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Abstract 

 

Laser ultrasonic non-destructive testing is widely used for the inspection of mechanical structures. This method uses 

the propagation of ultrasonic guided waves (UGW) in the media. It has been demonstrated that the addition of a thin 

composite layer between the laser source and the structure for inspection is necessary. Consequently, this composite 

is an optoacoustic transducer composed of an absorption material as carbon for inclusions and an expanding material 

as an elastomer for the matrix. Thus, optimal fabrication of this composite should enable the amplification of the signal 

for inspection. Indeed, experimental research has demonstrated that variation in the volume fraction of carbon 

inclusions, their shape and the nature of the matrix affect the amplification of the signal directly. The aim of this study 

is to analyse the wave propagation in particulate viscoelastic composites by a dynamic self-consistent approach. 

 

Keywords: particulate composites; self-consistent; viscoelastic composites; wave propagation. 

 

Resumen 

 

La inspección de componentes mecánicos por ultrasonido láser es uno de los controles no destructivos (CND) más 

utilizados en la industria, ya que permite inspeccionar rápidamente piezas de gran tamaño y de formas complejas por 

medio de la propagación de ondas guiadas. Ha sido demostrado que, para obtener la mejor calidad posible de la señal 

acústica, es necesario integrar una fina capa de material compuesto entre la placa y la fuente láser. Dicha capa de 

material compuesto permitiría la amplificación de la señal acústica; esta capa está formada por refuerzos de carbono 

que dan una característica de absorción térmica y de una matriz elastómera que otorga una característica de expansión 

volumétrica. Por tanto, la fabricación óptima de dicho compuesto permitiría la amplificación de la señal de inspección. 

De hecho, experimentalmente ha sido demostrado que la variación de la fracción volumétrica del refuerzo, de su forma 

(esférica o elipsoidal) y del tipo de matriz (silicona o resina), afecta directamente la amplificación de la señal. El 

objetivo de este trabajo es realizar un estudio micromecánico de tipo autocoherente de la propagación de ondas elásticas 

en un medio heterogéneo compuesto por una matriz viscoelástica y refuerzos esféricos elásticos. 

 

Palabras clave: micromecánica; autocoherente dinámico; viscoelasticidad; compuestos particulados; propagación de 

ondas. 
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1. Introduction 

 

Reliability in mechanical engineering structures after 

fabrication depends on how well these are controlled in a 

lifetime period [1], [2]. For that, non-destructive testing 

(NDT) is a useful tool. Ultrasonic guided waves (UGW) 

for inspection in mechanical structures have been widely 

investigated and developed [3]. This is because this 

method allows for evaluating large and complex form 

structures with only one measurement, unlike the 

conventional ultrasonic method using a transmitter-

receiver system for local measurement. 

 

A variation for UGW generation consists of using the 

power density of an incident laser beam [4]. For low 

power densities, ultrasonic waves are caused by the rapid 

thermal expansion of the material being irradiated. For 

this purpose, an optoacoustic transductor must transform 

in an easy and efficient way laser energy into acoustic 

(elastic) waves. This method to generate mechanical 

energy has been the focus of research in [5]–[9], where 

many different configurations of composite materials 

such as gold nanoparticles, carbon nanofiber and carbon 

nanotubes have been studied experimentally to obtain 

high-performance laser ultrasound transducers. In the 

same way, Ref. [10], [11] have focused on viscoelastic 

particulate composites. 

 

According to [10], carbon nanoparticles produced by 

candle soot (CSPs) is an efficient light absorbing material 

and viscoelastic Polydimethylsiloxane (PDMS) has a 

high thermal coefficient of volume expansion. Therefore, 

CSPs – PDMS composite is found to be a high-

performance optoacoustic transducer since it could 

generate a high frequency, broadband and high amplitude 

ultrasound wave. 

