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Abstract:  is paper presents a hierarchical h adaptive methodology for Finite Element
Analysis based on the hierarchical relations between parent and child elements that
come out if these elements are geometrically similar. Under this similarity condition
the terms involved in the evaluation of element stiffness matrices of parent and child
elements are related by a constant which is a function of the element sizes ratio (scaling
factor). ese relations have been the basis for the development of a hierarchical
h adaptivity methodology based on element subdivision and the use of multipoint-
constraints to ensure C0 continuity. e use of a hierarchical data structure significantly
reduces the amount of calculations required for the mesh refinement, the evaluation
of the global stiffness matrix, element stresses and element error estimation. e data
structure also produces a natural reordering of the global stiffness matrix that improves
the behaviour of the Cholesky factorization.
Keywords: Adaptive Modelling, Hierarchical properties, Mesh Enrichment, Mesh
Generation.
Resumen:  En este artículo se presenta una metodología h adaptativa para el Análisis
por Elementos Finitos basada en las relaciones jerárquicas entre elementos padre e hijo
que surgen si estos elementos son geométricamente similares. Bajo esta condición de
similitud, los términos resultantes de la evaluación de las matrices de rigidez de elementos
padre e hijo están relacionados por una constante que es una función de la relación de
tamaños de elemento (factor de escala). Estas relaciones han sido la base para el desarrollo
de una metodología jerárquica h adaptativa basada en la subdivisión de elementos y el uso
de restricciones multipunto para asegurar la continuidad C0. El uso de una estructura
de datos jerárquica reduce significativamente la cantidad de cálculos requeridos para el
refinamiento de la malla, la evaluación de la matriz de rigidez global, las tensiones de los
elementos y la estimación del error del elemento. La estructura de datos también produce
un reordenamiento natural de la matriz de rigidez global que mejora el comportamiento
de la factorización de Cholesky.
Palabras clave: Modelado Adaptativo, Propiedades jerárquicas, Enriquecimiento de
malla, Mallado.
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1. INTRODUCTION

e context of the developments presented in this paper is that of finding
a methodology based on the use of the h-version of the Finite Element
Method (FEM) for the accurate analysis of mechanical components with
the lowest possible computational cost.

e generation of optimal meshes for FE analysis has been a particular
area of development for many years [1- 3]. It is well known that the
cheapest FE mesh to produce a solution with a fixed quality at minimum
cost is an adapted one. As a consequence of this, h-adaptive techniques
based on the estimation of the FE discretization error are commonly used
to speed up FE analysis. e h-adaptive analysis techniques for the control
of the discretization error of FE analysis can be classified into two groups:
the mesh regeneration techniques [4, 5], based on the full remeshing of the
domain, and those based on element splitting, where the mesh is enriched
(or refined) at a local level. Both of them are appropriate techniques
to solve the problem although, in general terms, the first one provides
a slightly more accurate solution than the second for a given number
of degrees of freedom. However, the computational cost associated to
the first one can be higher because, in most cases, the reduction of the
error level involves the global regeneration of the mesh instead of a
local modification. e evaluation of element matrices is not usually the
bottleneck of the FE analysis, but it must be taken into account that the
full remeshing involves the evaluation of the matrices for each element of
the new mesh, whereas the use of element splitting techniques can (totally
or partially) avoid these computations. A first comparative study between
mesh enrichment and mesh regeneration techniques can be found in Zhu
et al [6].

Element splitting techniques can be applied both, on structured
meshes, based on a certain hierarchical structure [7], where the
topological and geometrical relations between the elements are known
a-priori; and on non-structured meshes [8-10] with elements of general
shape by using one of the subdivision schemes described in the literature
(bisection techniques, 4-T algorithm of Rivara, etc). e use of a
structured element splitting, as in the quadtree and octree methods [8,
11] is rather efficient as it allows improving the storage of the mesh related
information. However, other splitting techniques, that could be termed
non-structured element splitting techniques, are more flexible as they can
be applied on any mesh.

