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ABSTRACT:

This article presents a comparative study using two global optimization algorithms, Electromagnetic Field Optimization (EFO)
and Heat Transfer Search (HTS). These techniques are efficient alternatives when classical methods find limitations to solve
real problems. To verify methods performance, the rectangular microchannel heat sink design was implemented formulating
the respective Inverse Heat Transfer Problem (IHTP). Experimental results were competitively compared with the traditional
Levenberg-Marquardt (LM) outcomes. Moreover, global algorithms achieved estimations with errors lower than 5%, and they
converged at least three times faster than LM.

KEYWORDS: Electromagnetic field optimization (EFO), entropy generation minimization (EGM), heat transfer search (HTS),
inverse heat transfer problem (IHTP), Levenberg-Marquardt method (LM), ordinary least squares norm (OLSN).

RESUMEN:

Este articulo presenta un estudio comparativo utilizando dos algoritmos de optimizacién global, el de Optimizacién por Campo
Electromagnético (EFO) y el de Busqueda por Transferencia de Calor (HTS). Estas técnicas alternativas son eficientes cuando
los métodos clisicos encuentran limitaciones para resolver problemas reales. Para verificar el desempefo de los métodos, se
implementé el disefio de un disipador de calor de microcanales rectangulares formulando el respectivo problema inverso de
transferencia de calor (IHTP). Los resultados experimentales se compararon competitivamente con los resultados tradicionales de
Levenberg-Marquardt (LM). Ademds, los algoritmos globales lograron estimaciones con errores inferiores al 5%, y convergieron
al menos tres veces ms rdpido que LM.

PALABRAS GLAVE: Optimizacién por campo electromagnético, minimizacién de la generacién de entropia, busqueda por
transferencia de calor, problema inverso de la transferencia de calor, método de Levenberg-Marquardt, norma de los minimos
cuadrados ordinarios.

1. INTRODUCTION

The modern optimization methods allow us to find accurate enough solutions [7], with a wide variety of
applications in design problems and the availability of powerful computers [8]. One of these applications
is the thermal design through the Inverse Heat Transfer Problem (IHTP), which can be a effective tool
in situations where other methods are incapable or inapplicable to find a solution [1, 2, 3]. IHTP is a
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methodology that consists of estimating unknown parameters involved in the physical process; it uses the
information provided by a given number of measurements profiles, obtained by external sensors, (e.g.,
temperature or heat flux) [4][6]. One of the most important characteristics of this methodology is that the
solution includes not only practical data (i.c., by experimental procedures as direct or indirect measurements)
but also theoretical information about the physical process, (i.c., design and modeling) [5], [6]. Generally,
this methodology needs to apply an optimization algorithm to minimize some criteria as the Ordinary Least
Square Norm (OLSN).

This manuscript presents a comparative numerical study using two modern optimization algorithms,
ie., Electromagnetic Field Optimization (EFO) and Heat Transfer Search (HTS), to tackle Inverse
Heat Transfer Problems (IHTPs). As an illustrative example, the parameter estimation of a rectangular
microchannel heat sink was analyzed, and the results were compared with the traditional Levenberg-
Marquarde (LM). Obtained data showed competitive results against traditional methods. Both
methodologies (EFO and HTS) achieved estimations with errors lower than 5%, and they converged at least
three times faster than LM.

This document is organized as follows: methodologies are presented in Section 2; experimental results are
described in Section 3; and finally, conclusions are discussed in Section 4.

