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Abstract: This paper presents a hierarchical h adaptive methodology for Finite Element
Analysis based on the hierarchical relations between parent and child elements that
come out if these elements are geometrically similar. Under this similarity condition
the terms involved in the evaluation of element stiffness matrices of parent and child
elements are related by a constant which is a function of the element sizes ratio (scaling
factor). These relations have been the basis for the development of a hierarchical
h adaptivity methodology based on element subdivision and the use of multipoint-
constraints to ensure CO continuity. The use of a hierarchical data structure significantly
reduces the amount of calculations required for the mesh refinement, the evaluation
of the global stiffness matrix, element stresses and element error estimation. The data
structure also produces a natural reordering of the global stiffness matrix that improves
the behaviour of the Cholesky factorization.

Keywords: Adaptive Modelling, Hierarchical properties, Mesh Enrichment, Mesh
Generation.

Resumen: En este articulo se presenta una metodologia h adaptativa para el Analisis
por Elementos Finitos basada en las relaciones jerdrquicas entre elementos padre e hijo
que surgen si estos elementos son geométricamente similares. Bajo esta condicién de
similitud, los términos resultantes de la evaluacién de las matrices de rigidez de elementos
padre e hijo estdn relacionados por una constante que es una funcién de la relacién de
tamafos de elemento (factor de escala). Estas relaciones han sido la base para el desarrollo
de una metodologfa jerdrquica h adaptativa basada en la subdivisién de elementos y el uso
de restricciones multipunto para asegurar la continuidad CO. El uso de una estructura
de datos jerarquica reduce significativamente la cantidad de calculos requeridos para el
refinamiento de la malla, la evaluacién de la matriz de rigidez global, las tensiones de los
elementosy la estimacion del error del elemento. La estructura de datos también produce
un reordenamiento natural de la matriz de rigidez global que mejora el comportamiento
de la factorizacién de Cholesky.

Palabras clave: Modelado Adaptativo, Propiedades jerdrquicas, Enriquecimiento de
malla, Mallado.
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1. INTRODUCTION

The context of the developments presented in this paper is that of finding
a methodology based on the use of the h-version of the Finite Element
Method (FEM) for the accurate analysis of mechanical components with
the lowest possible computational cost.

The generation of optimal meshes for FE analysis has been a particular
arca of development for many years [1- 3]. It is well known that the
cheapest FE mesh to produce a solution with a fixed quality at minimum
cost is an adapted one. As a consequence of this, h-adaptive techniques
based on the estimation of the FE discretization error are commonly used
to speed up FE analysis. The h-adaptive analysis techniques for the control
of the discretization error of FE analysis can be classified into two groups:
the mesh regeneration techniques [4, 5], based on the fuull remeshing of the
domain, and those based on element splitting, where the mesh is enriched
(or refined) at a local level. Both of them are appropriate techniques
to solve the problem although, in general terms, the first one provides
a slightly more accurate solution than the second for a given number
of degrees of freedom. However, the computational cost associated to
the first one can be higher because, in most cases, the reduction of the
error level involves the global regeneration of the mesh instead of a
local modification. The evaluation of element matrices is not usually the
bottleneck of the FE analysis, but it must be taken into account that the
full remeshing involves the evaluation of the matrices for each element of
the new mesh, whereas the use of element splitting techniques can (totally
or partially) avoid these computations. A first comparative study between
mesh envichment and mesh regeneration techniques can be found in Zhu
et al [6].

Element splitting techniques can be applied both, on structured
meshes, based on a certain hierarchical structure [7], where the
topological and geometrical relations between the elements are known
a-priori; and on non-structured meshes [8-10] with elements of general
shape by using one of the subdivision schemes described in the literature
(bisection techniques, 4-T algorithm of Rivara, etc). The use of a
structured element splitting, as in the quadtree and octree methods [8,
11] is rather efficient as it allows improving the storage of the mesh related
information. However, other splitting techniques, that could be termed
non-structured element splitting techniques, are more flexible as they can
be applied on any mesh.

One of the most important factors to be taken into account when
the element splitting techniques are used is the geometrical quality
of the elements created during the refinement process. The structured
element splitting allows for a good control of the newly created elements.
Depending on the non-structured element splitting strategy used to
refine the mesh, one can obtain more distorted elements or elements of
an increasing geometrical quality [12, 13].

Another important factor to be considered is that certain element
splitting techniques provide conforming refined meshes, whereas other
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strategies provide non-conforming meshes. In the first case [14], the
refinement strategy allows for lower control of the element shape. The
techniques that produce non-conforming meshes require additional
techniques to restore Cy continuity between contiguous elements, such as
the addition of new elements [9, 15] or the use of Multi Point Constraints
(MPCs) [16-19].

A hierarchical data structure, with parent-child relations between
existingelements and those obtained during the mesh refinement process,
can be easily defined if the mesh refinement process is based on element
splitting.

This kind of data structure has been the basis to define a new h-adaptive
methodology for efficient FE analyses. A 2D h-adaptive FE code with
hierarchical features for the resolution of the linear elasticity problem
based on this structure has been created. This code has been used as a
framework to explore the advantages of using hierarchical relations in a
FE code with h-adaptive analyses capabilities. The data structure has also
been used to create a natural reordering of the FE system of equations
that speeds up its resolution with respect to the use of other reordering
schemes. Therefore, the hierarchical h-adaptivity code allows for the use
of an analysis methodology that improves the efliciency of the main parts
of the process: mesh refinement, generation of the system of equations
and its resolution, and any postprocessing that involves volume integrals.

The remaining of the paper is as follows. Section 2 presents the
hierarchical properties between geometrically similar elements. Section
3 will describe the element splitting technique used to provide
geometrically similar elements, and then, Section 4 will present the
main characteristics of the hierarchical h-adaptive program that uses this
element splitting technique. Section 5 will show the natural reordering
scheme of the linear system of equations provided by the hierarchical
relations. The advantages of using the hierarchical relations will be
demonstrated in Section 6, devoted to the numerical examples.