One of the most important factors to be taken into account when
the element splitting techniques are used is the geometrical quality
of the elements created during the refinement process. e structured
element splitting allows for a good control of the newly created elements.
Depending on the non-structured element splitting strategy used to
refine the mesh, one can obtain more distorted elements or elements of
an increasing geometrical quality [12, 13].

Another important factor to be considered is that certain element
splitting techniques provide conforming refined meshes, whereas other
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strategies provide non-conforming meshes. In the first case [14], the
refinement strategy allows for lower control of the element shape. e
techniques that produce non-conforming meshes require additional
techniques to restore C0 continuity between contiguous elements, such as
the addition of new elements [9, 15] or the use of Multi Point Constraints
(MPCs) [16-19].

A hierarchical data structure, with parent-child relations between
existing elements and those obtained during the mesh refinement process,
can be easily defined if the mesh refinement process is based on element
splitting.

is kind of data structure has been the basis to define a new h-adaptive
methodology for efficient FE analyses. A 2D h-adaptive FE code with
hierarchical features for the resolution of the linear elasticity problem
based on this structure has been created. is code has been used as a
framework to explore the advantages of using hierarchical relations in a
FE code with h-adaptive analyses capabilities. e data structure has also
been used to create a natural reordering of the FE system of equations
that speeds up its resolution with respect to the use of other reordering
schemes. erefore, the hierarchical h-adaptivity code allows for the use
of an analysis methodology that improves the efficiency of the main parts
of the process: mesh refinement, generation of the system of equations
and its resolution, and any postprocessing that involves volume integrals.

e remaining of the paper is as follows. Section 2 presents the
hierarchical properties between geometrically similar elements. Section
3 will describe the element splitting technique used to provide
geometrically similar elements, and then, Section 4 will present the
main characteristics of the hierarchical h-adaptive program that uses this
element splitting technique. Section 5 will show the natural reordering
scheme of the linear system of equations provided by the hierarchical
relations. e advantages of using the hierarchical relations will be
demonstrated in Section 6, devoted to the numerical examples.

2. PROBLEM DEFINITION AND FEM SOLUTION

We will consider the 2D linear elasticity problem on a bounded domain
. e unknown displacement field u is the solution of the boundary

value problema

[ 2 ]

where GN and G D  are the Neumann and Dirichlet boundaries,
with  b are body loads per unit volume, t are tractions
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applied on GN (with n the normal vector to the boundary) and  are the
prescribed displacements on GD. In the weak form the problem reads:

Find  such that:

[ 2 ]

being V the standard test space for elasticity problems and

[ 3 ]

where s and e represent the stresses and strains.
Let u h be a finite element approximation to u that lies in a functional

space  associated with a mesh of isoparametric finite elements of
characteristic size h, such that

[ 4 ]

Using a variational formulation of the problem in (1) and a finite
element approximation  where N are the shape functions matrix and
u e are the nodal displacements, the following system of linear equations
to evaluate u e is obtained

[ 5 ]

where K and f are obtained aer the assembly of the stiffness matrices
k e and equivalent force vectors f e of each element e given by:

[ 6 ]

[ 7 ]
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where , D is the elasticity matrix that defines the stresses as s = De,
B are derivatives of the shape functions N, Wl is the element domain in
local coordinates and J is the Jacobian matrix. e following section will
show the relations between the terms used to evaluate k e of geometrically
similar elements.

3. HIERARCHICAL PROPERTIES BETWEEN
GEOMETRICALLY SIMILAR ELEMENTS

To the authors’ knowledge, there is only a reduced number of references
related to this topic. Tabarraei and Sukumar [11] demonstrated that,
for the special case of quadtree meshes, for the Poisson equation and
for the elasticity problem, the stiffness matrix of a subelement is the
same as the stiffness matrix of the parent. Suzuki and Tabata [20] also
showed the importance of reusing previous calculations studying the
structure of the finite element mass and stiffness matrices of congruent
subdomains (each of them being an image of a reference subdomain by
an affine transformation, see [20] for further details). As a result, Suzuki
and Tabata were able to express the global matrices as functions of the
submatrices in the reference subdomain. is reduced the amount of
memory requirements for the storage of the matrices and allowed for the
use of a domain decomposition solver.

