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Abstract

Laser ultrasonic non-destructive testing is widely used for the inspection of mechanical structures. This method uses
the propagation of ultrasonic guided waves (UGW) in the media. It has been demonstrated that the addition of a thin
composite layer between the laser source and the structure for inspection is necessary. Consequently, this composite
is an optoacoustic transducer composed of an absorption material as carbon for inclusions and an expanding material
as an elastomer for the matrix. Thus, optimal fabrication of this composite should enable the amplification of the signal
for inspection. Indeed, experimental research has demonstrated that variation in the volume fraction of carbon
inclusions, their shape and the nature of the matrix affect the amplification of the signal directly. The aim of this study
is to analyse the wave propagation in particulate viscoelastic composites by a dynamic self-consistent approach.

Keywords: particulate composites; self-consistent; viscoelastic composites; wave propagation.
Resumen

La inspeccion de componentes mecanicos por ultrasonido l&ser es uno de los controles no destructivos (CND) mas
utilizados en la industria, ya que permite inspeccionar rdpidamente piezas de gran tamafio y de formas complejas por
medio de la propagacion de ondas guiadas. Ha sido demostrado que, para obtener la mejor calidad posible de la sefial
acustica, es necesario integrar una fina capa de material compuesto entre la placa y la fuente laser. Dicha capa de
material compuesto permitiria la amplificacion de la sefial acUstica; esta capa esta formada por refuerzos de carbono
gue dan una caracteristica de absorcion térmica y de una matriz elastomera que otorga una caracteristica de expansion
volumétrica. Por tanto, la fabricacién 6ptima de dicho compuesto permitiria la amplificacion de la sefial de inspeccion.
De hecho, experimentalmente ha sido demostrado que la variacion de la fraccion volumétrica del refuerzo, de su forma
(esférica o elipsoidal) y del tipo de matriz (silicona o resina), afecta directamente la amplificacion de la sefial. El
objetivo de este trabajo es realizar un estudio micromecanico de tipo autocoherente de la propagacién de ondas elasticas
en un medio heterogéneo compuesto por una matriz viscoelastica y refuerzos esféricos elésticos.

Palabras clave: micromecénica; autocoherente dindmico; viscoelasticidad; compuestos particulados; propagacion de
ondas.
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1. Introduction

Reliability in mechanical engineering structures after
fabrication depends on how well these are controlled in a
lifetime period [1], [2]. For that, non-destructive testing
(NDT) is a useful tool. Ultrasonic guided waves (UGW)
for inspection in mechanical structures have been widely
investigated and developed [3]. This is because this
method allows for evaluating large and complex form
structures with only one measurement, unlike the
conventional ultrasonic method using a transmitter-
receiver system for local measurement.

A variation for UGW generation consists of using the
power density of an incident laser beam [4]. For low
power densities, ultrasonic waves are caused by the rapid
thermal expansion of the material being irradiated. For
this purpose, an optoacoustic transductor must transform
in an easy and efficient way laser energy into acoustic
(elastic) waves. This method to generate mechanical
energy has been the focus of research in [5]-[9], where
many different configurations of composite materials
such as gold nanoparticles, carbon nanofiber and carbon
nanotubes have been studied experimentally to obtain
high-performance laser ultrasound transducers. In the
same way, Ref. [10], [11] have focused on viscoelastic
particulate composites.

According to [10], carbon nanoparticles produced by
candle soot (CSPs) is an efficient light absorbing material
and viscoelastic Polydimethylsiloxane (PDMS) has a
high thermal coefficient of volume expansion. Therefore,
CSPs — PDMS composite is found to be a high-
performance optoacoustic transducer since it could
generate a high frequency, broadband and high amplitude
ultrasound wave.