2. PROBLEM DEFINITION AND FEM SOLUTION

We will consider the 2D linear elasticity problem on a bounded domain
acr. The unknown displacement field u is the solution of the boundary
value problema

V.olu)+b=0 in O
clu)n=t on Ty
u=u on [,

(2]

where Gy and G p are the Neumann and Dirichlet boundaries,
with ee-ry 1, 1y -0 b are body loads per unit volume, t are tractions
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applied on Gy (with n the normal vector to the boundary) and i are the
prescribed displacements on Gp. In the weak form the problem reads:
Find u=r such that:

WWeV alu.v)=1(v) [2]

being /" the standard test space for elasticity problems and
alu.v)= j 6(u):g(v)dQ
L]

I(v)= J'h vdQ+ [t vaQ
i Iv (3]

where s and e represent the stresses and strains.

Let u " be a finite element approximation to u that lies in a functional
space »cr associated with a mesh of isoparametric finite elements of
characteristic size h, such that

Tl el ﬁ'[_“k-"h J=1") [4]

Using a variational formulation of the problem in (1) and a finite
element approximation w' -~ where N are the shape functions matrixand

u © are the nodal displacements, the following system of linear equations

to evaluate u € is obtained
IC[-' = f [ 5 ]

where K and f are obtained after the assembly of the stiffness matrices

k © and equivalent force vectors f © of each element ¢ given by:

K, = J'B’DB|J|de

0, (6]

)

f,= | N'b|J|dQ, + J‘:\"mﬂr
-f = (7]
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where , D is the elasticity matrix that defines the stresses as s = De,
B are derivatives of the shape functions N, W1 is the element domain in
local coordinates and J is the Jacobian matrix. The following section will
show the relations between the terms used to evaluate k © of geometrically
similar elements.

3. HIERARCHICAL PROPERTIES BETWEEN
GEOMETRICALLY SIMILAR ELEMENTS

To the authors’ knowledge, there is only a reduced number of references
related to this topic. Tabarraei and Sukumar [11] demonstrated that,
for the special case of quadtree meshes, for the Poisson equation and
for the elasticity problem, the stiffness matrix of a subelement is the
same as the stiffness matrix of the parent. Suzuki and Tabata [20] also
showed the importance of reusing previous calculations studying the
structure of the finite element mass and stiffness matrices of congruent
subdomains (each of them being an image of a reference subdomain by
an affine transformation, see [20] for further details). As a result, Suzuki
and Tabata were able to express the global matrices as functions of the
submatrices in the reference subdomain. This reduced the amount of
memory requirements for the storage of the matrices and allowed for the
use of a domain decomposition solver.

If a finite element J¥; can be obtained by translation and/or scaling of
an original element 7y, see Figure 1, a hierarchical relationship related to
the element geometry arises between the terms involved in the evaluation
of the element stiffness matrices of both elements.

Scaling factor A _ri i

Figure 1.
Elements obtained by translation and/or scaling from an original element.

Therefore, the evaluation of the stiffness matrix corresponding to an
element that keeps a geometrical similarity with respect to an original
element requires no additional computations if the matrices associated
to the original element are available. These findings where previously
exposed in [21].

Proposition. Let W) be an isoparametric finite element defined by its
nodal coordinates v.-cos= , n=1,...nnpe, being nnpe’ the number of nodes
per element.

Let W, be another isoparametric finite element, geometrically similar
to Wy, such that its nodal coordinates, Pln, can be obtained using a linear
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transformation by scaling the nodal coordinates of Woby an scaling factor |
and by imposing a translation by means of a vector T=(xt, yt, zt):

Plrr = (Ilu + Y1n-Z1n } = (‘/"T'Dn + X AV, + Vi ALg, + :r}
= A Vs P P 2 T AR T
n=1....nnpe (8]

The following relations are obtained:

Relation 1: scno-miano

Relation 2: nero-imoicrn

Relation 3: p

Relation 4: wevo-nens

Relation S: s v-constant - -,

Proof of Relation 1: The Jacobian matrix associated to the
isoparametric coordinates transformation of a point in ) of local and

global coordinates (x,h,t) and (x0,y020 ) is calculated as:

_)‘

/.’i‘Jo(;’.n.r)‘ . where d is the problem dimension (2 for 2D, ...)

= & (9]

Considering the shape functions N, (xh,t) in the interpolation of
global coordinates, the first term in J o(x,h,t), and similarly any other term,

will be given by:
Oxy ~oON (En.T)
. Z 5 E Xon
5 S [10]
Consider now the following relations:
nnpe nnpe -
: = Lon,
Xy = AXgp +5%; » ZN” =1 = Z — =0
[y
n n -

The first term of the Jacobian matrix J ;(x,h,t) associated to element ¥,
can be evaluated, considering (3) and the previous relations, as
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- NHPE = RAPE =
oxy ON, K N, (ix ]
S s Xin = . AXgy + X4
&g &oc =
= H & H '
(&EoN, | [ Z6N, “Px;
—A-Z — +-Z — X, =A—
| < ] | &g &g

Similar relations would be found for all terms in J ;(x,h,t). Therefore,
the following relation is obtained

J1(S.77.7) = ATy (S.77.7) u

Proof of Relations 2 and 3: These relations are immediately derived
from Relation 1

#. Proof of Relation 4: All terms in the B(x,h,t) matrix are first partial
derivatives of shape functions with respect to global coordinates, which,
for element 7, can be evaluated as:

ENUJI
x

ey
: Eﬂ‘rﬂ m

Lliite

L.

| Ifd-ﬂ..'.?\rﬂ” i

EN,

EN,
- e
&

n |\

on

5t |
. J (12]