2. METHODS
2.1. Electromagnetic Field Optimization (EFO)

EFO was proposed by Abedinpourshotorban et al. in 2015, as a metaheuristic optimization algorithm
inspired on the electromagnets’ behavior [21]. The number of design variables defines the number of
electromagnets. An electromagnetic particle ®.m), composed by electromagnets interacting with others, is
a candidate solution. Three possible interaction fields, positive, negative and, neutral allow the mentioned
interaction. Thus, the attraction and repulsion forces address suitable particles to the global minimal.
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Require: Objective fimction fix) and Xp, < X, % Xna
St Nop Prets Niets Proes Rrae
Ensure: Best solution fo x,
1. Initialize Newp and Evaluate filVemg)
2. 501t Nomp from best to worst according 10 f{Nemp)
3. Classify into Positive, Negative or Neutral felds
4. if Stopping criteria are satisfied themn
print Best solution X, +— N (1)
5. else
i—1I
6. end if
7. Select a random N (1) from each field
& ifrand(0, 1) < P, then
Set new posifion as selected electromagnet from positive

Jield
9 else
Set new pasition by Equation (3)
Gotoll
10 end if
HHi—i+1]
12 ifi < Elecfromagnets then
Goto 8.
13. else
if rand(0, 1} < Rya. then
Change from N, with a randomly generated
Nea(0)
else
Go to 16.
end if
14 end if

15. Evaluate f{Noum(0)
16 i /1N omg(0)) = [{Nongend)) then

Insert Nomp(0) into Newgp
Discard worst N, (end)
Go to 5.

17 else
Discard (Nuw(0)
Go to 5.

18 end if

PSEUDOCODE 1
Electromagnetic Field Optimization (EFO)

Source. Own creation.

EFO Search Process: Optimization process in EFO (see Pseudocode 1) starts generating a random
population Nem,. The fitness function allows to evaluate the population, which is ordered into the three
possible electromagnetic fields. Best particles go to the positive field @) where this portion is defined by (1),

0.05 < I‘}wm =0.10 (1)

the worst ones to the negative (). This portion of population is given by (2),

0.40 < Np;ppg < 0.50 2)

The remaining population goes to the neutral field. Then positive and negative random forces appear i.c.,
attraction or repulsion. A neutral electromagnetic particle is randomly generated to replace the worst particle
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of News, which is eliminated at each iteration. This particle interacts with the forces and depending on the
selected electromagnet polarity; it can be either attracted (to good solution, positive field) or repulsed (from
bad solution, negative field). New position of the generated electromagnet is determined by Equation (3),

Nomp(new, i) = Ny, (new, k)
g {(q;r}[ﬂfemp l:PU.S'. ”
— Nomyp (new, k)] }
& {"'"[Nemp (neg,i) — Nopgp(neu, K} 3)

where Newmew. is the new electromagnet position for design variable i, & is the neutral field index for
an electromagnet randomly generated, pos and neg, the positive and negative field indexes, respectively.
Likewise, r is a random value between [0,1] and, ¢ represents a ratio of the attraction and repulsion forces
(given by the golden ratio 1.6180), due to the repulsion force is weaker than attraction in about 5.0 and
10.0%. Finally, some important EFO parameters are A, the probability of selecting electromagnets of the
generated N, of the positive field without changing them. Otherwise, .. is the possibility of changing
one electromagnet of the generated ¥omy by a randomly generated electromagnet. EFO randomness plays an
importantrole in the exploration and exploitation of searching space, promote the diversity and avoids falling
in local minima.

TABLE 1
EFO Performance test results (five best parameters combination for Rosenbrock function)
3 1! = = E— )r(x*z} i t {S%
d & & z F (09 (10-2)

pto puteo pto

_ 1.27+ 5434+  B.86+
040 040 010 040 100 163 263.0 6.13

- 310£ 4644+  438%
030 010 005 040 100 o T TS0

i = 497+ 346+ 301+
040 030 005 040 30 5 %6 1138 113

i _ < 6.50+ 21B6+  3.00+
020 010 005 050 150 5 68 5203 0.73

a c 044+ 2020+ 373+
010 020 010 050 100 790 00.60 155

Source. Own creation.

