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Abstract: This paper presents a2 numerical assessment on the performance of two
structural control strategies based on magnetorheological (MR) dampers. At first, a
control strategy based on artificial neural networks was employed on a simple structure
to control vibration. This controller combines a predictive model function to control
forces and an inverse model of voltage calculation to manage the MR dampers. Secondly,
a control strategy based on fuzzy logic was also used. Therefore, the controller governs
the actions from a set of rules that represent the heuristics of the system to be controlled.
Results achieved from the numerical simulations indicate that the performance of these
two control strategies is promising and satisfactory, based on response reductions of up
to 83% relative to the performance of the system without control.

Keywords: Control of structures, Vibration reduction, Magnetorheological dampers,
Artificial neural networks, Fuzzy logic.

Resumen: En este trabajo se presenta una evaluacién numérica sobre el desempeno
de dos estrategias de control estructural basado en amortiguadores magnetoreoldgicos
(MR). En primer lugar, se emple6 una estrategia de control basada en redes neuronales
artificiales en una estructura simple para el control de vibraciones. Este controlador
combina una funcién de modelo predictivo para las fuerzas de control y un modelo
inverso del célculo de la tensidn para manejar los amortiguadores MR. En segundo lugar,
se utiliz6 una estrategia de control basada en l8gica difusa. De esta forma, el controlador
gobierna las acciones de un conjunto de reglas que representan la heuristica del sistema
a controlar. Los resultados de las simulaciones numéricas indican que el rendimiento de
estas dos estrategias de control es prometedor y satisfactorio, basado en la reduccién de
la respuesta de hasta un 83% en relacién con el rendimiento del sistema sin control.
Palabras clave: Control de estructuras, Reducciéon de vibraciones, Amortiguadores
magnetoreoldgicos, Redes neuronales artificiales, Légica difusa.
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1. INTRODUCTION

Magnetorheological (MR) dampers are semi-active control devices whose
operation is directly related to the rheological properties of MR fluids,
especially to that one related to the possibility of changing quickly, and
reversible form of a linear viscous free-flow state to a semi-solid when
applying a magnetic field [1- 3]. This transition is possible due to that the
magnetically polarizable micrometric particles (iron particles), that are
contained in the MR fluids, become in milliseconds, linear chains parallel
to the field, so the fluid leaves its natural state and gains resistance to flow
[2].

Based on this feature, the MR dampers are adaptable devices capable of
handling variable damping forces, which makes them versatile and ideal
tools for the control of vibrations in structural systems. In the concerning
literature, different mathematical models have been developed in order to
simulate numerically the performance of the MR dampers. According to
(4], these numerical models can be divided into two major groups, non-
parametric models and parametric models.

On the one hand, non-parametric models are based on the analysis of
the actual performance of the MR dampers.

This means that these numerical models work with a large amount of
experimental data where the behavior of the device is examined on various
operating conditions to reconstruct the approximated behavior of the
dampers under such circumstances. Non-parametric models are based on
mathematical approximations [5- 8], artificial neural network [9- 12],
neuro-fuzzy systems and genetic algorithms [13- 16], among others.

On the other hand, parametric models consist of a series of mechanical
components such as springs, dampers and masses trying to emulate
the complex behavior of MR dampers. Generally, the parameters of
these elements are determined by the experimental setting of the actual
performance of the dissipating devices. One of the first functional
parametric models for MR dampers was the Bingham model proposed in
(17, 18], which consisted of an element of Coulomb friction placed in
parallel with a viscous damper.

Subsequently, [19] proposed a modified Bingham model, positioning
it in series with a standard linear solid model.

This model showed a behavior quite accurate and similar to the results
obtained experimentally, although the behavior of the fluid when the
velocity was close to zero was not properly emulated [3]. Finally, [20]
proposed a modified Bouc-Wen model, also called phenomenological
model. This model consists of a spring positioned in parallel with a
damper installed in series to a model reproducing hysteretic systems
(Bouc-Wen model). The development of this model represented an
important step forward in the development of numerical applications
aimed at working with MR dampers, since a properly phenomenological
model reproduces the nonlinearities of the dampers and their numerical
results greatly resemble the experimental ones that can be obtained with
this type of devices.
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As mentioned above, several numerical models have been developed to
understand the behavior of MR dampers. Once the dampers are modeled,
the research has focused on the planning and development of control
techniques that can take advantage of the main characteristics of these
mechanisms. This includes the treatment of structural control systems
that use MR dampers. Therefore, research works focused on the control of
structures dealt with the management of systems through various control
algorithms based on mathematical models, fuzzy logic, genetic algorithms
and neural networks [4, 9, 21-30].