Considering Relation 2, the following relation is obtained for element

le

E‘M].ﬂ f._'Nn FNH FNG!‘E
ox cE o& X
5 L o [ N

& Nip [ _ 51 ONp | _Jg |ON, | _1]ONy,

IR St N S [
cy an y) aon A @y
c Ny, N, N, & Ny,
oz ot ot oz

LS - . E

[13]

All terms in matrices B(x,h,t) for W, and W, are related by 1/1

Therefore, we finally obtain



Juan Rédenas, et al. A hierarchical b adaptivity methodology based on element subdivision

1_
B, (£.7.7) =73u£~_:-n-rJ E

Proof of Relation S: Assuming that D = constant (s = De), the stiffness
matrices for elements W and W will be evaluated as:

Kk, = IB DB,|JT,|dQ;. k; = J.B DB, |J, |72,

2 [14]

Taking into account Relations 2 and 3 in the expresién corresponding
tok 1t

kl:,[]iDD J‘Jﬂ|d.-g—'[/‘.d_

L, 0

1 b |

d-2
Ky m

Consequently, for the 2D case where d = 2, k ¢ and k | are exactly
the same matrices. For the 1D case these matrices will be related by the
constant factor 1/1, and by l in the 3D case.

Elm 0

Figure 2.
Subdivision of parent triangular element into 4 child elements.

a) Parent element b) Standard subdivision  ¢) Proposed subdivision d) Dummy parent elements

Figure 3.
Subdivision of bi-linear parent element into 4 child elements.
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4. SIMILARITY RELATIONS IN REFINEMENT BY
MESH SPLITTING IN 2D

4.1. Linear triangular elements

Figure 2 shows a parent linear triangular element that has been subdivided
into 4 child elements placing new nodes at the mid-side point of each
element side.

The figure shows the scaling factor | that relates parent and child
elements. With the numbering pattern adopted for the new elements, a
geometrical similarity relation with respect to E/m 0 can be obtained even
for Elm 4, whose associated scaling factor value is | = -0.5. The scaling
factor corresponding to child elements 1,2 and 3is1 = 0.5.

4.2. Bi-linear quadrilaterals

Figure 3 shows the subdivision process of a bi-linear element into 4 new
elements. The original (parent) element is represented in Figure 3.a).

Figure 3.b) shows the standard splitting procedure. In this procedure
the new elements are obtained by using 2 straight lines that join the mid-
side points of opposite sides of the element. This technique will provide
child elements geometrically similar to the parent element only in the
case where the parent element is a parallelogram. This picture shows
that, in general, the child elements created using this technique are not
geometrically similar to the parent element.

For this linear quadrilateral elements, the element subdivision
procedure proposed in this paper and represented in Figure 3.c), consists
of joining the mid-side points of each side of the element with the
mid-side point of any of the diagonals of the quadrilateral (the longest
diagonal has been considered in the implementation). As shown in
Figure 3.c, the child elements located over the selected diagonal will
be geometrically similar to the parent element, whereas the other two
child elements created, which are not similar to the parent element,
will be parallelograms. Therefore, if any of the child elements is further
subdivided, the new elements created will always be geometrically similar
to ecither the original parent element ( Figure 3.a)) or the dummy
parallelogram parent elements represented in Figure 3.d).

Figure 4 represents a sequence of successive subdivisions of the element
represented in Figure 3.a). The same colour has always been used to
represent all the geometrically similar elements. It can be clearly observed
that, for any subdivision level, only 3 different kinds of geometrically
similar quadrilaterals will appear.

4.3. Elements over curved boundaries

Two different types of parent elements are generated during the mesh
refinement based on subdivision of elements. Type A elements are defined



Juan Rédenas, et al. A hierarchical b adaptivity methodology based on element subdivision

as parent elements whose child elements are geometrically similar which
will, therefore, inherit the element calculations. On the other side, zype
B elements are defined as parent elements with at least one child element
not geometrically similar.

The child elements created from a #ype B element will not inherit
element calculations.

ﬂ‘ .

Figure 4.

Quadrilateral: Subdivision sequence.

Figure 5
Subdivision of elements over curved boundaries. Type A and type B elements.

As represented in Figure 5, when subdividing one element, if any of
its sides lies over a curved boundary, the new nodes to be generated over
this boundary will not be located over the straight line that defines the
side of the original element. Therefore, there will not be a geometrical
similarity relation between parent and child elements. According to the
previous paragraph’s definitions, this kind of parent elements will be of
type B. Let W, be a parent element with none of its sides located over a
curved boundary. As previously explained, under these circumstances, the
element can be subdivided in such a way that the geometrical similarity
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relations between parent and child elements hold. Therefore, element W,

is of type A.
4.4. Higher order 2D elements

Let’s consider quadratic triangles and serendipity quadrilaterals with mid-
side nodes located at the midside point of the vertex nodes at each
side of the element in the global reference system. The local to global
mapping functions x(x,h) and y(x,h) of these elements and their linear
version are exactly identical. Thus, the subdivision procedure described
for linear triangles and bi-linear quadrilaterals will also provide child
elements geometrically similar to their parent elements for these elements.
If quadratic triangles or serendipity quadrilaterals are not defined by
straight line segments with mid-side nodes located over the mid-side
point of each side of the element, then, they will be #ype B elements.

4.5. Refinement level

The refinement level 1 for an element e is defined as the number of
subdivision steps required to obtain element e from its ancestor in the
original mesh. According to this definition, the refinement level for every
element in the original mesh will be r* = 0, the refinement level for
elements directly obtained from subdivision of elements with r° = 0 will
be re = 1, t = 2 for elements obtained by subdivision of elements with r°
=1, and so on.

Let W, be a Type A parent element. The scaling factor with respect to
W, (or, in the case of quadrilateral elements, with respect to the dummy
parent elements associated to Wy, see Figure 3.d) corresponding to the
elements obtained by s successive subdivisions of Wp will simply be a
function of the difference between refinement levels, s. Thus, the scaling

factor will be |1| = 0.5s.