TABLE 2
Control parameters for EFO
Possible
Method Parameter values 5:5:;:;'1

AMin Max
) - 300 Dim 100
Prieta 0.05 0.10 0.10
EFO Neia1a 0.40 0.50 0.40
|- 0.10 040 0.40
Ry ote 0.10 040 0.40

Source. Own creation.
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In Table 2, pim represents the design variables number of the problem. If this number is less than 50, the
Noms to choose must be 50, on the contrary ¥om, must be equal to the design variables number.

2.2. Heat Transfer Search (HTS)

It is a metaheuristic optimization algorithm proposed by Patel and Savsani in 2015 [22]. HTS is inspired
by the fundamental thermodynamics laws, where the searching agents emulate systems interacting with
other systems, and their surrounding environment exchanging energy. HTS aims at reaching the thermal
equilibrium, and interactions of the systems are made of the three different heat transfer mechanisms:
conduction, convection, and radiation. HTS is based on the following statement: “any system tries to reach
the equilibrium with itself and its surrounding’.

Require: Objective fimction fix) and Xen < X: = X,

Ser ‘\'ﬂlr.\i! Cdr:mr,n C"'zr.xl.m Ra:":rm'

Ensure: Best solution o X.

1. Initialize N,y and Evaluate filNu.)

. Generate randomly R

L F0.0000 =R = 0.3333 then

if freration < (G Celuosee) then

Select a solution randomly and modify by
Egquation (3)

Lay b

else
Select a solution randomly and modify by
Egquation (6)
end if
Goto?7.
4. else
{0.3333 = R=0.6607 then
if fteration < (G Rl then
Selact a solution randomily and
modify by Equation (10)
else
Select a solution randomly and
modify by Equation (11)
end if
Goto 7.
else
Select the best solution
Calculare COS by Eguarion (8)
Modify solutions according fo best solution
by
Equation (T)
Goto7.
end if
5. end if
6. if finew solution) = fibest solution) then

best solution «— new solution
alse
best solution +— bast solution
8. end if
9 Replace worst solution with current solution
10. Modify duplicare solutions
11 if Stopping criteria are satisfied then
print Best solution x, < N,.(iteration)
12 else
Goto 3.
13 endif

PSEUDOCODE 2
Heat Transfer Search (HTS)

Source. Own creation.

HTS Search Process: Its process begins (see Pseudocode 2) generating a random population (¥ma) which is
evaluated by a fitness function. If an improvement exists, the population is updated (until Gnax). This updated
can be done through three steps such as conduction, radiation, and convection (sequence steps are empirically
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serialized). Each one of these steps has the same probability and, to ensure an exploration and exploitation
balance, the variable & is used. & is a random number with a uniform distribution between [0,1]; each step
is linked with & as shown in Equation (4),

for conduction 0.00 =R =033
forradiation 033 <R = 0.67
for convection 0.67 <R =< 100 (4)

once R is generated randolmly; depending on its value, each step works as follows:
2.2.1. Conduction step

The Equations (5) and (6) for this step are inspired by the Fourier law. If iteration < (€ ex/Cdfacor),

Nmoi(new, z) = Npmgi(0ld, Z) — RE*Npqi(old, Z)

J U f(Nmot (7)) > f(Npmor ()

forz= [;.; if fF(Nmot(k)) > f(Nmai(7)) (5)

where j=1,2,3,...,n, since n is the maximum number of molecules and k is a randomly select solution from
Nt The typical value for ¢drue- is 2. By the way, if iteration > (6ner/Cagaceor),

Npoi(new, z) = N, (0ld,Z) — r;N,,;(0ld,Z)

(J if F(Nmar(D) > f(Nomar (K))
forz= {:c if F(Nmar(k)) > F(Nmor ()

(6)
where 7 is a random number uniformly distributed in [0,1].
2.2.2. Convection step
The Equations (7) and (8) are inspired by Newton law,
Ny (mew, j) = N (old, j) + COS5 (7)

