the source
term (see [16, 10, 22, 4, 7, 24, 25]). For example, when the source term is a non-increasing function, the
total variation of the exact solution of the scalar balance law is also a nonincreasing function, as in the
homogencous case (see, e.g,, [16, 10]). In general, however, the source term might not be decreasing (see
[6,11,27]) and some semiimplicit and fully implicit scheme are not applicable, at least in a straightforward
manner [6, 11].

In [1, 2, 13, 14, 15, 20, 30] the authors present distinct Lagrangian-Eulerian formulations to the linear
case [3,20] and non-linear [1, 2, 12, 14, 30] transport flow problems; to the purely linear transport problem
the space-time integral curves coincide with characteristic equations [2, 20] (see also [4]). Such Lagrangian-
Eulerian approach provides a very accurate solution to purely advective problems, virtually free of numerical
diffusion. Such schemes are derived from the divergence forms of the equations. It is the use of the divergence
form of a parabolic equation that allows relatively easy localization of desired conservation principles in a
form amenable to the application of finite element or finite volume approaches in a locally conservative
fashion. Essentially, this formulation evolves [2, 12, 14] (see also [2, 20, 30] and references therein) from
the efforts to develop fast, accurate, and stable versions of Modified Method of Characteristics numerical
methods for transport-dominated diffusive systems, with the primary objective of the evolution being the
incorporation of changes in these procedures to obtain the preservation of desired conservation principles.
Here we want to follow such ideas to the case of balance laws.

In section 2 we briefly show the ideas of the construction of the method for scalar problems of hyperbolic
conservation laws and balance laws. In section 3 it is shown, also briefly, the extension of method to
numerically solve hyperbolic conservation laws in two spatial dimensions. Finally, we show some numerical
experiments in section 4.
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2. THE LAGRANGIAN-EULERIAN METHOD

Asin [1, 28], we consider the general balance law

H A f[u] Jav —jf Gw)dv <=
$, [tol-nas = [ ccona

where 6@ is an integrable function.
Following [1, 2, 14, 28, 20], we consider the finitevolume cell centers o= (t): "< t< w950 <2< guwy

(2)

where 4 is a parameterized curve such that @ is a solution of the system of ordinary differential equations
=47 with initial condition st =x. Also, we get a CFL condition of the form 1712, where 2-: and »-%.
Next, from the divergence theorem [2, 14, 28] reads:

ﬂﬂj Ve [f Efu,]] dv = ﬂ;ji?(u)dv =

ﬁg.[f?m]'”ds =HD_G(u)dA )
| : 3

Imposition of impermeability condition over curves 5® in boundary e, equation (3), implies that the
integrals over curves 5@ vanish. From this fact, the region » will be called “Integral tube” as a natural
consequence of (3).

The previous item allows us to define the evolution step from time ¢ to ¢+ as

U = s [0 ulx, tdx + ff, G(u)dA],
] F, ]

(4)
where w =+ (7, - fkk = an,
Next, the local approximation 7+jez, is projected over the original grid, as follows:
U:n+l ((__f;- )Ej_n_—Li n (%+ﬁ“k“) ﬁjnﬂ) 5
b)

In the linear case, along with @) = 0, the approximations to the simple scalar conservation law

du(x,t) d(au)
at 8 ox
u(x, 0) = o(x),

—00 < X < o0, t =10, (6)

= 0,
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Is also the simple finite difference Lagrangian-Eulerian scheme [1, 28]
1 ak
urtt = E[U;I—L + 207" + Ufy] _T[L’}ﬁl — UfLq] )
Based on numerical domain of influence and domain of dependence, for (7) the following Courant-
Friedrichs-Lewy CFL like stability condition is aknt < 2-1.