This work aims at developing two structural control projects focused
on the use of intelligent systems. The first control strategy consists of a
dual system based on a prediction model and an inverse dynamic model,
developed from artificial neural networks (ANN).

Thereafter, the second control strategy implemented is based on fuzzy
logic (FL), which uses heuristic knowledge from the system to be managed
in order to generate control actions based on a set of preset rules.

Finally, to compare the performance of the control strategies studied,
a numerical study is conducted to evaluate their performance and infer
characteristics and behaviors related to the operation and efficiency of
each controller.

2.  ARTIFICIAL NEURAL NETWORK-BASED
CONTROLLER

The first control strategy to be described is a controller based on
a predictive model and an inverse dynamic model. These models
were developed by NARX-type (nonlinear autoregressive exogenous
model) artificial neural networks (ANN) that are based on a nonlinear
autoregressive model with exogenous inputs. These networks are of
a type of recurrent network with global feedback links and whose
basic construction block is based on multilayer perception. This type
of network is commonly referred to in the literature as a dynamically
managed recurrent network because of their use as inputoutput mapping
networks [31]. By definition, the input space of a network of this class is
mapped to an output space, causing the network to temporarily respond
to an externally applied input signal. Furthermore, the application of
feedback links allows the networks to obtain representations of state,
which make them proper devices for application to nonlinear dynamic
systems with the potential to significantly reduce computational cost.

The primary objective of the ANN-based control algorithm is to
calculate the optimal control force to be applied by the energy dissipation
mechanism (MR damper) so that it reduces the movement of the
protected structure as much as possible. Nevertheless, the control project
should also determine the voltage to be applied on the controller, as the
increase or decrease in the forces produced by the damper is indirectly
controlled by the voltage applied to the device. To determine these two
fundamental parameters, i.e. the optimal force and voltage, two properly
trained NARX networks are used.
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The first network simulates a predictive model responsible for
determining the optimal control force required by the MR damper to
minimize, as efficiently as possible, the structural vibrations when external
forces act on the structure’s base. In turn, the second network works as
an inverse model; i.e. the network determines the input to the control
plant with the delayed output of the system. Thus, the second network
defines the proper voltage applied to the control device so that the latter
applies a force to the structure close to the optimal force calculated by
the first neural system. Figure 1 shows the schematics of the ANN-based
controller.
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Figure 1.
ANN-based control system.

Source: The authors.

The optimal force-prediction model used in the control project consists
of a completely interlinked NARX-type neural network containing a
layer of sensory units composed of fifteen input signals and a bias, a layer
of computational processing composed of sixteen hidden neurons and a
layer of results composed of a single output. Based on the results obtained
in [32], the delay in the network inputs was of the second order. Thus,
the selected input values (displacement, velocity and acceleration of the
floor level of the structure, and the voltage) and the output values of the
model feeding back to the system were delayed by times of one and two
units, respectively.

The inverse model for determining the voltage to be applied to the
MR damper also consists of a completely interlinked NARX network.
Similarly to the predictive model, the network is configured with a
layer of sensory units composed by fifteen input signals and a bias, a
layer of computational processing composed of sixteen hidden neurons
and a layer of results composed of a single output. The neural network
input layer of the inverse model manages the displacement, velocity and
acceleration values of the first floor of the structure, which are added to
the values of optimal control force calculated by the predictive model
and to the feedback of the recurrent network itself with the output value

(voltage).
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The activation functions used by the inverse model were exactly
the same as those used by the predictive model; i.e. fifteen hyperbolic
tangent sigmoid functions were applied to the input-processor step,
and one linear function was applied to the processor-output path. The
Levenberg-Marquardt algorithm [33,34] was the training algorithm used
to adjust the weights of synaptic connections between neurons in the
proposed models. A schematic of the neural networks applied to the force
prediction model and the inverse model for the determination of the
voltage is presented in Figure 2.