COS = R{Npqi(s) — TCF [Nynoy (ms)1} (8)

where index # represents the surrondings temperature and ## the mean system temperature, and cos is
the convection stride. TcF is the temperature change factor given by (9),
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_ JI® — )| if iteration < (Gmax/CVfacror)
TCF = {[(1 + )] if iteration > (Gpax/CVfactor) ©)

Extensive experimental trials shown that v has a typical value of 10.
2.2.3. Radiation step

Inspired by Stefan-Boltzmann law, it is described by Equations (10) and (11). After many trials, typical value

of Rdamar is 2. Otherwise, if iteration < (Gmaxf Rdfactor)

Nm,,;(new,j] = ng:(ﬂm,f}
—ZR[N 5y (0ld, k) — Ny (0ld, j)]

_(FLif FNmot()) > F(Nmar (K))
e [—1 if F(Nma1(k)) > F (Wit (1))

(10)
now, 1f iteration > (Gmax/Rdractor),
Nmﬂl(new'j] = Nmﬂ;(ﬂld,j)
—zI;[Nmor(0ld. k) — Ny (0ld. )]
P—— {+1 if f(Nmor(D) > f(Nmor (k)
-1 l:f f[ﬁmni(k}} }f{ﬁmntﬁ}) (11)

Equations (4) and (11) permit to calculate molecules new position to HTS algorithm for each step.

HTS Performance test results (five best pZéfiieis combination for Rosenbrock function)
s .z 1 M
o < & z (a2
pt+ao pto preo
M Iy ozo s SUE R LR
B o 20 s A fHe S0k
Mo oas P pox e Sok
20 G0 20 A5 el b Lok
20 30 a0 A S OeE Lk

Source. Own creation.
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TABLE 4
Control parameters for HTS
Possible
Meihod Parameter values S:;i:f:

Min Max
Noar 100 2500 50.0
Cdracror 1.00 2.00 200
REER Clracrer 100 100 10.0
Rdfgeror 100 2.00 2.00

Source. Own creation.

In Table 1 and Table 3, i represents the required iterations to converge. Similarly, those tables show the
results from performance tests on Rosenbrock function to determine the best combination of parameters to
ensure the convergence of the algorithms. x* represents the optimal value from Rosenbrock function, in this
case x* = [1.00,1.00,1.00, ... ,1.00], From these tests, the configuration parameters were selected.

2.3. Rectangular Micro-Channel Heat Sink Model

The used model for a Rectangular Micro-Channel Heat Sink was studied by Cruz et al. [19]. The Equation
(12) describes the total entropy generation rate -z in the RMCHS model,
: Q3 Gg
Sgen = TT R.q + T—JP
ali ] (12)
Where ¢.rw1 is the heat power dissipated by the electronic device, #.,ix w1 is the equivalent thermal resistance,
. and 7 are the surrounding and interface temperatures, respectively, e is the volume flow rate, and

ap[pa] is the total pressure drop. Geometrical characteristics, material and fluid type are the design variables.
The geometrical ones are,

W,

@, = T
‘ (13)

W,

F=w
P (14)

where w.m represents the channel width, #.m1 the channel height, and w1 the wall width.
2.4. Inverse Heat Transfer Problem

This methodology has four different techniques to solve inverse problems. Levenberg-Marquardt (LM)
[20], is the main method used for solving IP parameters estimation in the Technique I, according to
Ozisik et al. [6]. The current inverse problem can be solved via the Technique I, which is composed of five
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phases depicted in Figure 1. Once the direct and inverse problem statements are mathematically defined, an
efficient optimization method is proposed to minimize the Ordinary Least Squares Norm (OLSN) using the
measurements profile and the process model. The procedure iterates to converge until the stopping criteria
are fulfilled. The phases sequence concludes with a computational algorithm, which wraps the previous
phases to obtain the complete and particular IP solution.

[kt Ievarse
Probivm Prabless

lierative

Prowcedure

Compaitational Srepping
Alporithin Crderin

FIGURE 1

Inverse Heat Transfer Problem methodology scheme
Source. Own creation.