 

Inspired by the aforementioned results, the authors are 

interested in carrying out an analysis of elastic wave 

propagation in heterogeneous media. A first theoretical 

thermo-acoustic validation is proposed in [10], where the 

generated pressure gradient is directly associated with the 

temperature gradient generated by the laser impact. 

Under meaningful assumptions, the pressure gradient 

may be related solely to the setting parameters of the laser 

source. 

 

Another analysis consists of considering the propagation 

process being in steady state. Then, it is possible to 

consider elastic behaviour and temperature gradient 

separately, as proposed in [12]. In this case, the 

displacement field of the propagating wave is supposedly 

coincident with the displacement field of solid media. 

Therefore, the solution searched is the eigenvalues and 

eigenvectors velocities of the propagating wave in the 

solid media. 

 

Solving the wave propagation problem is standard for 

homogeneous media [12]. The micromechanical 

approach is a traditional way to estimate the effective 

behaviour of heterogeneous materials, especially for 

static problems [13]. Within the framework of dynamic 

problems, the acceleration term in the Navier equation 

has to be retained to evaluate the dynamic response of the 

composite through a micromechanical self-consistent 

approach [14]. 

 

The dynamic response in a solid homogeneous media for 

the wave propagation problem must be evaluated by the 

wave number 𝑘𝛾, where 𝛾 = 𝛼 for longitudinal waves 

and 𝛾 = 𝛽 for shear waves. This wavenumber belongs to 

the complex domain: 

 

𝑘𝛾 =
𝜔

𝑉(𝜔)
+ 𝑖 𝛼(𝜔) (1) 

 

where, 𝑉(𝜔) and 𝛼(𝜔) are the phase propagation 

velocity and the propagation attenuation coefficient, 

respectively. Dissipative properties of viscoelastic 

composites directly affect the attenuation coefficient as 

demonstrated experimentally in [15], [16]. 

 

This work presents in Section 2 a general 

micromechanical self-consistent formulation based on 

[14] for analysing the elastic wave propagation in a 

heterogeneous solid media. Multiple scattering caused by 

the random distribution and interaction between particles 

complicates considerably the wave propagation analysis. 

Therefore, we considered a single scattering problem 

described in Section 2. Afterward, the addition of 

viscoelastic properties to the micromechanical 

formulation is presented. In Section 3, the results 

obtained are shown and discussed. Finally, in Section 4, 

some conclusions and limitations of the study are 

presented. 

 

2. Methodology 

 

2.1. Dynamic self-consistent formulation 

 

Micromechanical methods are widespread to estimate 

composite behaviour within the static framework. For the 

dynamic case where acceleration terms are considered, 

the perturbation in the infinite media is supposed to be 

the mean propagating wave. Moreover, volume inclusion 

concentration in composites is available information in 

practice and not the distribution and interaction between 

particles. Accordingly, a first approach consists of 
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considering the single inclusion problem embedded in 

the matrix possessing effective media properties. 

 

A composite is considered comprising a matrix with 

elastic moduli tensor 𝐿𝑛+1 and density 𝜌𝑛+1, in which 

there are embedded 𝑛 different types of inclusions; an 

inclusion of family phase 𝑟 has an elastic modulus tensor 

𝐿𝑟 and density 𝜌𝑟. Volume concentration in the 

composite is such that: 

 

∑ 𝑐𝑟 = 1𝑛+1
𝑟=1 .  (2) 

 

Solving the dynamic problem consist of determining a 

mean response to the displacement field on the solid        

< 𝑢 >. For this purpose, the starting point is the Navier 

equation, that in the absence of body force reads: 

 

𝑑𝑖𝑣 𝜎 = 𝑝̇,   (3) 

 

where 𝜎 is the stress field, and 𝑝 is the momentum 

density. Stress and momentum density are related to 

elasticity Hooke’s law and displacement wave field, 

respectively: 

 

𝜎 = 𝐿𝑒,      𝑝 = 𝜌𝑢̇. (4) 

  

At the same time, deformation 𝑒 is related to 

displacement field through Cauchy’s law in elasticity for 

small displacement assumption. 