If a finite element Wi can be obtained by translation and/or scaling of
an original element W0 , see Figure 1, a hierarchical relationship related to
the element geometry arises between the terms involved in the evaluation
of the element stiffness matrices of both elements.

Figure 1.
Elements obtained by translation and/or scaling from an original element.

erefore, the evaluation of the stiffness matrix corresponding to an
element that keeps a geometrical similarity with respect to an original
element requires no additional computations if the matrices associated
to the original element are available. ese findings where previously
exposed in [21].

Proposition. Let W0  be an isoparametric finite element defined by its
nodal coordinates  , n=1,…,nnpe, being ‘nnpe’ the number of nodes
per element.

Let W1  be another isoparametric finite element, geometrically similar
to W0, such that its nodal coordinates, P1n, can be obtained using a linear
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transformation by scaling the nodal coordinates of W0 by an scaling factor l
and by imposing a translation by means of a vector  T=(xt, yt, zt):

[ 8 ]

e following relations are obtained:
Relation 1: 
Relation 2: 
Relation 3: 
Relation 4: 
Relation 5: 
Proof of Relation 1: e Jacobian matrix associated to the

isoparametric coordinates transformation of a point in W0  of local and
global coordinates (x,h,t) and (x0,y0,z0 ) is calculated as:

[ 9 ]

Considering the shape functions Nn (x,h,t) in the interpolation of
global coordinates, the first term in J 0(x,h,t), and similarly any other term,
will be given by:

[ 10 ]

Consider now the following relations:

e first term of the Jacobian matrix J 1(x,h,t) associated to element W1

can be evaluated, considering (3) and the previous relations, as
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[ 11 ]

Similar relations would be found for all terms in J 1(x,h,t). erefore,
the following relation is obtained

Proof of Relations 2 and 3: ese relations are immediately derived
from Relation 1

#. Proof of Relation 4: All terms in the B(x,h,t) matrix are first partial
derivatives of shape functions with respect to global coordinates, which,
for element W0 , can be evaluated as:

[ 12 ]

Considering Relation 2, the following relation is obtained for element
W1:

[ 13 ]

All terms in matrices B(x,h,t) for W0  and W1  are related by 1/l.
erefore, we finally obtain
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Proof of Relation 5:  Assuming that D = constant (s = De), the stiffness
matrices for elements W0 and W1 will be evaluated as:

[ 14 ]

Taking into account Relations 2 and 3 in the expresión corresponding
to k 1:

Consequently, for the 2D case where d = 2, k 0 and k 1 are exactly
the same matrices. For the 1D case these matrices will be related by the
constant factor 1/l, and by l in the 3D case.

Figure 2.
Subdivision of parent triangular element into 4 child elements.

Figure 3.
Subdivision of bi-linear parent element into 4 child elements.
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4. SIMILARITY RELATIONS IN REFINEMENT BY
MESH SPLITTING IN 2D

4.1. Linear triangular elements

Figure 2 shows a parent linear triangular element that has been subdivided
into 4 child elements placing new nodes at the mid-side point of each
element side.

e figure shows the scaling factor l that relates parent and child
elements. With the numbering pattern adopted for the new elements, a
geometrical similarity relation with respect to Elm 0 can be obtained even
for Elm 4, whose associated scaling factor value is l = -0.5. e scaling
factor corresponding to child elements 1, 2 and 3 is l = 0.5.

4.2. Bi-linear quadrilaterals

Figure 3 shows the subdivision process of a bi-linear element into 4 new
elements. e original (parent) element is represented in Figure 3.a).

Figure 3.b) shows the standard splitting procedure. In this procedure
the new elements are obtained by using 2 straight lines that join the mid-
side points of opposite sides of the element. is technique will provide
child elements geometrically similar to the parent element only in the
case where the parent element is a parallelogram. is picture shows
that, in general, the child elements created using this technique are not
geometrically similar to the parent element.