Details of the definition, setup, training and validation of the NARX
networks used for both the prediction model and the inverse model can

be found in [30, 35].

Figure 2.
NARX networks applied to controller: a) force prediction

model and b) inverse model of voltage determination.
Source: The authors.

3. FUZZY LOGIC-BASED CONTROLLER

The second control strategy analyzed in this study is based on fuzzy logic.
This controller is based on if-then rules that correlate the plant inputs
of the system with the desired outputs. In [36, 37], it was described
a fuzzy logic (FL) control process consisting of three fundamental
steps: fuzzification, decision-making and defuzzification. In the first
step, fuzzification, the controller converts the system inputs into fuzzy
linguistic values with the use of pertinence functions; i.e., the numerical
input values are converted into linguistic values. Once the system is
fuzzified, the controller makes decisions based on programmed control
rules while always considering the information in the system to then
determine the optimal output linguistic value. Finally, the defuzzification
consists of converting the optimal linguistic output value into a numerical
value corresponding to the command signal that will act directly on the
MR dampers. Figure 3 presents the schematics of the control project
based on fuzzy logic.
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Figure 3.

Control system based on fuzzy logic.

Source: The authors.

The controller described in this section is mostly based on the studies
developed in [4,24]. Based on these studies, the displacement and velocity
of the first floor of the structure were used as input variables for the
controller, and the output variable was the voltage applied to the MR
dampers.

Fuzzification of the controller input values starts by applying two linear
functions, one for the displacement and another for the velocity, which
are used to normalize the responses by the structure in a universe of
pertinence functions with values between -1 and 1. Eqgs. (1) and (2) gives
expressions for the two linear functions used herein:

nd = kdx
[1]

n. — kK.%
5 1 [ 2 ]
Where #4 and #;4 are, respectively, the input values normalized in the
universe of displacement and velocity pertinence functions, and #; and #
are scale factors of the displacement and velocity, respectively. Based on
the analysis of certain parameters, [24] proposed Egs. (3) and (4) for the

scale factors:
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Where *me: and #n.. represent, respectively, the maximum displacement
and velocity of the structure without control and when subject to
excitation. To determine the scale factors in this study, the structure
in the numerical analysis was subjected to the record of standard
acceleration from the Italian research project ReLUIS-DPC [28, 38].
This record was prepared beforehand by registering it in time with the
magnitude according to the dimensions of the structure. Thus, it was
determined that the scale factors #; = 612 and #4 = 20 would be used.

Once the linear functions used to fuzzify the numerical inputs were
determined, the pertinence functions for the input and output of the
controller were defined. These input functions consist of seven identical
triangles that overlap one another in the center of the base and are
defined in the universe [-1, 1]. In turn, the pertinence functions of
the controller output (voltage) consisted of four equal triangles that
also overlap one another at the center of the base and are defined in
the universe of pertinence functions [0, 1]. Note that the definition of
pertinence functions of the system and its universes were created in [24],
and this set of rules were adapted to the heuristics data of the system
under study here. Figure 4 shows schematics of the input and output
pertinence functions of the designed controller, where the fuzzy linguistic
designations NL, NM, NS, ZO, PS, PM and PL stand for negative large,
negative medium, negative small, zero, positive small, positive medium
and positive large degrees of membership, respectively.

o B o -1
=B \ b=
o B o B
3 \ &2
g E \ &5
=g \ S E
-1 075 050 025 0 025 050 075 1 0
Displacement or Velocity Voltage
a) b)

Figure 4

Pertinence functions of the fuzzy controller: a) pertinence functions
of controller inputs and b) pertinence functions of controller outputs.

Source: The authors.

The decision-making step is executed based on an inference engine that
is linked to a database and works according to the pertinence degree of the
controller inputs. [24] developed a system of inference rules that allow
for the calculation of the necessary voltage so that the control devices
efhiciently dissipate the energy that enters the structure. This system is
based on the following basic principle: if the structure is out of its neutral
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position and its tendency of movement is to shift farther from its neutral
position, then the applied voltage should increase to improve its damping
capacity. However, if the structure is out of its neutral position and its
tendency of movement is to approach its neutral position, then little or
no voltage is applied. Table 1 presents this inference system.