 

Analysis of the composite behaviour by a classical 

micromechanical approach comprising 𝑛 phases 

supposes that an effective response of the composite 

behaviour is the result of the micromechanical behaviour 

of each constituent; thus: 

 

𝑑𝑖𝑣 < 𝜎 >=< 𝑝̇ > . (5) 

 

Correspondingly, other quantities describing composite 

behaviour are averaged so that we obtain: 

 

Effective deformation field: 

 

< 𝑒 >= ∑ 𝑐𝑟𝑒𝑟
𝑛+1
𝑟=1   (6) 

 

Effective displacement field: 

 

< 𝑢̇ >= ∑ 𝑐𝑟𝑢̇𝑟
𝑛+1
𝑟=1   (7) 

 

Effective stress field: 

< 𝜎 >= ∑ 𝑐𝑟𝜎𝑟
𝑛+1
𝑟=1  = ∑ 𝑐𝑟𝐿𝑟𝑒𝑟

𝑛+1
𝑟=1  (8) 

 

Effective momentum density field: 

 

< 𝑝 >= ∑ 𝑐𝑟𝑝𝑟
𝑛+1
𝑟=1 = ∑ 𝑐𝑟𝜌𝑟𝑢̇𝑟

𝑛+1
𝑟=1   (9) 

 

By using perturbation theory shown in [17] for the static 

problem, the elastic and momentum density field in (5) 

can be separated by splitting into a homogenous part 

(comparison media) and a fluctuating part (perturbation). 

Consequently, (8) and (9) are written as follows: 

 

< 𝜎 >= 𝐿𝑛+1 < 𝑒 > +∑ 𝑐𝑟(𝐿𝑟 − 𝐿𝑛+1)𝑒𝑟
𝑛+1
𝑟=1  , (10) 

 

< 𝑝 >= 𝜌𝑛+1 < 𝑢̇ > +∑ 𝑐𝑟(𝜌𝑟 − 𝜌𝑛+1)𝑢̇𝑟
𝑛+1
𝑟=1 .  (11) 

 

The final solution is then obtained for 𝑒𝑟 and 𝑢̇𝑟 expressed 

as a function of the mean fields < 𝑒 >  and < 𝑢̇ >. For 

this aim, the problem is simplified by introducing the 

single scattering problem for spherical inclusions, as 

presented below. 

 

2.2. Single scattering problem 

 

This problem considers a single inclusion of volume Ω𝑟  

embedded in an elastic or viscoelastic effective matrix. 

The displacement field of the composite is coincident 

with the displacement field of the wave that is 

represented through the wave propagation equation in 

solids: 

 

< 𝑢 >= 𝑚 exp [𝑖(𝑘𝑥 − 𝜔𝑡)], (12) 

 

where 𝑚 is the wave amplitude, 𝑘 is the wave number, 

and 𝜔 is the frequency. Consequently, the dynamic 

response of an effective media of subscript ‘0’, Equation 

(13), must be equivalent to Equations (10) and (11): 

 

𝜎 = 𝐿0𝑒,      𝑝 = 𝜌0𝑢̇. (13) 

 

The mathematical treatment that follows requires of 

perturbation theory, micromechanical Green’s function, 

‘polarization’ theory and operation of convolution. This 

development is well presented in previous works [14], 

[18]. Final equations represent the dynamic response of 

effective properties (𝐿0, 𝜌0) to the elastic wave 

propagation: 

 
𝐿0 = 𝐿𝑛+1 +∑ 𝑐𝑟ℎ𝑟(𝑘)ℎ𝑟(−𝑘)

𝑛
𝑟=1 (𝐿𝑟 −

𝐿𝑛+1) [𝐼 + 𝑆𝑥̅
(𝑟)(𝐿𝑟 − 𝐿0)]