For this linear quadrilateral elements, the element subdivision
procedure proposed in this paper and represented in Figure 3.c), consists
of joining the mid-side points of each side of the element with the
mid-side point of any of the diagonals of the quadrilateral (the longest
diagonal has been considered in the implementation). As shown in
Figure 3.c, the child elements located over the selected diagonal will
be geometrically similar to the parent element, whereas the other two
child elements created, which are not similar to the parent element,
will be parallelograms. erefore, if any of the child elements is further
subdivided, the new elements created will always be geometrically similar
to either the original parent element ( Figure 3.a)) or the dummy
parallelogram parent elements represented in Figure 3.d).

Figure 4 represents a sequence of successive subdivisions of the element
represented in Figure 3.a). e same colour has always been used to
represent all the geometrically similar elements. It can be clearly observed
that, for any subdivision level, only 3 different kinds of geometrically
similar quadrilaterals will appear.

4.3. Elements over curved boundaries

Two different types of parent elements are generated during the mesh
refinement based on subdivision of elements. Type A elements are defined
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as parent elements whose child elements are geometrically similar which
will, therefore, inherit the element calculations. On the other side, type
B elements are defined as parent elements with at least one child element
not geometrically similar.

e child elements created from a type B element will not inherit
element calculations.

Figure 4.
Quadrilateral: Subdivision sequence.

Figure 5
Subdivision of elements over curved boundaries. Type A and type B elements.

As represented in Figure 5, when subdividing one element, if any of
its sides lies over a curved boundary, the new nodes to be generated over
this boundary will not be located over the straight line that defines the
side of the original element. erefore, there will not be a geometrical
similarity relation between parent and child elements. According to the
previous paragraph’s definitions, this kind of parent elements will be of
type B. Let Wp be a parent element with none of its sides located over a
curved boundary. As previously explained, under these circumstances, the
element can be subdivided in such a way that the geometrical similarity
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relations between parent and child elements hold. erefore, element Wp

is of type A.

4.4. Higher order 2D elements

Let’s consider quadratic triangles and serendipity quadrilaterals with mid-
side nodes located at the midside point of the vertex nodes at each
side of the element in the global reference system. e local to global
mapping functions x(x,h) and y(x,h) of these elements and their linear
version are exactly identical. us, the subdivision procedure described
for linear triangles and bi-linear quadrilaterals will also provide child
elements geometrically similar to their parent elements for these elements.
If quadratic triangles or serendipity quadrilaterals are not defined by
straight line segments with mid-side nodes located over the mid-side
point of each side of the element, then, they will be type B elements.

4.5. Refinement level

e refinement level re for an element e is defined as the number of
subdivision steps required to obtain element e from its ancestor in the
original mesh. According to this definition, the refinement level for every
element in the original mesh will be re = 0, the refinement level for
elements directly obtained from subdivision of elements with re = 0 will
be re = 1, re = 2 for elements obtained by subdivision of elements with re

= 1, and so on.
Let Wp be a Type A parent element. e scaling factor with respect to

Wp (or, in the case of quadrilateral elements, with respect to the dummy
parent elements associated to Wp, see Figure 3.d) corresponding to the
elements obtained by s successive subdivisions of Wp will simply be a
function of the difference between refinement levels, s. us, the scaling
factor will be |l| = 0.5s.

5. A HIERARCHICAL H-ADAPTIVE CODE: DATA
STRUCTURE

A code for the resolution of the 2D linear elasticity problem, which can
be described as a Finite Element hierarchical h-adaptive program, has
been developed using Matlab® [22]. e code, which requires an initial
conforming mesh of linear triangles or quadrilaterals, uses a hierarchical
data structure to drive the h-refinement process, mainly based on the
following objects, whose description can be found in appendix A:

• Node: stores data associated to each node.
• Element: stores data associated to each element.
• KMatrix: stores data associated to each stiffness matrix.

Geometrically similar elements will be related to a single KMatrix
object.
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e idea behind the development of this code was to create a
framework to test the benefits of the use of hierarchical relations in
h-adaptivity. Apart from the hierarchical relations between parent and
child elements described in previous sections, the program also uses the
following relations.

Neighbourhood relations.