Table 1.
Inference system.

EL.

DIS.

NL NM NS ZO PS PM PL

NL
NM
NS
Z0
Ps
PM
Fl.

PL PL PL PM 20 20 2Z0
L. FL PL. PS5 Z0 FO F5
PL. PL PL 70 70 PSS PM
PL. PM PSS JO PSS PM PL
PM PS5 Z0 Z0 PL PL PL
PSs Z0 70 P5 PL PL PL
Z0 Z0 20 PM PL PL PL

Source: The authors.

Pertinence degree of the controller output is determined using the least
squares method, which consists of selecting the output pertinence degree
equal to the lowest input pertinence degree. Finally, the defuzzification
strategy starts by using the centroid method, which allows for the
determination of a voltage from the overlapping areas of the output
pertinence functions. The voltage obtained using the centroid method is
found in the universe [0, 1], and it is therefore necessary to use a scale
factor that maps the output values of the fuzzy universe [0, 1] to the real
universe [0, 2.5]. Eq. (5) gives an expression for the scale factor:

5 1
V=2.5(— s——)

Where # is the voltage to be applied to the MR dampers, and s is
the numerical value of the centroid method output. The defuzzification
process of the controller was designed such that if the voltage V exceeds
the maximum voltage allowed by the analysis (2.5 volts), the maximum
voltage is automatically substituted for the value determined using Eq.

(5)-
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4. NUMERICAL MODEL, RESULTS AND
DISCUSSION

4.1 Numerical model

Figure 5 shows a schematic view of the structure used in the numerical
model. Accordingly, the structure consists of a two-floor building of
frame type; each floor is 2m tall.

In a plain view, the building is a rectangle measuring 3m in the Y
direction and 4m in the X direction. Each floor has three degrees of
freedom, i.e. horizontal displacements on axis X and Y and rotation
around axis Z. The structural properties of the frame are shown in Figure
6, where the mass matrix has units of kg and kg:m?, the stiffness matrix

has units of N/m and N-m and the damping matrix has units of N-s/m
and N-s-m.

[-Upz
u
Ug; 2m 7 i ¥
u
z
\ E £ E
N \ X
.
0 = y ©
4m
Figure 5.
Structure used in the numerical model.
Source: The authors.
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Figure 6.

Structural properties of the frame.
Source: The authors.

Table 2 shows the geometry and dimensions of the structural elements
used in the building shown in Figure 5.

Two types of structures elements were employed, specifically
commercial steel profiles type HE 140B for the pillars and IPE 180 for
the beams. The slabs of the floors are composed of a concrete-coated steel
plate [28, 38], this geometry is similar to the one used in [25].

Furthermore, the model includes a pair of MR RD-1005-3 [39]
dampers in the base of the building, used to control the vibration of
the structural system. The characteristic behavior of these devices was

modeled using the phenomenological model proposed in [20]. Table 3



Luis Lara, et al. Structural control strategies based on magnetorheological dampers managed using artificial neural networks and fuzzy logi...

shows the primary properties of RD-1005-3 MR dampers, according to
the technical specifications published by the manufacturer [39].

Table 2.

Geometry and dimensions of the structural components.

Parameters Col.  Beams Steel profile
h(mm) 140 180

b(mm) 140 91 T :-' |
a(mm) 7 53 .
e(mm) 12 8
r(mm) 12 9 h 5
A(em?) 43 239
Ix (cm*) 1509 1317 &
Ly(em® 550 101 L |1
Jp (em*) 20 48 | g i
E(MPa) 210 210
Source: The authors.
Table 3
Properties of the RD-1005-3 MR damper [39].

Damper properties Values
Extended length (mm) 208
Compressed length (mm) 155
Body diameter (mm) 414
Maximum operating temperature (°C) 71
Maximum extension force (IN) 4448
Maximum mnput current (A) Continuons = 1

Intermuttent = 2
Input voltage (V) 12 DC
Electrical resistance at room temperature (Ohms) 3
Response time (ms) =15

Source: The authors.

In order to apply an acceleration to the model, an acceleration record
taken from [38], was applied to the base of the structure on the Y
direction. This acceleration record was previously prepared by staggering
it in time and magnitude, in such a way that is compatible with the
dimensions of the structure, thereby resulting in a 40s duration with an

absolute maximum amplitude of 1.47 m/ s2, as shown in Figure 7.
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20 30 40 50
Time (s)
Figure 7.
Registration of accelerogram.