3. THE NEW LAGRANGIAN-EULERIAN FRAMEWORK FOR TWO-DIMENSIONAL
HYPERBOLIC CONSERVATION LAWS

We discuss a Lagragian-Eulerian technique for approximation of the following two-dimensional initial value
problem for conservation laws (see [1, 28]),

du df(u) dg(u)
E—'_ ox * ay il
ulx, v, to) = n(x,y)
(xrj}r t) €l X (t':l’ T] (8)

Along with the approximations of derivatives respectively. We write (8) as, (for w = (x.y.0))

o ofw _ (ﬂgiﬁu))
I

w E DI

FrAT dy oo
du dg(u) af (u) n+%
— — = — WED
3 ox ( ay ) " T

)

As seen in the scalar case, we consider cell-centered finite-volume cell centers in the Lagrangian-framework
as follows: o-ooezizetyisre mroses o and s ez ot poos - i, where o and o are solutions of

do(t) Hu) NH(:U*‘J u
g o O g L (10)
We prove the stability in z norm, under CFL condition 1= where -2,

Finally, we sequentially solve each balance law problem given by (9)- (10), in each control volume and
respectively, by using the numerical scheme (3), (4) and (5) as a building block (see also [28] for more details).
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4. NUMERICAL EXPERIMENTS

We provide some numerical experiments with specific model test problems, in order to show the algorithm
behavior and its applicability, linked to the firm mathematical underpinnings used into the previous sections
for the construction of the proposed new algorithm.

Insight in the qualitative behavior (see numerical experiments in Figure 1, Figure 2, Figure 3 and
Figure 4) can be obtained by regarding the so-called modified equations of the discretization. It is worth
mentioning that here we will use modified equations with the aim of understanding the qualitative behavior
of approximations (related to the two-level Lagrangian-Eulerian scheme (7)) in the spirit of critical work of
[5] (see also [17, 31]), that related it with the Fourier-von Neumann method for the linear stability analysis
of the linear initial-value problem (Lax stability in PDEs as before) of two-level linear difference schemes.
Let -(x; t) in C1, with all bounded derivatives with respect to x and t, in the setting of modified equations
and plug this into (7) along with the stability results pointed out in [1, 28].

In the linear case, the complicated behaviors exhibited by the Fourier series sums would serve as a good
testing ground for the application of numerical methods for diffusive/dispersive waves to rough data. Thus,
let us discuss the application of the Lagrangian-Eulerian scheme (7) with three types of initial data:

a) #oo smooth data (see Figure 1 and Figure 2),
b) aLipschitz initial data (see Figure 3) and
c) piecewise discontinuous initial data (Figure 4).

For all cases we will also show the observed numerical convergence rates (see Tables 1, 2 and 3) along
with comments on the captions and figures. In other words, the classical convergence (consistency +
stability) property of a numerical scheme does not suffice to guarantee its suitability for providing good
approximations to the controls that might be needed in applications since such nice properties may be lost
under numerical discretization as the mesh size tends to zero due to the existence of high-frequency spurious
solutions for which the group velocity vanishes not fast enough. We will not suggest any specialized remedies
since we are primary interest in discuss the properties (we have found) in the most simple framework, which
is conducive to analysis and verification by representative numerical tests.

TABLE 1
Errors between the numerical approximations (#) and exact solutions (#) in # 1# (#2#) for problem

## + ## = 0 with smooth initial condition at time frame # = 2 and CFL condition equal to (+v2)/2

Cells Smooth [fu — Ul|;2 (llu — Ull;2)
32 5921 x 1071(2.980 x 107Y)
64 2.082 x 1071(1.146 x 107 1)
128 5.571 x 107%(3.171 x 1072)
256 1.399 x 10~%(8.006 x 10~3%)
E(h) 1.673 h*11(0.835 ™)

Source: Author development.
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TABLE 2
Errors between the numerical approximations (#) and exact solutions (#) in # 1# (#2#) for problem
## + ## = 0 with smooth initial condition at time frame # = 2 and CFL condition equal to (v2)/2

Cells Continuous |ju — U”:;‘,, (Jluw —U|| ii)
32 7.834 x 1071(4.521 x 101
64 3.898 x 1071(2.267 x 1071)
128 1.428 x 1071(9.095 x 10™%)
256 6.541 x 107%(4.869 x 10™2)
E(h) 1.550 h1-1°(0.808 h109%)

Source: Author development.

TABLE 3
Errors between the numerical approximations (#) and exact solutions (#) in # 1# (#2#) for problem
## + ## = 0 with smooth initial condition at time frame # = 2 and CFL condition equal to (+v2)/2

Cells NonContin. ||u — U!Ifi (|l — U|II§]
32 1.192 x 1071(5.454 x 107 1)
64 7.984 x 1071(4.458 x 1071)
128 5.639 x 1071(4.374 x 1071)
256 3.552 x 1071(2.887 x 107 1)
E(h) 1.679 h%>74(0.646 h%27)

Source: Author development.