−1
   

(14) 

 
𝜌0 = 𝜌𝑛+1 +∑ 𝑐𝑟ℎ𝑟(𝑘)ℎ𝑟(−𝑘)

𝑛
𝑟=1 (𝜌𝑟 −

𝜌𝑛+1)[𝐼 + 𝑀̅𝑥
(𝑟)(𝜌𝑟 − 𝜌0)]

−1  
(15) 

 

where ℎ𝑟(𝑘), ℎ𝑟(−𝑘) and 𝑆𝑥̅
(𝑟), 𝑀̅𝑥

(𝑟)
 are localization 

functions and dynamic tensors, respectively. They are 

dependent on the shape and size of the inclusion, the 

wave frequency as well as effective properties. As shown 
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in (14) and (15), the equation system is implicit, and it 

must be solved by iteration. 

 

In addition, the static response of a composite can be 

estimated from (14) and (15), considering the zero-

frequency limit of equations, 𝜔 ≈ 0, 𝑘 = 0, ℎ𝑟(𝑘) = 1 

and 𝑀̅𝑡
(𝑟) = 0. Thus, equations are reduced to the 

classical micromechanical approach for the static 

problem: 

 
𝐿0 = 𝐿𝑛+1 +∑ 𝑐𝑟

𝑛
𝑟=1 (𝐿𝑟 − 𝐿𝑛+1)𝐴𝑟, (16) 

 
𝜌0 = ∑ 𝑐𝑟

𝑛
𝑟=1 𝜌𝑟 , (17) 

 

where 𝐴𝑟 are localization tensors in the classical 

micromechanical theory. 

 

2.3. Spherical inclusions case 

 

As proposed in Section 2.2, Equations (14) and (15) are 

dependent on the shape of the inclusion. In this section, 

the system of equations that describes the dynamic 

effective response to the elastic wave propagating in a 

spherical particle composite is presented. 

 

Since a heterogeneous media has become homogenised 

by a self-consistent approach, the effective media can be 

described with the aid of elastic moduli. Thus, the 

behaviour of the phase 𝑟 is represented by two elastic 

constants [12], 𝐿𝑟 = (3𝜅𝑟 , 2𝜇𝑟). 
 

The dynamic response for a phase of random spherical 

inclusions, each of radius 𝑎, is as follows:  

 

𝜅0 = 𝜅2 +
𝑐1ℎ1(𝑘)ℎ1(−𝑘)(𝜅1 − 𝜅2)

1 + 3(𝜅1 − 𝜅0)𝜀𝛼/(3𝜅0 + 4𝜇0)
 (18) 

 

𝜇0 = 𝜇2 + 
𝑐1ℎ1(𝑘)ℎ1(−𝑘)(𝜇1 − 𝜇2)

1 +
2(𝜇1 − 𝜇0)[2𝜇0𝜀𝛼 + (3𝜅0 + 4𝜇0)𝜀𝛽]

[5𝜇0(3𝜅0 + 4𝜇0)]

 (19) 

 

𝜌0 = 𝜌2 +
𝑐1ℎ1(𝑘)ℎ1(−𝑘)(𝜌1 − 𝜌2)

1 + (𝜌1 − 𝜌0)(3 − 𝜀𝛼 − 2𝜀𝛽)/(3𝜌0)
 (20) 

 

Subscripts ‘1’ and ‘2’ represent the inclusion and matrix 

response. The Equations (18-20) are function of volume 

inclusion concentration 𝑐1, the functions ℎ1(𝑘) and 𝜀𝛾, 

which are presented for the spherical case below: 

 

ℎ1(𝑘) = 3(sin 𝑘𝑎 − 𝑘𝑎 cos 𝑘𝑎 )/(𝑘𝑎)3 (21) 

 

𝜀𝛾 =
3(1 − 𝑖 𝑘𝛾𝑎)