5. A HIERARCHICAL H-ADAPTIVE CODE: DATA
STRUCTURE

A code for the resolution of the 2D linear elasticity problem, which can
be described as a Finite Element hierarchical h-adaptive program, has
been developed using Matlab® [22]. The code, which requires an initial
conforming mesh of linear triangles or quadrilaterals, uses a hierarchical
data structure to drive the h-refinement process, mainly based on the
following objects, whose description can be found in appendix A:

e Node: stores data associated to each node.

e FElement: stores data associated to each element.

e KMatrix: stores data associated to each stiffness matrix.
Geometrically similar elements will be related to a single KMatrix
object.
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The idea behind the development of this code was to create a
framework to test the benefits of the use of hierarchical relations in
h-adaptivity. Apart from the hierarchical relations between parent and
child elements described in previous sections, the program also uses the
following relations.

Neighbourhood relations.

o Element to element neighbourhood relations. The following
information is stored at each side of each element: neighbour
element and neighbour element’s side number.

o  Element - boundary relations. For sides of elements located over
the boundary of the domain the boundary identification code is
also stored.

These two relations (element-clement, elementboundary) can be
inherited by the new elements created during the mesh refinement. The
use of this information simplifies and accelerates the refinement process.

Nodal hierarchical relations.

During the splitting process of each element, new nodes are created.
The location of these new nodes can always be expressed as a function of
the location of the nodes of the parent element. To do this, the code stores
the values of the parent element shape functions evaluated at the location
of the new node. Therefore, each new node will keep information about
its parent nodes (the nodes of the parent element) and the influence of
each of these parents over the node (value of the element shape functions
calculated at the location of the new node).

This hierarchical parents-child relationship between nodes has two
main uses in the program:

o MPC’s equations. These parents-child relations can be used to
impose the multi-point constraint equations used to ensure Co
continuity between adjacent elements with different subdivision
levels.

o Data interpolation-extrapolation between different meshes. Nodal
values evaluated in one mesh can be easily interpolated to more
refined meshes or extrapolated to coarser meshes by using the
parents-child relations between nodes.

S.1. Further advantages of the bierarchical data structure

The hierarchical data structure has some further advantages:

o Stress evaluation at Gauss points. These values can be easily
evaluated by using sg = DBu, (u. displacement vector at nodes
of element ¢, D Hook’s matrix corresponding to the stress-strain
relation s = De) because the values of the B matrix evaluated at
Gauss points are available for the elements used to create each of
the KMatrix objects.
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o Determinant of the Jacobian matrix at Gauss points. The
evaluation of any result involving element integrals (equivalent
load vector corresponding to body loads, strain energy, energy
norm, error estimation in energy norm,...) requires the evaluation
of the determinant of the Jacobian matrix |J| at Gauss Points.
These values are available for the elements used to create each of
the KMatrix objects.

6. STIFFNESS MATRIX REORDERING

Matrix reordering plays an important role on the performance of the
direct solver. Reordering the columns of a matrix can often make its LU
or QR factors sparser.

Reordering the rows and columns can often make its Cholesky
factorization sparser. This allows for a reduction of the time required
to obtain the solution of the problem. Finding the optimal ordering
is usually not possible, but finding a good ordering is. Matlab® [22],
which has been used to develop our FE code, incorporates a number
of reordering algorithms, some of which involve the use of an iterative
process to obtain the reordering,

This section is intended to show how the hierarchical data structure
of the program can be used to directly obtain a reordering of the system
matrix that speeds up the Cholesky factorization process.

6.1. Reordering based on a nested domain decomposition (NDD)

The mesh splitting technique used produces a natural decomposition of
the domain. The elements contained in the initial mesh can be considered
as the subdomains into which the original domain is divided. For the
following meshes, the elements to be considered in each subdomain
are those obtained by the subdivision of the original elements. The
subdomains defined by the elements included in the first mesh of the
analysis can be termed 0-Level subdomains. This idea can be recursively
applied into each of the original subdomains. Thus, as represented in
Figure 6, new sub-subdomains (1-Leve/ subdomains) could be defined
into the 0-Level subdomains, and so forth.
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0-Level subdomains

[0] nactive nodes in level
(interface nodes in previous levels)

[ Interface nodes

1 |21 E]l B /8 Nodes of different subdomains

# o Sample nodes

d-

Wb 18 £ il AR
2-Level subdomains 3-Level subdomains
Figure 6.
FE model. Subdomains in different levels.

The value of a new nodal property called .Subdom, which stores a code
that indicates the subdomain number in which each node is created at
each subdivision level, is easily obtained by using the hierarchical data
structure during the mesh generation process. The value 0 will be assigned
to those nodes created over the interfaces between the subdomains.
Taking this into account the sample nodes highlighted in Figure 6 would
have the codes shown in Figure 7:

R ETI
5 5 L D
& = el ok
Sample node *  Node Subdom = 1 2 210
Sample node *  Node Subdom = 1 3 (0 [0

Figure 7.
Codes for sampling nodes shown in Figure 6.

The value of this property allows for a simple reordering of the
linear system of equations using a dictionary-type reordering (sortrows
command in Matlab® [22]). The reordering thus obtained will be denoted
as NDD reordering. Figure 8.a) shows the original structure of a stiffness
matrix corresponding to a problem with 3 elements in the original
mesh which has been uniformly refined. The arrowhead-like structure
represented in Figure 8.b) is obtained if the system of equations is
reordered taking into account the value of the .Subdom property for the
0-Level. Observe that the degrees of freedom (dofs) placed in the first 0-
Level subdomain (element number 1 of the original mesh) are located
first; then, those in the second 0-Level subdomain, and so forth. The
last dofs of the reordered matrix correspond to the dofs of the interfaces
between the 0-Level subdomains. Finally, the structure represented in
Figure 8.c) is obtained if the complete nested subdomains structure is
used to reorder the system of equations.
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The numerical results presented in Section 7 will show the advantages
obtained by using the natural reordering provided by the hierarchical h-
adaptivity code.

b) Reordered matrix considering c) Reordered matrix considering
0-Level subdomains full nested subdomains structure

Figure 8
Stiffness matrix for a problem with 3 subdomains in the original mesh.