• Element to element neighbourhood relations. e following
information is stored at each side of each element: neighbour
element and neighbour element’s side number.

• Element - boundary relations. For sides of elements located over
the boundary of the domain the boundary identification code is
also stored.

ese two relations (element-element, elementboundary) can be
inherited by the new elements created during the mesh refinement. e
use of this information simplifies and accelerates the refinement process.

Nodal hierarchical relations.
During the splitting process of each element, new nodes are created.

e location of these new nodes can always be expressed as a function of
the location of the nodes of the parent element. To do this, the code stores
the values of the parent element shape functions evaluated at the location
of the new node. erefore, each new node will keep information about
its parent nodes (the nodes of the parent element) and the influence of
each of these parents over the node (value of the element shape functions
calculated at the location of the new node).

is hierarchical parents-child relationship between nodes has two
main uses in the program:

• MPC’s equations. ese parents-child relations can be used to
impose the multi-point constraint equations used to ensure C0

continuity between adjacent elements with different subdivision
levels.

• Data interpolation-extrapolation between different meshes. Nodal
values evaluated in one mesh can be easily interpolated to more
refined meshes or extrapolated to coarser meshes by using the
parents-child relations between nodes.

5.1. Further advantages of the hierarchical data structure

e hierarchical data structure has some further advantages:

• Stress evaluation at Gauss points. ese values can be easily
evaluated by using sG = DBue  (ue  displacement vector at nodes
of element e, D Hook’s matrix corresponding to the stress-strain
relation s = De) because the values of the B matrix evaluated at
Gauss points are available for the elements used to create each of
the KMatrix objects.
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• Determinant of the Jacobian matrix at Gauss points. e
evaluation of any result involving element integrals (equivalent
load vector corresponding to body loads, strain energy, energy
norm, error estimation in energy norm,…) requires the evaluation
of the determinant of the Jacobian matrix |J| at Gauss Points.
ese values are available for the elements used to create each of
the KMatrix objects.

6. STIFFNESS MATRIX REORDERING

Matrix reordering plays an important role on the performance of the
direct solver. Reordering the columns of a matrix can oen make its LU
or QR factors sparser.

Reordering the rows and columns can oen make its Cholesky
factorization sparser. is allows for a reduction of the time required
to obtain the solution of the problem. Finding the optimal ordering
is usually not possible, but finding a good ordering is. Matlab® [22],
which has been used to develop our FE code, incorporates a number
of reordering algorithms, some of which involve the use of an iterative
process to obtain the reordering.

is section is intended to show how the hierarchical data structure
of the program can be used to directly obtain a reordering of the system
matrix that speeds up the Cholesky factorization process.

6.1. Reordering based on a nested domain decomposition (NDD)

e mesh splitting technique used produces a natural decomposition of
the domain. e elements contained in the initial mesh can be considered
as the subdomains into which the original domain is divided. For the
following meshes, the elements to be considered in each subdomain
are those obtained by the subdivision of the original elements. e
subdomains defined by the elements included in the first mesh of the
analysis can be termed 0-Level subdomains. is idea can be recursively
applied into each of the original subdomains. us, as represented in
Figure 6, new sub-subdomains (1-Level subdomains) could be defined
into the 0-Level subdomains, and so forth.
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Figure 6.
FE model. Subdomains in different levels.

e value of a new nodal property called .Subdom, which stores a code
that indicates the subdomain number in which each node is created at
each subdivision level, is easily obtained by using the hierarchical data
structure during the mesh generation process. e value 0 will be assigned
to those nodes created over the interfaces between the subdomains.
Taking this into account the sample nodes highlighted in Figure 6 would
have the codes shown in Figure 7:

Figure 7.
Codes for sampling nodes shown in Figure 6.

e value of this property allows for a simple reordering of the
linear system of equations using a dictionary-type reordering (sortrows
command in Matlab® [22]). e reordering thus obtained will be denoted
as NDD reordering. Figure 8.a) shows the original structure of a stiffness
matrix corresponding to a problem with 3 elements in the original
mesh which has been uniformly refined. e arrowhead-like structure
represented in Figure 8.b) is obtained if the system of equations is
reordered taking into account the value of the .Subdom property for the
0-Level. Observe that the degrees of freedom (dofs) placed in the first 0-
Level subdomain (element number 1 of the original mesh) are located
first; then, those in the second 0-Level subdomain, and so forth. e
last dofs of the reordered matrix correspond to the dofs of the interfaces
between the 0-Level subdomains. Finally, the structure represented in
Figure 8.c) is obtained if the complete nested subdomains structure is
used to reorder the system of equations.
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e numerical results presented in Section 7 will show the advantages
obtained by using the natural reordering provided by the hierarchical h-
adaptivity code.