Approximate numerical solutions given by scheme (7) to the Linear hyperbolic PDE (6), are shown in
Figure 1, along with smooth Gaussian initial condition (.0 = 5 =e=. It is shown initial condition (top left)
and computed solutions at t = 2 (top right), t = 4 (bottom left) and t = 8 (bottom right) with CFL number
+-2. As expected from the modified equation analysis the solutions start to exhibit dispersion since the range

of the dominant dispersion regime is controlled by :<»<2.
In [1, 28] we establish a convergence proof in 2 -space by means of von Neumann analysis for the
Lagrangian-Eulerian scheme, see Figure 2. Although the CFL number is in the range :<. <% where the diffusion

is in balance or dominates the dispersion, the above numerical experiments related to those in Figure
1, illustrate the fact of entire truncation error vanishing (see right picture) at all grid points under grid
refinement, as expected from previous theoretical analysis. At this point (left and right picture) notice the
excellent resemblance between the exact and approximate solutions computed by the Lagrangian-Eulerian
scheme with any reminiscence of the spurious effects from the numerical dispersion/diffusion artifacts.

The numerical experiment in Figure 3 illustrates again both cases where the diffusion are in balance
(bottom left) or dominates (bottom middle) the dispersion as r — 0 with ratio k = r fixed corresponding
essentially to what is shown in Figure 1 and in Figure 2, but with a Lipschitz initial condition where
AW =x+1,-1<x<0, ()= —x+1L0<x<1 and 0 -0 elsewhere.
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FIGURE 1
Numerical approximation with a Lipschitz initial condition
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FIGURE 2
Numerical solutions given by scheme (7) along with smooth Gaussian initial condition
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FIGURE 3
Numerical approximation with a discontinuous initial condition

Numerical experiment in Figure 4 illustrates again both cases where the diffusion are in balance (bottom
left) or dominates (bottom middle) the dispersion as » — 0 with ratio k =& fixed corresponding essentially
to what is shown in Figure 1 and in Figure 2, but with a discontinuous initial condition where 7 =1-2< +<2
and 7 - o elsewhere. As in [23], in Figure 5, we show preliminary numerical approximations of the model
problem with f@w =« and 6w = -puw- nw-w and » = 05, this model was used in [23] to illustrate a current
well-known deficiency of most numerical schemes for hyperbolic conservation laws with stiff source terms.
These schemes obtain propagation at a nonphysical speed that is purely an artifact of the numerical method.
The problem lies with the smearing of the discontinuity caused by the advection, which introduces a
nonequilibrium state into the calculation making to appear numerical fronts that propagate at non-physical
speeds [23]. The model problem is a scalar linear advection equation with a nonlinear reaction source term,
which can be stiff. The parameter g controls the stiffness character of the model. For g > 0, the associated ODE
has stable equilibria at « = 0 and u = 1, and an unstable equilibrium precisely at  =u.

FIGURE 4
The model problem proposed by LeVeque and Yee in [23]
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FIGURE 5
2 x 2 nonlinear system of balance laws with friction

We also report in Figure 6 a preliminary approximate numerical solution given by scheme [28] proposed
in [21], where it is treated a balance law system problem, in which it is computed solutions for h (height of
the free surface on the left) and for v (averaged horizontal velocity right). The problem considered is a 2 x
2 nonlinear system of balance laws r.+ a.= o e+ (s ®)#) - 1- c(22)» where the friction coefficient C is taken to
be 0.1, with the inclination angle ¢ -. The initial velocity is taken to be vy = 1.699, while the initial height

of the free surface consists of a triangular perturbation of the uniform flow level, ao@) = x + 15,-05<x <0,
ho(x) = —x + 15,0 <x <05 and 1 elsewhere, in which with no friction (C = 0), two symmetrical waves will arise
from the announced initial data. On the other hand, the introduction of friction not only slow down the
velocity of these waves, but also changes their shape.