7.NUMERICAL EXAMPLES

7.1. Domain with straight boundaries

When evaluating element stiffness matrices, the biggest advantages of
the program emerge when the boundary of the component can be
represented by straight-line segments. Under this situation, all the
elements in the mesh will be Type A elements. Then, the only KMatrix
objects to be evaluated will correspond to the elements in the original
mesh and their dummy elements (see Figure 3), if the elements are non-
parallelograms quadrilaterals.

As an example of this kind of domains, the plate with a crack
represented in Figure 9 has been studied. Due to the problem’s symmetry,
only the right hand side of the domain has been considered in the analyses.

The problem has been studied using a h-adaptive analysis based on the
estimation of the discretization error in energy norm. In order to evaluate
an estimate |.Jof the exact value of the discretization error in energy norm
kI, Zienkiewicz-Zhu [23] developed the ZZ estimator proposing the use
of the following expresién

||EE£||1: | [.G"‘—Gh )T D™ iﬂ“ —gh J:J"D

Ja [15]

where domain W can refer to either the whole domain or a local

(element) subdomain, o* represents the stresses evaluated using the Finite

Element Method, « is the socalled smoothed or recovered stress field, that
is a better approximation of the exact solution tan o*



Juan Rédenas, et al. A hierarchical b adaptivity methodology based on element subdivision

h & B

Yy

Figure 9.

Plate with crack under traction.
Equation (15) is rewritten as follows in terms of local coordinates for

the evaluation of the error in energy norm at element e:

Eé"ﬁ

= [g [:G* —c”" ?I}_l {ﬁ*—ﬁ"‘f].ﬂ dc),;
i [16]

We have used Relation 3 to reduce the computational cost of the
evaluation of [J|. Observe that the computational cost of any domain
integral can be reduced by means of the use of Relation 3.

An enhanced version [24] of the Superconvergent Patch Recovery
technique (SPR) [25] has been employed in the error estimation process.
This version of the SPR technique provides a very accurate recovered
stress field as it uses constraint equations to impose the exact local
satisfaction of the equilibrium and compatibility equations in the patch
of elements surrounding each vertex node.

The criterion used to define the size of the elements in new meshes is
based on the criterion of minimization of the number of elements in the
new mesh described by Ladeveze ez al. [26,27] and Coorevits ez al [28].

Figure 10 shows two sequences of h-adapted meshes, obtained with
quadratic triangles and quadrilaterals, used to analyse the problem
represented in Figure 9. Note that some of the quadrilateral elements used
in the first mesh of the sequence were deliberately distorted to illustrate
the use of quadrilateral elements of arbitrary shapes. In Figure 10 all the
elements associated to the same KMatrix object have been represented
with the same colour. The statistics of the mesh sequence have been shown
in clearly shows the advantages obtained when the hierarchical relations
between elements are used. For example, when triangular elements have
been used, the last mesh in the sequence contains 9135 elements, some
of them with a refinement level r = 11, and has required the creation of
12168 elements. However, only 36 KMatrix objects have been evaluated
to create the problem stiffness matrix for this mesh with 19592 nodes.

7.2. Domain with curved boundaries

Parent elements with one or more of their sides lying over curved
boundaries will not be geometrically similar to their child elements.
Therefore, when the mesh is refined, new KMatrix objects will be required
to be created. In any case, it must be taken into account that this will
only happen along curved boundaries. It can be intuitively observed that,
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whereas the number of elements, in the 2D case, will grow as a function
of the area of the domain, the number of KMatrix objects to be created
will be a function of the length of the curved boundaries, i.c. one less
dimension.

The example presented in this section corresponds to a gravity dam.
The initial mesh used in this problem has been represented in Figure 11.
The objective of the analysis is the evaluation of the mean value of the
von- Mises stress in an area of interest which has been defined by the
highlighted elements. Quadratic triangular elements have been used in

this problem.

Quadratic tnangles Quadratic quadrnilaterals

Mesh 2 Mesh 1

Mesh 3

Mesh 4

Mesh §

Figure 10.
Plate with crack under traction. Sequence of h-adapted meshes.
Representation of elements with the same KMatrix object.

INT
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Figure 11.
Gravity dam. Mesh 1. Quadratic triangular elements.
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Plate with crack under traction. H-adaptive refinement data.

Table 1

Triangular elements

IQuadrilateral elements

Created Active KMatrix Oby] Created Active KEMarrix  Oby.
Mesh [Nodes Elements Elements evaluated Nodes Elements Elements evaluated
1 91 36 36 36 73 18 18 46
2 359 196 156 36 678 262 201 46
3 1496 896 681 36 1881 746 364 46
4 5781 3572 2688 36 5479 2218 1668 46
3 19592 12168 9135 36 15594 6446 4839 46

A Goal Oriented h-Adaptive process has been used in this case. The
adaptive process is based on the estimation of the error in the magnitude
of interest Q(ec) using the recovery type error estimator given in the
following expression for element e, as proposed for example in [29] and

[30]:

where < and <« represent the FE and recovered stress fields
corresponding to the primal problem and « and < represent those
corresponding to the dual problem used to extract the magnitude of
interest. The standard SPR technique was used in this case to obtain the
recovered stress fields o: and = Asin the previous example, Relation 3 was
used in the evaluation of (17) to reduce the computational cost asociated

0. = o3 of f D es- 03]y

to the evaluation of [J|.