(𝑘𝛾𝑎)
3 [sin(𝑘𝛾𝑎)

− 𝑘𝛾𝑎 cos(𝑘𝛾𝑎)]𝑒
−𝑖𝑘𝛾𝑎 

(22) 

 

Subscript 𝛾 denotes two possible polarizations for the 

wave propagation problem in homogeneous solid media, 

𝛾 = 𝛼 and 𝛾 = 𝛽 for the longitudinal and transversal 

wave propagation, respectively. Polarization for the 

wave propagation problem is displayed in detail in [12] 

with the aid of the wave number in (1); therefore:  

 

Longitudinal wave 

𝑘 = 𝑘𝛼 = 𝜔[(3𝜅0 + 4𝜇0)/3𝜌0]
−1/2 

(23) 

 

Transverse wave 

𝑘 = 𝑘𝛽 = 𝜔(𝜇0/𝜌0)
−1/2 

(24) 

 

Finally, (18–24) is a system of implicit equations, which 

is solved by iteration. The first iteration is done by 

assigning to the effective properties the matrix properties 

(𝐿0 = 𝐿2, 𝜌0 = 𝜌2). Because this study is interested in 

seeking the dynamic response of the composite adding 

viscoelastic properties, the next section presents the 

dynamic viscoelastic response (𝐿2, 𝜌2) that will be 

integrated to the formulation in (18–20). 

 

2.4. Viscoelastic properties 

 

Viscoelastic homogeneous behaviour is represented in 

the complex domain, acknowledging the elastic-

viscoelastic duality of material. Several rheological 

models have been proposed in the literature [19]. The 

chosen model to apply in the present study, due to its 

simplicity, is the Maxwell rheological model. In this 

model, mechanical behaviour of the material is 

represented with the aid of a spring for elasticity 

behaviour and a damper for viscosity behaviour, both 

connected in series. 

 

For homogeneous viscoelastic materials, the dynamic 

behaviour is described by two mechanical constants just 

as the homogeneous elastic material. This time, these 

properties are described in the complex domain. For this 

purpose, the fundamental equation stress-deformation for 

Maxwell materials,  

 

𝜎𝑖𝑗
∗ = 𝛿𝑖𝑗 [𝐾

∗(𝜔) −
2

3
𝜇∗(𝜔)] 𝜀𝑘𝑘

∗ + 2𝜇∗(𝜔)𝜀𝑖𝑗
∗   (25) 

 

is introduced in (3). Since the solicitation remains in a 

propagating wave as (12), the equations obtained [12] for 

the dynamic response in viscoelastic materials are: 
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𝜆 + 2𝜇 =  𝜌 (
2𝜋𝑓

𝑘𝐿
)
2

= 𝜌𝑐𝐿
2 (1 + 𝑖

𝑐𝐿𝛼𝐿

2𝜋𝑓
)
−2

  (26) 

 

𝜇 =  𝜌 (
2𝜋𝑓

𝑘𝑇
)
2

= 𝜌𝑐𝑇
2 (1 + 𝑖

𝑐𝑇𝛼𝑇

2𝜋𝑓
)
−2

  

 

(27) 

where, 𝑐𝑇 and 𝑐𝐿 denote the phase velocity, and 𝛼𝑇 and 

𝛼𝑇 are the attenuation coefficients of the longitudinal and 

transverse waves, respectively. 

 

2.4.1. Dynamic characterization of viscoelastic matrix 

 

To calculate (26) and (27) to be introduced in the 

formulation model (18–20), viscoelastic properties of the 

matrix must be experimentally characterised through the 

dynamic values (𝑐𝑇, 𝑐𝐿, 𝛼𝑇 and 𝛼𝐿) and be introduced as 

frequency dependent parameters defined by (26) and (27) 

in the propagation wave model (18-20).  