Figure 8
Stiffness matrix for a problem with 3 subdomains in the original mesh.

7. NUMERICAL EXAMPLES

7.1. Domain with straight boundaries

When evaluating element stiffness matrices, the biggest advantages of
the program emerge when the boundary of the component can be
represented by straight-line segments. Under this situation, all the
elements in the mesh will be Type A elements. en, the only KMatrix
objects to be evaluated will correspond to the elements in the original
mesh and their dummy elements (see Figure 3), if the elements are non-
parallelograms quadrilaterals.

As an example of this kind of domains, the plate with a crack
represented in Figure 9 has been studied. Due to the problem’s symmetry,
only the right hand side of the domain has been considered in the analyses.

e problem has been studied using a h-adaptive analysis based on the
estimation of the discretization error in energy norm. In order to evaluate
an estimate of the exact value of the discretization error in energy norm

, Zienkiewicz-Zhu [23] developed the ZZ estimator proposing the use
of the following expresión

[ 15 ]

where domain W can refer to either the whole domain or a local
(element) subdomain,  represents the stresses evaluated using the Finite
Element Method,  is the socalled smoothed or recovered stress field, that
is a better approximation of the exact solution tan 
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Figure 9.
Plate with crack under traction.

Equation (15) is rewritten as follows in terms of local coordinates for
the evaluation of the error in energy norm at element e:

[ 16 ]

We have used Relation 3 to reduce the computational cost of the
evaluation of |J|. Observe that the computational cost of any domain
integral can be reduced by means of the use of Relation 3.

An enhanced version [24] of the Superconvergent Patch Recovery
technique (SPR) [25] has been employed in the error estimation process.
is version of the SPR technique provides a very accurate recovered
stress field as it uses constraint equations to impose the exact local
satisfaction of the equilibrium and compatibility equations in the patch
of elements surrounding each vertex node.

e criterion used to define the size of the elements in new meshes is
based on the criterion of minimization of the number of elements in the
new mesh described by Ladeveze et al. [26, 27] and Coorevits et al [28].

Figure 10 shows two sequences of h-adapted meshes, obtained with
quadratic triangles and quadrilaterals, used to analyse the problem
represented in Figure 9. Note that some of the quadrilateral elements used
in the first mesh of the sequence were deliberately distorted to illustrate
the use of quadrilateral elements of arbitrary shapes. In Figure 10 all the
elements associated to the same KMatrix object have been represented
with the same colour. e statistics of the mesh sequence have been shown
in clearly shows the advantages obtained when the hierarchical relations
between elements are used. For example, when triangular elements have
been used, the last mesh in the sequence contains 9135 elements, some
of them with a refinement level r = 11, and has required the creation of
12168 elements. However, only 36 KMatrix objects have been evaluated
to create the problem stiffness matrix for this mesh with 19592 nodes.

7.2. Domain with curved boundaries

Parent elements with one or more of their sides lying over curved
boundaries will not be geometrically similar to their child elements.
erefore, when the mesh is refined, new KMatrix objects will be required
to be created. In any case, it must be taken into account that this will
only happen along curved boundaries. It can be intuitively observed that,



Revista UIS Ingenierías, 2017, 16(2), ISSN: 1657-4583 / 2145-8456

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

whereas the number of elements, in the 2D case, will grow as a function
of the area of the domain, the number of KMatrix objects to be created
will be a function of the length of the curved boundaries, i.e. one less
dimension.

e example presented in this section corresponds to a gravity dam.
e initial mesh used in this problem has been represented in Figure 11.
e objective of the analysis is the evaluation of the mean value of the
von- Mises stress in an area of interest which has been defined by the
highlighted elements. Quadratic triangular elements have been used in
this problem.