The hierarchical data structure has been used to define the area of
interest in more refined meshes, by simply taking into account that when
a parent element into the area of interest is subdivided into four children
elements, the children elements will also be part of the area of interest.
A detail of mesh 4 of the h-adaptive mesh sequence around the area of

interest is represented in Figure 12.

Figure 13 shows mesh 4 entirely. Elements with the same KMatrix
object have been represented with the same colour in these two figures. A
graphical comparison between the number of KMatrix objects evaluated
and the number of elements used in each mesh is represented in Figure 14.
This figure clearly shows that the number of elements used in each mesh,
which is a function of the area, grows faster than the number of KMatrix
objects evaluated, which is a function of the length of curved contours.

7.3. Solver improvement

Different direct solvers strategies that make use of the Cholesky
factorization of the stiffness matrix (symmetrical and positive definite,
once the displacement constrains have been imposed) have been
considered in this section. The factorization time, evaluated for a
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sequence of h-adapted meshes, used by the chol MatLab® command [22]
has been considered as the main parameter for the comparison. The
MatLab® profiling tool has been used to evaluate the CPU time employed
by the chol(K(p,p))command, where K(p,p) represents a permutation
p of the system matrix K. Each of the five strategies under comparison
corresponds to a different permutation p. The first four strategies,
denoted by colperm, symrcm, symamd and amd, respectively correspond
to the permutations obtained by using the colperm, symrcm, symamd and
amd commands available in MatLab®. A description of the algorithms
used by each of these commands can be found in the MatLab® 2009b
Help [22] and the references therein. The last strategy, denoted by ndd,
makes use of the natural reordering directly provided by the program’s
hierarchical structure.

Figure 12.
Gravity Dam. Detail of Mesh 4 around the area of interest.
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a) h-adapted mesh of quadratic tnangular elements.

b). Elements with the same KMarrix object.

Figure 13.
Gravity Dam. Mesh 4.
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=== Elements created o
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Figure 14.

Gravity Dam. Evolution of the number of active elements and the number of KMatrix objects.

Figure 16 shows the evolution of the factorization times with respect
to the number of degrees of freedom of the system matrices of the mesh
sequences. The graph clearly shows that the best performance is obtained
with the zdd reordering. The colperm and symrcm reorderings are not
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competitive with the rest of the methods as they soon produce an ous
of memory error in the computer used for the analyses. The symamd,
amd and ndd reorderings produce similar factorization times but, in an
average sense, the Cholesky factorization times with the symamd and
amd reorderings required 45% and 33% more time than with the ndd
reordering.

Original K
g,::t..—_‘-_‘——'-sﬂ_.—-—_.z_:—'—r__—-.—:

TVmrCm

ndd

Figure 15.
Comparison of reordering schemes of a stiffness matrix, denoted by Original K (15054 degrees of
freedom). Each plot represents the reordered system matrix obtained by the different permutation.
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2 /

0

0 100000 200000 300000 400000 500000
ndof
Figure 16.
Cholesky factorization times obtained with each
reordering scheme for a sequence of h-refined meshes.

Figure 15 shows an example of comparison of the reordered matrices
obtained with the different permutation schemes. It can be observed
that the methods that produce the best performances of the Cholesky
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synamd

factorization, the symamd, amd and ndd permutations, produce similar
reordering patterns.

SYmirem

nz = 12906881 n = 3950469

comed ncd

PUSTTT T B TE

AT Ea

nz = | 238680

nz = 1030266 nz = 1077558

Figure 17.

Comparison of the factorizations of the matrices shown in Figure 15. The number of 7on-

zero terms of the factorizations is indicated below each plot. The Cholesky factorization

of the original matrix, without any reordering, produced an ouz of memory error.

Figure 17 represents the factorization of the permuted matrices
represented in Figure 15, except for the case of the original matrix, whose
factorization generated an out of memory error. The symamd, amd and
ndd permutations produce similar Cholesky factorizations of a similar
number of #on-zero terms (indicated below each plot).

8. CONCLUSIONS

This paper has presented a hierarchical h-adaptivity methodology
implemented in a FE code for the resolution of the 2D linear elasticity
problem. Linear and quadratic isoparametric triangles and quadrilaterals
can be used in the mesh refinement process, which is based on element
subdivision and on the use of multi-point constraints to satisfy the
Co continuity condition between adjacent elements with different
refinement levels.
The main conclusions arising from this paper are listed below.

o It has been shown that if two finite isoparametric elements are
geometrically similar, the terms involved in the evaluation of
their element stiffness matrices are related by a constant value.
This constant value is simply a function of the scaling factor that
relates both elements. In fact, under this geometrical similarity
condition, in the 2D case, the element stiffness matrices for
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geometrically similar elements are exactly equal if the Hooke’s
tensor is constant.

e In2D mesh refinement processes based on element subdivision, if
a parent element has straight-line contours not lying over curved
boundaries with midside nodes exactly located over the mid-
side point of each side of the element, then, child elements can
be created geometrically similar to their parent element. In this
case, the matrices used to evaluate the element stiffness matrix of
the parent element, after their multiplication by a constant value
related to the scaling factor, will be reused by the child elements
without any further calculation.

The hierarchical h-adaptive program code notably reduces the
computational cost associated to the evaluation of the problem stiffness
matrix, but also the cost associated to the computation of any result
involving the terms used in the evaluation of the element stiffness matrix
(strains and stresses at integration points, volume integrals,...).

o 'The hierarchical data structure is particularly well suited for the
implementation of a multi-grid solver.

o 'The hierarchical data structure would also simplify the
implementation of a domain decomposition solver, and, therefore,
the parallelization of the process.

The code can be described as hierarchical due to the following reasons:

o A hierarchical data structure, with parent-child relations, is used
to store data corresponding to elements and nodes.

o The hierarchical data structure simplifies the generation of the
new nested meshes.

o 'The hierarchical data structure simplifies the implementation of
iterative solvers in which the initial guess could be taken as the
solution of previous analyses.

o Asin the p-hierarchical formulation of the FEM, stiffness matrix
information can be reused in other analyses.