 

Several previous experimental studies for the 

measurement of longitudinal wave propagation in 

viscoelastic materials have been carried out. It has been 

found that for a large frequency interval, phase velocity 

is invariant. Furthermore, the attenuation coefficient 

increases linearly with frequency (𝛼 = 𝑚𝜔 + 𝛼0) [15]. 

This behaviour is presented in Table 1 and Figure 1. As 

EPOXY is often used as a matrix in the literature, we 

have also analysed the wave propagation problem with 

this material in Section 3. EPOXY and PMMA 

experimental characterization are taken from [16]. In 

addition, an experimental characterization for the PDMS 

has been studied in [20]. 

 

Table 1. Dynamic characterization of viscoelastic 

matrix. 

Viscoelastic 

matrix material 

Attenuation longitudinal coefficient 

[𝒏𝒑/𝒄𝒎] 

PDMS 50:1 
(3,538 𝜔[𝑀𝐻𝑧] −  2,262)

∗ (1/8,68589) 

PDMS 10:1 
(3,648 𝜔[𝑀𝐻𝑧]  −  1,36)

∗ (1/8,68589) 
EPOXY (45,4 𝜔[𝑀𝐻𝑧]  −  9,5) ∗ (1/100) 
PMMA (13,33 𝜔[𝑀𝐻𝑧]  −  6,67) 

 

3. Results 

 

As mentioned before, the dynamic response to the wave 

propagation in a solid can be estimated with the 

wavenumber in (1). The phase velocity as well as 

attenuation coefficient are evaluated using (23,24). 

 

Three special studies have been carried out in this work. 

First, it was the validation of micromechanical self-

consistent, adding the viscoelastic properties to the 

formulation (18–20) developed in Section 2 and 

presented in [14], where the formulation is solved for an 

elastic particulate composite. Second, once the model is 

validated, it is subjected to the change of different 

parameters such as the volume concentration of 

inclusions and their size. Finally, these results are 

compared with experimental results, with [21] for phase 

velocity and [16] for the attenuation coefficient. The 

labels corresponding to the various configurations 

illustrated in the following figures are presented in Table 

2. 

 

 

Figure 1. Dynamic characterization of viscoelastic 

matrix: EPOXY, PMMA, AND PDMS. 

 

Table 2. Descriptions used in the figures. 

Label Description 

Viscoelastic matrix Adding viscoelastic matrix 

response to (18–20) formulation.  

Elastic Matrix Elastic matrix response in (18-

20). 

Experimentation   Experimentation values [21]. 

Theoretical Biwa work.  Work carried out by [16]. 

 

Table 3 summarizes the dynamic properties used for the 

materials in the study, taken from [14], [16]: 

 

Table 3. Properties of the materials. 

Material EPOXY LEAD GLASS 

Longitudinal phase 

velocity (mm/μs) 
2,210 2,21 5,28 

Transverse phase 

velocity [mm/μs] 
1,197 0,86 3,24 

Density [g/cm3] 1,202 11,3 2,47 

Shear modulus [GPa] 1,731 8,357 26 

Bulk modulus [GPa] 6,069 44,047 77.8 

 

The next figures have been normalised for phase 

velocity, attenuation coefficient and frequency. The 

phase velocity measurement is taken as 𝜔/Re{𝑘𝛾}, where 

𝛾 = 𝛼 and 𝛾 = 𝛽 for longitudinal and transversal wave 

1.0

0.5

0.0

2 3 4 5

1.5

2.0

MHz

1/cm

EPOXY
PMMA
PDMS 10:1
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propagation, respectively and where 𝑘𝛾 is defined by (23, 

24). Phase velocities are normalised to the phase velocity 

of a longitudinal wave propagation in the matrix material 

(C2L). The measure of attenuation is Im{𝑎 𝑘𝛾}. 

Normalised frequency is 𝑘2𝑎, where 𝑘2 =  Re{𝑘𝛼} and is 

evaluated for 𝜅0 = 𝜅2, 𝜇0 = 𝜇2, 𝜌0 = 𝜌2. 