The direct problem (DP) requires to minimize the entropy generation of a RMCHS. The other variables are
assumed as known with an adequate precision degree. The DP uses as design variables a set of parameters related
to the device geometry and, it is mathematically expressed by Equation (15),

min min Q3 P
(6, }{Sge»} (6, ]{T TFE‘ ) Rog(fp) + T(’ ﬂPiﬁaJ]
W,
g, = i -1=0
subject to w
— —_': a

(15)

where 6, =@ and T means the transposed vector.

The inverse problem (IP) reguires to estimate the parameters of a RMCHS, which produce the minimal
entropy generation. The other variables are assumed as known with an adequate precision degree. Additional
data are 7. (given by an external sensor), as a function of ¢.. For all set of parameters linked to the RMCHS
geometry, the IP formulation based on the OLSN is shown in Equation (16),

?3”)1{5(111} = ﬂﬁ {Z[T /() = T(P.Ga@)]

W
g=7—1=0
: o
subject to W,
o= A =0
P (16)
where & is (.6
The fundamental element of the iterative procedure to get a reliable solution, through the recurrent

minimization of the OLSN is formally expressed by Equation (17),
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M

S(P) = Y [Ti(6e() ~Ti(P.Ge ()]

= (17)
where # represents the squared errors sum, and 7(6:®) gives the measured temperature in the interface
between the electronic device and the heat sink. . is recurrently measured by a sensor for different values of
6. Likewise, p is the unknown parameters vector, which is defined as »= @ 2.p...20" e is the estimated
temperature by using the RMCHS model that is updated according to current parameters at each iteration
i. N represents the number of unknown parameters, and u is the number of measurements. The condition,
M = N, guarantees an adequate estimation. In the experiments, this condition is valid because of the
maximum number of parameters is set to two (v =2), and the number of measurements is one hundred
= 100). The minimization is achieved by means of the evaluation of two recent optimization algorithms:
the Electromagnetic Field Optimization (EFO) and the Heat Transfer Search (HTS), which substitute the
traditional LM method.

The first criterion (Equation (18)) is the saturation condition (also known as stagnation state). The second
one (Equation (19)), shows the criterion based on the statistical treatment of solution. # and ¢ are the mean
and the standard deviation of the solutions from the objective function. The tolerance value s must be defined
by the user. In our experiments, this value was defined as 1.0, arbitrarily.

Mgy < Mgy hftpiﬂ} =f{Pi} (18)

iy —

[F(P) — | < 6o (19)

The serial and the parallel strategies are proposed to look for reliable results in heat sink parameters
estimation. For the former (Serial Strategy), the tests were performed (its sequence depends on the model
variable influence, starting with the most sensitive). The test estimates a couple of geometric characteristics
parameters («.5). For the latter, the Parallel Strategy, also known as multiparametric, the geometric parameters
(@) are simultaneously estimated. In the experiments, the design variables are: the channel aspect ratio
@, width ratio of channel to pitch s. Additionally, some constraints are included to ensure algorithmic
convergence. Therefore, main searching space is detailed in Equation (20).

1.0(107?) < a, < 10(107?)
10=f <50
0.1(1073)[m3/s] < G4 < 10(10~2)[m?3/s] (20)

Reference values to the thermophysical and geometric variables are shown in Table 5. The number
of chosen repetitions (rep) is 50, with a maximum number of iterations () predefined at 100000. For
evaluation purposes, synthetic data were contaminated with additive white gaussian noise (AWGN) at ten
different levels of signal-to-noise ratio, 10 dB < SNR < 100 dB.
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TABLE 5
Reference and average values for thermophysical properties to aluminum and air
Parameter Reference value
= 361(107)
B 2074
S pen 379(107%)
Gy 5.45(107%)

Source. Own creation.