Basic implementations of direct and iterative domain decomposition
solvers that make use of the nested arrowhead structure have been already

developed [31- 34].

9. ACKNOWLEDGEMENTS

The authors wish to thank the Spanish Ministerio de Economia y
Competitividad for the fiancial support received through the project
DPI2013-46317-R and the Generalitat Valenciana through the project
PROMETEO/2016/007. The support of the Universidad Politécnica
de Valencia is also acknowledged. The authors also want to thank Ana
Rédenas’s help in the translation of this paper.



Juan Rédenas, et al. A hierarchical b adaptivity methodology based on element subdivision

10. APPENDIX A: OBJECTS IN THE HIERARCHICAL
DATA STRUCTURE

This appendix shows a basic description of the main objects used to create
the hierarchical data structure of the FE code:

e Node: stores data associated to each node

e Element: stores data associated to each element

e KMatrix: stores data associated to each stiffness matrix.
Geometrically similar elements will be related to a single KMatrix
object.

The following acronyms will be used in the definitions of the most
important properties of these objects shown in Tables 2 to 4.

nnpe Number of nodes per element

nsides Number of sides of each element

nmesh Number of meshes in the h-adaptive sequence

ndofpe Number of degrees of freedom per element:

ndofpe = nnpe x 2 (2-D)

ngauss Number of integration Gauss points used into each element
nlevels Number element levels.

Table 2
Node object.

Property Type Size Information

X¥Z Double 2x1 Geometrical coordinates of node » (21))

NParents Int 1x1 Total number of parent-nodes for node n

Parents Int 1 x NParents Numbers of the parent-nodes corresponding to node n

Weights Double 1 x NParents Value of the shape functions of parenf-nodes evaluated at n
(child-node)

.HangingNede  Boolean 1 = nmesh Flag used to mdicate 1f node » 1s/1s-not a hanging node 1
each of the meshes in the mesh sequence

Boundary Int 1x1 Code of geometrical entity associated to » (zero 1f » 1s 1n the
interior of the domain)

Subdom Int 1 = nlevels Subdomain in which the node is located at each level
Table 3.

Element object.

Property Type Size Information

Top Int 1 % nnpe Element e topology (node numbers 1 &)

Level Int 1x1 Refinement level for element ¢

NeighbElems Int 1 % nsides Number of neighbor element at each side of e, with the same
refinement level.

NeighbSides Int 1 x nsides Number of neighbor element side at each side of a.

Active Boolean 1 x nmaesh Flag used to indicate that ¢ 1s/is-not active in each mesh of
the h-adaptive sequence

.Children It 1x4 Children-elements numbers

Parent Int 1x1 Parent-element number

K Num Int 1x1 K Martrix object number storing data associated to e

Heritage Boolean 1x1 Flag used to indicate that e 1s Type A or Type B element.
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Table 4.
KMatrix Object.
Property Type Size Information
Je Double ndofpe % ndafpe  Element stiffness matnx k
BGPt Double 3 = ndefpe = B matnx evaluated at each Gauss integration poimnt
NgAuUss

DetIGPt Double 1 * ngauss Determinant of the Jacobian matrix |J| evaluated at each

Gauss integration point
.OrigLevel Int 1x1 Refinement level corresponding to the element used to

create m

11. REFERENCES

(1] J. Thomson, Z. Warsi, C. W. Mastin, Numerical grid generation:
Foundations and applications, Elsevier, Amsterdam 1, 1985, 985.

[2] M. S. Shephard, An algorithm for defining a single near#optimum mesh
for multiple#load#case problems, Int ] Numer Methods Eng 15, 1980,pp.
617-625.

(3] L Babuska and W. Rheinboldt, Adaptive approaches and reliability
estimations in finite element analysis, Comput. Methods Appl. Mech.
Eng. 17,1979, pp. 519- 540.

(4]]. F. Thompson, B. K. Soni, N. P. Weatherill, Handbook of Grid Generation,
CRC, 1999.

(5] H. Jin and N. E. Wiberg, Two-dimensional mesh generation, adaptive
remeshing and refinement, Int ] Numer Methods Eng 29, 1990, pp.
1501-1526.

(6] J. Z. Zhu, E. Hinton, O. C. Zienkiewicz, Mesh enrichment against mesh
regeneration using quadrilateral elements, Communications in Numerical

Methods in Engineering 9, 1993, pp. 547-554.
[7] S. Zhang, On the nested refinement of quadrilateral and hexahedral finite

elements and the affine approximation, Numerische Mathematik 98,

2004, pp. 559-579.

[8] M. A. Yerry and M. S. Shephard, Automatic threedimensional mesh
ry p
generation by the modified#octree technique, Int ] Numer Methods Eng
20, 1984, pp. 1965- 1990.

[9] M. C. Rivara, A grid generator based on 4#triangles conforming mesh#
refinement algorithms, Int J Numer Methods Eng 24, 1987, pp.
1343-1354.

[10] M. T. Jones and P. E. Plassmann, Adaptive refinement of unstructured
finite-element meshes, Finite Elements Anal. Des. 25, 1997, pp. 41-60.

[11] A. Tabarraei and N. Sukumar, Adaptive computations on conformin
p p g
quadtree meshes, Finite Elements Anal. Des. 41, 2005, pp. 686-702.
12] A Plaza, J. P. Sudrez, M. A. Padrén, S. Falcén, D. Amieiro, Mesh qualit
quality
improvement and other properties in the four-triangles longest-edge
partition, Comput. Aided Geom. Des. 21, 2004, pp. 353-369.
(13] A. Plaza, M. A. Padrén, J. P. Sudrez, Nondegeneracy study of the 8-

tetrahedra longest-edge partition, Applied Numerical Mathematics 55,
2005, pp. 458-472.