 

3.1. Phase velocity  

 

At first, the study focused on a composite with a large 

contrast in density between its constituents, e.g. an 

Epoxy-lead composite. It has been demonstrated that this 

large difference directly affects the dynamic response, 

mainly the effective density, which becomes the complex 

domain [22]. 

 

3.1.1. Validation of the self-consistent model adding 

the dynamic viscoelastic response 

 

Lead-epoxy composite is first considered, with the size 

of inclusions set at 660 [𝜇𝑚]. Figures 2 and 3 show the 

study carried out for an epoxy matrix containing 5% and 

15% of volume concentration spherical lead inclusions. 

The results are obtained for elastic and viscoelastic 

matrices. However, it was noticed that accounting for 

dynamic viscoelastic response leads to a global increase 

of the phase velocity. The experimental study carried out 

by Kinra [21] (yellow point in Figures 2 and 3) shows 

some peaks due to the resonance phenomenon that are 

also clearly represented by the micromechanical 

approach. For this particular composite, resonance 

phenomenon is close to 𝑘𝛼𝑎 = 0.5. 

 

Notice that the micromechanical approach gives good 

approximations to experimentation, especially for upper-

frequency values. 

 

 

Figure 2. Phase velocity for longitudinal propagation, 

Epoxy – 5% Lead Composite. 

 

Finally, the micromechanical self-consistent approach 

does not take into account the information on spatial 

correlations between inclusions [14]. Thus, this fact is a 

source of error and can be seen in the large difference in 

the resonance zone. In the literature, the self-consistent 

micromechanical approach gives a good approximation 

to low volume concentration of inclusions, typically 30% 

as in static problem.  

 

 

Figure 3. Phase velocity for longitudinal propagation, 

Epoxy – 15% Lead Composite 

 

3.1.2. Variation of volume concentration inclusion 

 

The experimental study in [21] for Epoxy – Lead 

particulate composite for longitudinal phase velocity 

shows a displacement of resonance phenomenon when 

the volume concentration of inclusions increases (Figure 

4). 

 

 

Figure 4. Longitudinal phase velocity for Epoxy - Lead 

composite. Variation of volume concentration. 

 

3.2. Attenuation coefficient 

 

In Section 2.3, it was shown the first characterization of 

attenuation coefficient in the viscoelastic matrix (26) and 

(27) that was necessary for the evaluation of dynamic 
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effective properties in (18-20). In this section, the 

imaginary parts of (23, 24) are analysed. 

 

3.2.1. Validation of self-consistent micromechanical 

model with viscoelastic matrix 

 

Accounting for the viscoelastic behaviour of the matrix 

leads to change in the attenuation coefficient, in 

particular, at the high-frequency regime. Attenuation 

coefficient becomes zero at high frequency for the elastic 

matrix. This attenuation coefficient has a defined value 

different from zero when viscoelasticity in the matrix is 

considered. Dynamic response of the effective media at 

high frequency corresponds to viscoelastic dynamic 

linear behaviour, as introduced in 2.4.1. The validation 

has been carried out for an Epoxy – Lead particulate 

composite, with the size of particles supposed at 𝑎 =
660 [𝜇𝑚]. Volume concentrations of 5 and 15% have 

been analysed in Figure 5. 

 

 

 

Figure 5. Longitudinal attenuation coefficient. Epoxy - 

5% and 15% Lead. 

 

 

The theoretical model developed in [16] evaluates 

attenuation coefficient by absorption due to viscoelastic 

behaviour and by scattering due to inclusions, separately. 

One of the particulate composites used for that study has 

been the Epoxy – Glass. In order to validate this approach 

with the present work, Epoxy and Glass properties are 

taken from Table 3, and the results are demonstrated in 

Figure 6. 