3. EXPERIMENTAL RESULTS

A desktop iMac, Processor Intel CoreTM i5 @ 2.7-3.2 GHz, 8 GB RAM @ 1600 MHz, 64 bit with macOS
Sierra was used for the experimental procedures. Table 2 and Table 3 presents the representative control
parameters values used in the experiment. These data show the typical value and warranted range to obtain
a fast convergence. Selected values experimentally determined from the performance output from a testing

study using ten different standard benchmark functions (See Table 1, Table 3 and, Table 6).

TABLE 6
Standard benchmark functions and tested dimensions

Function Dimensions
Ackley 2.5 10
Bird
Bukin #6
Carrom Table
Chichinadze
Goldstein-Price
Helical Valley
Plateau
Rosenbrock
Test Tube Holder

[ 3]
Fagd b
o
[—] =]

e Rl ] bl TN FCT) ! PR )

Source. Own creation.

The results on the Rosenbrock function (21) are shown as examples of the algorithms performances.

F@ =) 1006 ~ %) + (5~ 1] o

e Searching domain: x e[-500500 for i=1,23,...n.
o Global optimum: ) =000 for x =[1.00,1.00,1.00,...1.00] when i =1,2,3,..,n
e Dimensions: n.
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1500
O
l'!!-ﬂl] =

-
|‘11II" =
T 1DD0

504

FIGURE 2
Three-dimensional representation of Rosenbrock function
Source. Own creation.

3.1. Performance test

The convergence of the algorithms was tested with the standard benchmark functions. Figure 3 and Figure
4 show the convergence of EFO and HT', respectively.

E1n ¥
g L — .
Ya o T4 . g e s i
lterntions
FIGURE 3
EFO algorithm convergence
Source. Own creation.
LEi -
:E i
'I--I = s Hi) w0 0
lerntions
FIGURE 4

HTS algorithm convergence
Source. Own creation.
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3.2. Total entropy generation rate estimation

The estimation of the total entropy generation rate (s.. that was obtained compiling the individual
parameters estimations. Therefore, Figure 5 shows that estimation to EFO and HTS algorithms for 50 dB of
SNR. Before 0.4 of s., the estimation error was fewer than 1.00%, it was a reiterative result for all the SNR
levels. The cause of that result is due to the RMCHS model depends on conduction and convection heat
transfer mechanisms. The convection mode is directly related to the c. value, when this value is near to zero,
the conduction mode takes over the process and the heat transfer is almost constant because of the material
body heat sink nature. Conduction mode is independent of the work substance quantity flowing through the
heat sink microchannels. In this part, the estimation process can be achieved without clear complications.
But the estimation in that part is not relevant because the optimal points are in another zone. Once the ¢,
value increases both heat transfer modes are present and the high non-linearity is more remarkable. Thus,
the estimation process shows differences regard to the reference values.

Mo manlnoed

M e e e e g

—rre—s T —

FIGURE 5
Estimation of ##### (Normalized) with reference valueto 50 dB of SNR

Source. Own creation.

Besides, the process was observed stable to SNR greater than 30 dB. However, estimations from EFO
algorithm had relative errors of at least 112%, with quantities of noise between 10 and 20 dB, this is mainly
due to high noise levels.

Estimated relative errors ) were inferior to 5.00% when SNR is equals 50 dB. Relative errors was
calculated by (22),