Figure 10.
Plate with crack under traction. Sequence of h-adapted meshes.

Representation of elements with the same KMatrix object.

Figure 11.
Gravity dam. Mesh 1. Quadratic triangular elements.
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Table 1
Plate with crack under traction. H-adaptive refinement data.

A Goal Oriented h-Adaptive process has been used in this case. e
adaptive process is based on the estimation of the error in the magnitude
of interest Q(ees) using the recovery type error estimator given in the
following expression for element e, as proposed for example in [29] and
[30]:

[ 17 ]

where  and  represent the FE and recovered stress fields
corresponding to the primal problem and  and  represent those
corresponding to the dual problem used to extract the magnitude of
interest. e standard SPR technique was used in this case to obtain the
recovered stress fields  and  As in the previous example, Relation 3 was
used in the evaluation of (17) to reduce the computational cost asociated
to the evaluation of |J|.

e hierarchical data structure has been used to define the area of
interest in more refined meshes, by simply taking into account that when
a parent element into the area of interest is subdivided into four children
elements, the children elements will also be part of the area of interest.
A detail of mesh 4 of the h-adaptive mesh sequence around the area of
interest is represented in Figure 12.

Figure 13 shows mesh 4 entirely. Elements with the same KMatrix
object have been represented with the same colour in these two figures. A
graphical comparison between the number of KMatrix objects evaluated
and the number of elements used in each mesh is represented in Figure 14.
is figure clearly shows that the number of elements used in each mesh,
which is a function of the area, grows faster than the number of KMatrix
objects evaluated, which is a function of the length of curved contours.

7.3. Solver improvement

Different direct solvers strategies that make use of the Cholesky
factorization of the stiffness matrix (symmetrical and positive definite,
once the displacement constrains have been imposed) have been
considered in this section. e factorization time, evaluated for a
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sequence of h-adapted meshes, used by the chol MatLab® command [22]
has been considered as the main parameter for the comparison. e
MatLab® profiling tool has been used to evaluate the CPU time employed
by the chol(K(p,p))command, where K(p,p) represents a permutation
p of the system matrix K. Each of the five strategies under comparison
corresponds to a different permutation p. e first four strategies,
denoted by colperm, symrcm, symamd and amd, respectively correspond
to the permutations obtained by using the colperm, symrcm, symamd and
amd commands available in MatLab®. A description of the algorithms
used by each of these commands can be found in the MatLab® 2009b
Help [22] and the references therein. e last strategy, denoted by ndd,
makes use of the natural reordering directly provided by the program’s
hierarchical structure.

Figure 12.
Gravity Dam. Detail of Mesh 4 around the area of interest.
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Figure 13.
Gravity Dam. Mesh 4.

Figure 14.
Gravity Dam. Evolution of the number of active elements and the number of KMatrix objects.

Figure 16 shows the evolution of the factorization times with respect
to the number of degrees of freedom of the system matrices of the mesh
sequences. e graph clearly shows that the best performance is obtained
with the ndd reordering. e colperm and symrcm reorderings are not
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competitive with the rest of the methods as they soon produce an out
of memory error in the computer used for the analyses. e symamd,
amd and ndd reorderings produce similar factorization times but, in an
average sense, the Cholesky factorization times with the symamd and
amd reorderings required 45% and 33% more time than with the ndd
reordering.

Figure 15.
Comparison of reordering schemes of a stiffness matrix, denoted by Original K (15054 degrees of
freedom). Each plot represents the reordered system matrix obtained by the different permutation.

Figure 16.
Cholesky factorization times obtained with each

reordering scheme for a sequence of h-refined meshes.

Figure 15 shows an example of comparison of the reordered matrices
obtained with the different permutation schemes. It can be observed
that the methods that produce the best performances of the Cholesky
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factorization, the symamd, amd and ndd permutations, produce similar
reordering patterns.