Initial condition

FIGURE 6
Initial condition

In order to add one more test problem, see Figure 7, we will use the two-dimensional Lagrangian-
Eulerian scheme (9) for the two-dimensional Burgers” equation proposed in [8]. We consider the following
twodimensional initial value problem for associated to the inviscid Burgers’ equation
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ﬁu+ a (uz) ¥ a (uz) i
at  odx\ 2 dy\ 2 (an

with (x.y.t) € [0.1% [0, x [0,05] and initial condition

2.0, x < 0.25,y < 0.25
u(x,y,0) = [3.0, x> 0.25 3y > 025

1.0, otherwise. (12)

I.S |

FIGURE 7
Christov & Popov (JPC), two-dimensional Burgers’ equation
[8]. Approximations with the new approach (9)-(10)

As before, our numerical solutions are in very good agreement as reported in [8], with a central scheme
with a non-structure computational mesh grid. In addition, we also show a mesh refinement study in order
to address the observed numerical order of convergence rate in discrete 2.» = 1,2, co-spaces, (see Tables 4,

5 and 6).
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TABLE 4
Errors between the numerical approximations (#) and exact solutions (#) in
# 1# for problem ## + ## + ## = 0 with initial ##(#, #, 0) = sin(#(# + #))

Cells h lu— U2
64 x 64 0.016 5.156 x 1072
128 x 128 0.007 2.046 x 1072
256 x 256 0.004 1.309 x 10~°
512 x 512 0.002 6.090 x 1073
LSF E(h) 2.911h%°%7

Source: Author development.

TABLE 5
Errors between the numerical approximations (#) and exact solutions (#)
in # 2# for problem ## + ## + ## = 0 with initial u(x, y, 0) = sin(#(# + #))

Cells h lu — U2
64 % 64 0.016 5.573 x 1072
128 x 128 0.007 2.493 x 1072
256 % 256 0.004 1.467 x 1072
512 x 512 0.002 6.034 x 1073
LSF E(h) 3.0511%%72

Source: Author development.

TABLE 6
Errors between the numerical approximations (#) and exact solutions (#)
in #oo# for problem ## + ## + ## = 0 with initial #(#, #, 0) = sin(#(# + #))

Cells h lu — Ul 2
64 x 64 0.016 1.339 x 1071
128 x 128 0.007 6.509 x 1072
256 X 256 0.004 3.761 x 1072
512 x 512 0.002 1.835 x 1072
LSF E(h) 6.534h%%%°

Source: Author development.

5. CONCLUDING REMARKS

The new locally conservative Lagrangian method proposed in [28] seems to be promising for the
approximation of nonlinear problems in 1D and 2D for hyperbolic conservation laws and balance laws, scalar
and system (in this work we discuss an original extension for two-dimensional problems). To the best of our
knowledge we have introduced a new approach for construction of a new family of approximate solutions for
multidimensional hyperbolic conservation laws (as well as for balance law problems) thanks to an appropriate
reformulation of the original differential governing equation by means of an equivalent system of balance
laws. Thus, in order to establish such connection between multidimensional hyperbolic conservation laws
and system of balance laws, it will be necessary to revisit the Lagrangian-Eulerian framework in order to
perform a rigorous numerical analysis as such given in [28] for discrete 2,p = 1.2, c0-spaces, but keeping good
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mathematical properties such as the asymptotic preserving and the well-balancedness of the scheme, as in
modern numerical procedures to this end (see, e.g., [16]) for hyperbolic conservation laws and balance laws
linked to (quasi-)steady solutions.

In [28], we also derived the modified equation associated to the Lagrangian-Eulerian scheme and described
the dispersive dissipative relation to explain the onedimensional numerical experiments results. We were able
to write the Lagrangian-Eulerian scheme in conservative form for nonlinear hyperbolic conservation laws as
well as we construct a Lipschitz continuous consistency condition to the Lagrangian-Eulerian numerical flux
function. The Harten theory [18, 19], the Majda and Crandall theory [9] and the ideas in Smoller’s book [29]
were used to prove the convergence of the approximate solutions, obtained using our Lagrangian-Eulerian
scheme for entropic solution of non-linear scalar hyperbolic conservation law in both numerical methods.
Furthermore, numerical experiments for hyperbolic conservation laws with convex and non-convex flux
functions were also present to illustrate the qualities of the new scheme. In particular, it was discussed the
stability and convergence issues of the Lagrangian-Eulerian scheme for linear and nonlinear balance law
problems.
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