F — 1
S I'r'ﬁhi:'l*-"'gt?'!;=~|:-l'e'::'~:'f;|E V f’[ilr’“g.‘.?-"ﬂ'-'f!'-'fhI

o ' »* 100
T V ﬂ.ﬂwg heoretical

(22)
3.3. Comparative serial and parallel strategies

For inverse problems, the multi-parametric optimization is the common strategy when it is required to
estimate a high quantity of parameters. Thus, the parameters estimation is made in simultaneous (or parallel),
decreasing the processing time, and affecting some other parameters. However, the precision is one of the
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most important characteristics to be considered, i.e., it is a decisive variable between the serial strategy
(above analyzed) and the multi-parametric (parallel strategy). Table 7 shows a comparison between serial
and parallel strategies for each parameter. Both, EFO and HTS working in serial strategy reached estimations
with relative errors smaller than 5.50% (5.47% with HTS for #) for the majority of parameters. For three
over eight parameters (.. f. ad p,), the parallel strategy with EFO, produces errors between 5.50% and 11.5%.
Contrarily, HTS with the same parallel strategy gives relative errors in the interval of 1.00% and 28.0%. The
smallest errors were obtained for #r, v, and ¢ independently of the chosen strategy or algorithm. Statistical
analysis exhibits that standard deviations are bigger in the parallel than in the serial strategy. In other words,
the reliability of a solution increases by using the serial strategy.

TABLE 7
Relative errors (#1%) for serial and parallel strategies for the estimation of ##, # at 50 dB of SNR
Strategy
Serial Parallel
EFO HTS EFO HTS
o, 4.58 480 5.66 279
B 341 397 8.65 214

Source. Own creation.
3.4. Comparative with other Non-traditional Algorithms

For comparative purposes, similar reference patterns are used to evaluate selected methods with well-known
nontraditional optimization algorithms (i.c., Unified Particle Swarm Optimization (UPSO), Simulated
Annealing (SA) and Spiral Optimization (SO)). This comparison is fundamental to detect particular features
of each algorithm. The experimental analysis showed that EFO gave the best results, HTS followed it for
each 6. value. Figure 6 show a comparison of relative errors of the entropy generation rate estimation at 50
dB. Therefore, EFO and HTS had best relative errors, their processing times are lower than others.

3.5. Comparative with the Traditional Algorithm

The Figure 7 presents a comparative analysis between proposed and the traditional method, which was used
to estimate the unknown parameters. Results obtained from Levenberg-Marquardt method were taken as a
reference to evaluate EFO and HTS results.
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Relative errors comparative with non-traditional algorithms
against reference value of ## ### for each ## value at 50 dB of SNR

Source. Own creation.

Experiences show that LM obtains better estimations over studied methods, but differences between them
are inferior to 3.50% (e.g., for  parameter using HTS). However, selected algorithms were at least three
times faster than LM. The estimation precision is similar for the three compared algorithms. EFO and HTS
utilized a number of iterations inferior to LM; and consequently, the number evaluations associated with
the objective function is also inferior.
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FIGURE 7
Comparison of relative errors of ##### estimation between

EFO, HTS and LM at 50 db of SNR for each parameter

Source. Own creation.

4. CONCLUSIONS

This paper presented a comparative numerical study using two modern optimization algorithms, i.e.,
Electromagnetic Field Optimization (EFO) and Heat Transfer Search (HTS), to tackle Inverse Heat
Transfer Problems (IHTPs). As an illustrative example, the parameter estimation of a rectangular
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microchannel heat sink was analyzed, and the results were compared with the traditional Levenberg-
Marquardt (LM) method. Additionally, two estimation strategies were studied: serial and parallel. Obtained
data showed competitive results against traditional methods. Both methodologies (EFO and HT'S) achieved
estimations with errors lower than 5%, and they converged at least three times faster than LM. It was
found that EFO is seven times faster than HTS. Furthermore, several differences among the two estimation
strategies were noticed, i.e., parallel strategy was almost three times faster and had greater errors (between
0.10% and 5.5%) than the serial one. Specifically, the parallel strategy implemented with EFO showed
smaller errors than using HTS. Moreover, the methodologies implemented in this work were compared
with commonly used optimization algorithms, such as Simulated Annealing (SA), Unified Particle Swarm
Optimization (UPSO) and Spiral Optimization (SO). This comparative study gave us negligible differences
between their relative errors, but EFO and HTS spent at least half of time than the required by SA, UPSO
and SO.
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