Figure 17.
Comparison of the factorizations of the matrices shown in Figure 15. e number of non-

zero terms of the factorizations is indicated below each plot. e Cholesky factorization
of the original matrix, without any reordering, produced an out of memory error.

Figure 17 represents the factorization of the permuted matrices
represented in Figure 15, except for the case of the original matrix, whose
factorization generated an out of memory error. e symamd, amd and
ndd permutations produce similar Cholesky factorizations of a similar
number of non-zero terms (indicated below each plot).

8. CONCLUSIONS

is paper has presented a hierarchical h-adaptivity methodology
implemented in a FE code for the resolution of the 2D linear elasticity
problem. Linear and quadratic isoparametric triangles and quadrilaterals
can be used in the mesh refinement process, which is based on element
subdivision and on the use of multi-point constraints to satisfy the
C0 continuity condition between adjacent elements with different
refinement levels.

e main conclusions arising from this paper are listed below.

• It has been shown that if two finite isoparametric elements are
geometrically similar, the terms involved in the evaluation of
their element stiffness matrices are related by a constant value.
is constant value is simply a function of the scaling factor that
relates both elements. In fact, under this geometrical similarity
condition, in the 2D case, the element stiffness matrices for
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geometrically similar elements are exactly equal if the Hooke’s
tensor is constant.

• In 2D mesh refinement processes based on element subdivision, if
a parent element has straight-line contours not lying over curved
boundaries with midside nodes exactly located over the mid-
side point of each side of the element, then, child elements can
be created geometrically similar to their parent element. In this
case, the matrices used to evaluate the element stiffness matrix of
the parent element, aer their multiplication by a constant value
related to the scaling factor, will be reused by the child elements
without any further calculation.

e hierarchical h-adaptive program code notably reduces the
computational cost associated to the evaluation of the problem stiffness
matrix, but also the cost associated to the computation of any result
involving the terms used in the evaluation of the element stiffness matrix
(strains and stresses at integration points, volume integrals,…).

• e hierarchical data structure is particularly well suited for the
implementation of a multi-grid solver.

• e hierarchical data structure would also simplify the
implementation of a domain decomposition solver, and, therefore,
the parallelization of the process.

e code can be described as hierarchical due to the following reasons:

• A hierarchical data structure, with parent-child relations, is used
to store data corresponding to elements and nodes.

• e hierarchical data structure simplifies the generation of the
new nested meshes.

• e hierarchical data structure simplifies the implementation of
iterative solvers in which the initial guess could be taken as the
solution of previous analyses.

• As in the p-hierarchical formulation of the FEM, stiffness matrix
information can be reused in other analyses.

Basic implementations of direct and iterative domain decomposition
solvers that make use of the nested arrowhead structure have been already
developed [31- 34].

9. ACKNOWLEDGEMENTS

e authors wish to thank the Spanish Ministerio de Economía y
Competitividad for the fiancial support received through the project
DPI2013-46317-R and the Generalitat Valenciana through the project
PROMETEO/2016/007. e support of the Universidad Politécnica
de Valencia is also acknowledged. e authors also want to thank Ana
Ródenas’s help in the translation of this paper.



Juan Ródenas, et al. A hierarchical h adaptivity methodology based on element subdivision

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

10. APPENDIX A: OBJECTS IN THE HIERARCHICAL
DATA STRUCTURE

is appendix shows a basic description of the main objects used to create
the hierarchical data structure of the FE code:

• Node: stores data associated to each node
• Element: stores data associated to each element
• KMatrix: stores data associated to each stiffness matrix.

Geometrically similar elements will be related to a single KMatrix
object.

e following acronyms will be used in the definitions of the most
important properties of these objects shown in Tables 2 to 4.

nnpe Number of nodes per element
nsides Number of sides of each element
nmesh Number of meshes in the h-adaptive sequence
ndofpe Number of degrees of freedom per element:
ndofpe = nnpe x 2 (2-D)
ngauss Number of integration Gauss points used into each element
nlevels Number element levels.

Table 2
Node object.

Table 3.
Element object.
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Table 4.
KMatrix Object.
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