Source: The authors.
4.2 Response parameter
Figures 8, 9 and 10 shows the displacement, velocity and acceleration
records of the structure (time domain) with time for the cases without
control (Not controlled), case of fuzzy logic control (Fuzzy), and the case
under semiactive control based on the artificial neural networks (NARX),
respectively.

a) Displacement of first floor

—— Mot controlled
Fuzzy

—— MARX

20 30 40 50 60 70
Time (s)

b) Displacement of second floor

Mot controlled
Fuzzy
—— NARX

20 30 40 50 60 70
Time (s)

Figure 8.

Displacements in the structure in the case without control and in the cases
with controls based on ANN and Fuzzy logic: a) 1st floor, and b) 2nd floor.

Source: The authors.

Table 4 shows a summary of the results obtained after analyzing Figure
8a and 8b, for the two-floor structure.
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Table 4.

Displacements in the structure.

Absolute  wvalues BEMS values (cm)

. {(cm)

SO " Ind Ist Ind
floor floor floor floor

Not

et 0.49 1.10 0.14 0.32

Fuzzy 0.22 0.50 0.02 0.06

NARX 0.22 0.50 0.02 0.05

Source: The authors.

Accordingly, the maximum displacements in both floors occur when
the structure is without any type of control. In absolute values, the
displacements in the first and second floor were 0.49 cm and 1.1 c¢m,
respectively. In order to provide a more general picture of the dynamic
response, the corresponding RMS (Root Mean Square) values were also
determined. Hence, the RMS displacement for the first floor was 0.14 cm
and for the second one was 0.32 cm. It is important to notice that RMS
values characterize the central tendency of the response values with time
for each model characteristic.

In Table 4, the absolute values of the displacements were basically the
same for the Fuzzy and NARX controlled responses, but a reduction of
55% is observed when comparing these displacements with the response
without control for the two floors. A further reduction is observed for
the RMS displacement values, in which for the first floor achieved 86%
and 84 % for the second. Therefore, it is noticed that the reduction in the
responses of the Fuzzy controlled structure undergoing seismic motion
are very similar to the responses associated with the NARX managing
control.
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a) Velocity of first floor

Velocity (m/s)

-0.08

-0.16

Mot controlled
Fuzzy

—— MNARX

10 20 30 40 50 60 70
Time (s)

b:l Velocity of second floor

Velocity (m/s)
=

-0.18

-0.36

Mot controlled

Fuzzy

—— NARX

10 20 30 40 50 60 70
Time (s)

Figure 9

Velocities in the structure in the case without control and in the cases with
controls based on ANN and Fuzzy logic: a) 1st floor, and b) 2nd floor.

Source: The authors.

Velocity is the second response parameter investigated herein. Figure
9a and 9b show the velocity records for first and second floors.
Correspondingly, Table 5 shows absolute and RMS values for the
velocities.

Table S.
Velocities in the structure.
Absolute  wvalues EMS values
_ {cm/s) (cm/s)

AGRCUNE. Sy nd st Ind

floor floor floor floor
Not
controlled 14 66 33.57 435 0 89
Fuzzy 622 13.80 0.72 1.65
NARX 6.39 1281 0.69 1.57

Source: The authors.

The absolute maximum velocities without control were 14.66 cm/
s on the first floor and 33.57 cm/s on the second floor, and the
corresponding RMS velocities of these floors were 4.35 cm/s and 9.89
cm/s, respectively. After controlling the structural responses, significant
reductions in velocity values are also observed. For Fuzzy control, the
velocity in absolute values for the first and second floors reduces 57%
and 59%, respectively. A slightly difference is observed for the NARX
controlled response, the corresponding absolute displacement values are
reduced 56% for the first floor and 62% for the second. Comparing
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Acceleration (m/s?)

Acceleration (m/s?)

I3
ih

the RMS values for the velocity, a reduction of 83% is observed for the
first and second floor for the Fuzzy controlled system, and for NARX
controlled the reduction for the speed in both floors 84%. Basically, both
control strategies provide similar structural responses.