Juan Rédenas, et al. A hierarchical b adaptivity methodology based on element subdivision

[14] C. James, D. A. Cavendish, H. William, An approach to automatic three-
dimensional finite element mesh generation, Int ] Numer Methods Eng

21, 1985, pp. 329-347.

[15] M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive
and multigrid techniques, Int J] Numer Methods Eng 20, 1984, pp.
745-756.

[16] J. F. Abel and M. S. Shephard, An algorithm for multipoint constraints in
finite element analysis, Int ] Numer Methods Eng 14, 1979, pp. 464-467.

(17] C. Farhat, C. Lacour, D. Rixen, Incorporation of linear multipoint
constraints in substructure based iterative solvers. part 1: A numerically

scalable algorithm, Int ] Numer Methods Eng 43, 1998, pp. 997- 1016.

(18] J.J. Rédenas, M. Tur, J. E. Tarancén, F. J. Fuenmayor, H-adaptatividad
de elementos finitos en refinamiento por subdivision de malla. In
XIV Congreso Nacional de Ingenieria Mecdnica. Anales de Ingenieria
Mecanica, Asociacion Espaiiola de Ingenieria Mecanica, 2000.

[19] M. Tur, J. Fuenmayor, J. J. Rédenas, E. Giner, 3D analysis of the influence
of specimen dimensions on fretting stresses, Finite Elements Anal. Des.

39,2003, pp. 933-949.

[20] A. Suzuki and M. Tabata, Finite element matrices in congruent
subdomains and their effective use for largescale computations, Int J

Numer Methods Eng 62, 2005, pp. 1807-1831.

(21] J. J. Rédenas, J. E. Tarancon, J. Albelda, A. Roda, F. J. Fuenmayor,
Hierarquical properties in elements obtained by subdivision: A
hierarquical h-adaptivity program. In Adaptive Modeling and Simulation
2005, P. Diez, N.E. Wiberg (Eds.), CIMNE, 2005.

[22] Matlab®,7.9.0.529 (R2009b) The MathWorks Inc, Natick, MA, 2009

(23] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimation and adaptive
procedure for practical engineering analysis, Int. J. Numer. Methods Eng.

241987, pp. 337-357.

[24] J. J. Rédenas, Fuenmayor, FJ., A. Vercher, Improvement of the
superconvergent patch recovery technique by the use of constraint
equations: The SPR-C technique, Int. J. Numer. Methods Eng. 70, 2007,
pp. 705-727.

[25] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates. part I: The recovery technique, Int. J. Numer.

Methods Eng. 33, 1992, pp. 1331- 1364.

[26] P. Ladeveze and D. Leguillon, Error estimate procedure in the finite
element method and applications, SIAM Journal on Numerical Analysis
20,1983, pp. 485- 509.

[27] P. Ladeveze, P. Marin, J. P. Pelle, J. L. Gastine, Accuracy and optimal
meshes in finite element computation for nearly incompressible materials,

Comput. Methods Appl. Mech. Eng. 94, 1992, pp. 303- 315.

(28] P. Coorevits, P. Ladeveze, J. P. Pelle, An automatic procedure with a control
of accuracy for finite element analysis in 2D elasticity, Comput. Methods
Appl. Mech. Eng,. 121, 1995, pp. 91-120.

[29] E. Stein, M. Riiter, S. Ohnimus, Adaptive finite element analysis and

modelling of solids and structures. findings, problems and trends, Int J

Numer Methods Eng 60, 2004, pp. 103-138.



Revista UIS Ingenierias, 2017, 16(2), ISSN: 1657-4583 / 2145-8456

[30] M. Riiter and E. Stein, Goal-oriented a posteriori error estimates in linear
elastic fracture mechanics, Comput. Methods Appl. Mech. Eng. 195,
2006, pp. 251-278.

[31] J. J. Rddenas, J. Albelda, C. Corral, J. Mas, "Efficient implementation
of domain decomposition methods using a hierarchical h-adaptive finite
element program”. In III European Conference on Computational
Mechanics. Solids, Structures and Coupled Problems in Engineering,
Book of Abstracs, Springer, 2006.

[32] J. J. Rédenas, J. Albelda, C. Corral, J. Mas, "A domain decomposition
iterative solver based on a hierarchical h-adaptive FE code". In Proceedings
of the Fifth International Conference on Engineering Computational
Technology, B.H.V. Topping, G. Montero, R. Montenegro (Eds.), Civil-
comp Press, 2006.

[33] J. J. Rédenas, C. Corral, J. Albelda, J. Mas, C. Adam, "Solver directo
de divisién recursiva en subdominios basado en un programa de
refinamiento hadaptable de estructura jerarquica”. In Métodos Numéricos
e Computacionais em Engenharia. CMNE CILAMCE 2007, J.César de
S4, Raimundo Delgado, Abel d. Santos, Antonio Rodriguez-Ferran, Javier
Oliver: Paulo R-M. Lyra, José L. D. Alves (Eds.), APMTAC, SEMMNI,
ABMEC, 2007.

[34] J. J. Rédenas, C. Corral, J. Albelda, J. Mas, C. Adam, "Nested domain
decomposition direct and iterative solvers based on a hierarchical h-
adaptive finite element code. In ADMOS 2007". IV International
Conference on Adaptive Modeling and Simulation, K. Runesson, P.

Diez (Eds.), Internacional Center for Numerical Methods in Engineering
(CIMNE), 2007.

Additional information

Para citar este articulo: ].J. Rédenas, ]J.Albelda, M. Tur, F.J. Fuenmayor,
“A hierarchical h adaptivity methodology based on element subdivision”,
UIS Ingenierias, vol. 16, no. 2, pp. 263 - 280, Julio - Diciembre 2017.Doi:
https://doi.org/10.18273/revuin.v16n2-2017024