 

Comparing Figures 5 and 6, it can be observed that the 

tendency of the curves is different for the same frequency 

range. Therefore, it is demonstrated that dynamic 

composite response depends on the inclusion nature. 

 

 

Figure 6. Longitudinal attenuation coefficient. Epoxy 

and 15% Glass. 

 

3.2.2. Variation of volume concentration of inclusions 

 

Figure 7 shows epoxy – lead composite with different 

values of volume concentration. At low volume 

concentration of inclusions, the attenuation coefficient 

seems to be linear due to viscoelastic behaviour. That 

means dissipation in wave propagation energy due to the 

absorption in the matrix. On the other hand, when the 

volume concentration increases, attenuation is due to the 

scattering in single inclusion. 

 

 

Figure 7. Longitudinal attenuation coefficient for Epoxy 

- Lead. Variation of volume concentration of inclusions. 

 

3.2.3. Variation of the size of inclusions 

 

As mentioned before, two factors cause attenuation of a 

wave propagating in a viscoelastic matrix composite. 

First, it is absorption due to the viscoelastic behaviour in 
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the matrix, and second, it is scattering due to the 

inclusions. In this section, the micromechanical dynamic 

self-consistent approach is compared to the theoretical 

model proposed by Biwa [16], who has studied the 

influence of size variation of inclusions on the 

attenuation coefficient. 

 

Figure 8 depicts the results obtained by Biwa for Epoxy 

– Glass composite; volume concentration of inclusions is 

20%. It is worth to note that the attenuation coefficient in 

particulate composites is always higher than attenuation 

in pure viscoelastic material, contrary to the 

unidirectional fibre composites case [16]. Figure 9 shows 

the results for the micromechanical self-consistent 

approach. 

 

 

Figure 8. Longitudinal attenuation coefficient, 

theoretical approach Biwa [16]. Variation of the size of 

inclusions. 

 

The tendency in Figures 8, 9 is similar when the size of 

the inclusions increases. 

 

 

Figure 9. Longitudinal attenuation coefficient in 

micromechanical self-consistent approach. Variation of 

the size of inclusions. 

 

The increase of the attenuation value is greater for a 

larger size of inclusions and at low frequencies (Figure 

8). However, for the dynamic – self-consistent approach 

(Figure 9), this behaviour is rather observed at higher 

frequencies. 

 

3.2.4. Experimental validation 

 

The self-consistent model is compared to experimental 

results carried out by Kinra [21]. Attenuation coefficient 

for Epoxy - Glass composite has been analysed. The size 

of particles is 150 [𝜇𝑚], and the volume concentration of 

inclusions is supposed to be 8,6%. 

 

 

Figure 10. Experimental validation of attenuation 

coefficient. Epoxy - 8,6% Glass composite. 

 

Both theoretical approaches presented in Figure 10 show 

a good approximation with experimentation work for a 

low volume concentration in inclusions (8,6%) and at 

low frequency. When these values increase, both 

approaches give an incorrect approximation; in the case 

of dynamic self-consistent, this is due to the no 

experimental information relating to the correlation 

between particles. Thus, the single scattering problem 

does not give a good approximation at high volume 

concentration values. 

 

4. Conclusions 

 

In this work, elastic wave propagation in a heterogeneous 

viscoelastic particulate media has been studied. 

 

This approach is based on a dynamic micromechanical 

self-consistent approach. The dynamic term has been 

included in the Navier equation; it represents the 

displacement field of the wave which is coincident with 

the displacement field of effective media. In the 

literature, this approach gives good approximations at 

low concentration volume of inclusion, 30% maximum. 

 

The dynamic micromechanical self-consistent approach 

does not take into account correlations between 
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inclusions. Therefore, this is a source of error compared 

with experimental works. The dynamic composite 

response also depends on the inclusion nature. 

 

The integration of dynamic viscoelastic response of 

matrix gives an increase in both phase velocity and 

attenuation coefficient values in comparison with the 

elastic model. 
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