Finally, the third response parameter investigated is the acceleration.
In this regard, Figures 10a and 10b show the acceleration records for
the first and second floors, and Table 6 summarizes the absolute and
RMS values for the accelerations. As a result, the absolute maximum

acceleration without control was 4.85 m/s” on the first floor and 10.17
m/s> on the second floor. The RMS acceleration without control was

1.34 m/s> and 3.04 m/s® on the first and second floors, respectively. As
expected, a significant reduction in the acceleration values is achieved
after applying the control strategies. For Fuzzy control, the acceleration
in absolute values for the first and second floor was reduced 56% and
60% respectively. Once again, the differences in the acceleration values
are very small when comparing both control strategies. For the NARX
controlled system, the reductions in the accelerations were 53% for the
first, and 58% for the second floor. Regarding the RMS acceleration
values, a reduction of 83% is achieved for the first and second floors for
the Fuzzy controlled system, and for NARX controlled the reduction for
the acceleration in both floors is 83%. Similarly to the velocity responses,
both control strategies provide a similar effect on the acceleration diagram
for the two floors.

a) Acceleration of first floor

Not controlled
Fuzzy
—— MNARX

10 20 30 40 50 60 70
Time (s)

b) Acceleration of second floor

Not controlled

Fuzzy
—— NARX

10 20 30 40 50 60 70
Time (s)

Figure 10.

Accelerations in the structure without control and with controls

based on ANN and Fuzzy logic:a) 1st floor, and b) 2nd floor.

Source: The authors.
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Table 6.
Accelerations in the structure.
Absolute  wvalues RMS values
: (cm/s?) (cm/s?)

BIIRC! e Ind 1st Ind

floor Floor floor Floor
S 485 59 S 13486 30421
controlled g
Fuzzy 23056 42408 2346 50.59
NARX 21451 41022 2360 4759

Source: The authors.

As mentioned above, it is worth noticing that the damped responses
for the Fuzzy controlled structure under seismic motion are very similar
to the responses associated with the NARX managing control strategy.

4.3 Performance indexes

For a better evaluation of the results obtained herein from the numerical
model, four performance indexes are defined in Table 7. The first three
performance indexes (I, I and I3 ) are normalized measurements of
the peaks of displacements, velocities and accelerations of each floor. The
fourth index (1) is the peak displacement between the normalized floors.

Table 7.
Definitions of performance indexes.
Index Parameters Definition
X:(t): Relative displacement of each floor of
% the controlled system e (lX:' (t) |)
X max: Maximum displacement of the system s 15T
without control
X:(t): Relative velocity of each floor of the :
I -::_ontro]_led system — (lX:' (t) |)
z Xmax: Maximum velocity of the system i
without control
X;(t): Relative acceleration of each floor of the .
L. c:::mm].led system s (l-’{ :(t) |)
’ Xmae: Maximum acceleration of the system S Ve
without control
d;(t): Relative displacement between floors of
the controlled system (|*j:‘ (t) |)
Ie; max,;
: dmﬂx

d,__.- Displacement of the relative peak

fule s o

between floors of the system without control

Source: The authors.

Table 8 and Figure 11 present the values of the indexes obtained
by the control strategies in this study. The performance indexes of the
system indicate the effective performance of the controllers throughout
the system. For this case of specific loading, the equilibrium between
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the analyzed control strategies can be observed, particularly in indexes /;
and I, although the numbers produced by the neural networks control
are slightly higher than those of the controller based on fuzzy logic,
particularly on the second floor of the structure.

Table 8
Magnitudes of the performance indexes.

: ¥ I, i
g:z_“l Ist 7nd Ist Ind Ist Znd Ist Znd
SRR Floor Floor Floor Floor Floor Floor Floor Floor
ANN 04490 04545 04359 03816 04418 04032 04490 04553
FL 0.4487 04558 04245 04110 04748 04168 04487 04630

Source: The authors.
2) b) i S
%1 ----cgg 1ol usirg % 3 -I-;:‘nzmlmm fuzay
0 : . . 0 : ; .
0 01 2 03 04 035 0 0.1 02 03 04 0.5
Index value I, Index value I,
) 1 9 I [P
‘_.g_ 1 % 1 ""'Ic:;l":'tl wsing fuzzy
0 . 1 . 0
0 0.1 03 04 05 o 01 02 03 04 0.5

Index value I,

Index value I,

Figure 11.

Performance indexes associated with the control strategies: a) I;, b) I>, ¢) I3 and d) 1.

Source: The authors.

Figure 12 displays certain characteristic patterns for the voltage
variations produced by the control strategies. In the case of the controller
based on neural networks, as the excitation applied to the structure
increases, the voltage applied to the control mechanism increases until
reaching the established signal limit. The signal command produces
values ranging from 0 to 2.5 volts. The controller based on fuzzy logic
displays behavior that closely reflects the varying excitation applied to the
structure. Thus, the range of voltages remains practically constant during
the time the acceleration is varying. This voltage generally ranges between
0.4 and 1.1 volts, although voltages lower than 0.4 volts were observed
at many times in the test. In addition, the voltage applied by the fuzzy
controller on the dampers only exceeds the maximum voltage when the
excitation increases and reaches a maximum, i.e. the limit of 2.5 volts in

this study.
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Figure 12.
Voltages applied to MR dampers: a) control based on

neural networks and b) control based on fuzzy logic.
Source: The authors.

Figure 13 presents the plot of the damper forces exerted by the
controllers in the time-domain. The plot suggests the way in which the
force applied by the MR dampers in the ANN-based control strategy
constantly reaches the maximum force delivered by the energy-dissipating
devices. This behavior is not as evident in the control strategy based on
fuzzylogic: the damping force varies more; this behavior is consistent with
that of the voltage. This difference may be the primary explanation for
the slightly better performance of controllers based on neural networks
in terms of more-efficient energy dissipation and control of vibrations.

Force (N)
Force (N)

0 10 20 30 40 50 &0 70 0 10 0 30 40 50 60 70
Time () Time (s)

a) b)
Figure 13.

MR damper force in time domain for the controller based on: a) neural networks, and b) fuzzy logic.
Source: The authors.

5. CONCLUSIONS

In this study, a numerical model was developed in which the performance
of two semi-active control strategies based on MR dampers was analyzed.
The algorithms that ruling the two examined controllers are based on
artificial neural networks and fuzzy logic and were efficient, robust and
safe tools in managing the MR dampers. The different analyzed control
strategies were sufficiently competent at reducing the response of the
studied frame structure, thus confirming the potential for using such
semi-active systems to control structures.

The numerical analysis indicated that the control projects based
on intelligent systems produce similar reductions in certain response
functions, particularly with regard to displacement and velocity of the
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first floor. The ANNbased controller, however, was more efficient in
reducing the response peaks and RMS acceleration of the first floor
and the displacement, velocity and acceleration of the second floor. The
better performance of the neural network control may be explained by
its continuous production of high control forces, which produces greater
energy dissipation. The predictive and inverse models acted properly, i.c.
in a synchronized and competent manner, despite the complexities of the
problem and the solution.

Perhaps the greatest flaw in this control alternative is the excessive
processing time, which makes its execution more difhicult in real time or
increases the cost of implementing the design because it requires a great
deal of processing power to solve the problem rapidly.

The control project based on fuzzy logic as a command signal selection
tool may be the most balanced control strategy. This controller clearly
combines noticeable efficiency, fast processing and simplicity. In practice,
the control algorithm based on fuzzy sets may be easily implemented due
to the heuristics of the system to be managed. A primary disadvantage
may be the inference system’s decision-making based on the velocity and
displacement, which are derived from the integration of the acceleration,
and thus there may be noise and low frequencies that would need to be
removed using a highpass filter.
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Nomenclature
Symbol Description
ANN Artificial neural network

Control force of output in the
f) prediction model

F(t) Force applied by the MR dampers
Force calculated by the prediction

fit) model
B Fuzzy logic
NARX Nonlinear autoregressive exogenous
model

NL Negative large

NM Negative medium

NS Negative small
Mg Linear function of displacement
M Linear function of velocity
PL Positive large

PM Positive medium

Ps Positive small

Sm) Neural networks entries

Fit) Voltage to apply in the MR damper
v(n) Output voltage of the inverse model
X Displacement vector of the structure
X Velocity vector of the structure

X Acceleration vector of the structure

U(t) Ground motion
70 Zero
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