Inspired by the aforementioned results, the authors are
interested in carrying out an analysis of elastic wave
propagation in heterogeneous media. A first theoretical
thermo-acoustic validation is proposed in [10], where the
generated pressure gradient is directly associated with the
temperature gradient generated by the laser impact.
Under meaningful assumptions, the pressure gradient
may be related solely to the setting parameters of the laser
source.

Another analysis consists of considering the propagation
process being in steady state. Then, it is possible to
consider elastic behaviour and temperature gradient
separately, as proposed in [12]. In this case, the
displacement field of the propagating wave is supposedly
coincident with the displacement field of solid media.
Therefore, the solution searched is the eigenvalues and
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eigenvectors velocities of the propagating wave in the
solid media.

Solving the wave propagation problem is standard for
homogeneous media [12]. The micromechanical
approach is a traditional way to estimate the effective
behaviour of heterogeneous materials, especially for
static problems [13]. Within the framework of dynamic
problems, the acceleration term in the Navier equation
has to be retained to evaluate the dynamic response of the
composite through a micromechanical self-consistent
approach [14].

The dynamic response in a solid homogeneous media for
the wave propagation problem must be evaluated by the
wave number k,, where y = « for longitudinal waves
and y = B for shear waves. This wavenumber belongs to
the complex domain:

ky = ——+i a(w) )
V(w)

where, V(w) and a(w) are the phase propagation
velocity and the propagation attenuation coefficient,
respectively. Dissipative properties of viscoelastic
composites directly affect the attenuation coefficient as
demonstrated experimentally in [15], [16].

This work presents in Section 2 a general
micromechanical self-consistent formulation based on
[14] for analysing the elastic wave propagation in a
heterogeneous solid media. Multiple scattering caused by
the random distribution and interaction between particles
complicates considerably the wave propagation analysis.
Therefore, we considered a single scattering problem
described in Section 2. Afterward, the addition of
viscoelastic  properties to the micromechanical
formulation is presented. In Section 3, the results
obtained are shown and discussed. Finally, in Section 4,
some conclusions and limitations of the study are
presented.

2. Methodology
2.1. Dynamic self-consistent formulation

Micromechanical methods are widespread to estimate
composite behaviour within the static framework. For the
dynamic case where acceleration terms are considered,
the perturbation in the infinite media is supposed to be
the mean propagating wave. Moreover, volume inclusion
concentration in composites is available information in
practice and not the distribution and interaction between
particles. Accordingly, a first approach consists of
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considering the single inclusion problem embedded in
the matrix possessing effective media properties.

A composite is considered comprising a matrix with
elastic moduli tensor L,,; and density p,,q, in which
there are embedded n different types of inclusions; an
inclusion of family phase r has an elastic modulus tensor
L. and density p,. Volume concentration in the
composite is such that:
e, =1. 0

Solving the dynamic problem consist of determining a
mean response to the displacement field on the solid
< u >. For this purpose, the starting point is the Navier
equation, that in the absence of body force reads:

divo =p, @)

where o is the stress field, and p is the momentum
density. Stress and momentum density are related to
elasticity Hooke’s law and displacement wave field,
respectively:

o=1Le, p=npi. 4)
At the same time, deformation e is related to
displacement field through Cauchy’s law in elasticity for
small displacement assumption.
Analysis of the composite behaviour by a classical
micromechanical approach comprising n phases
supposes that an effective response of the composite
behaviour is the result of the micromechanical behaviour
of each constituent; thus:

div<o>=<p>. (5)

Correspondingly, other quantities describing composite
behaviour are averaged so that we obtain:

Effective deformation field:

<e>=3Ytcee, (6)
Effective displacement field:

<u>=Y' e, ()

Effective stress field:
<o >= Z‘;li1 CrOr = Z?zll crLre, 8

Effective momentum density field:
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<p>= ?:11 CrDr = ?:11 CrPrly ©)

By using perturbation theory shown in [17] for the static
problem, the elastic and momentum density field in (5)
can be separated by splitting into a homogenous part
(comparison media) and a fluctuating part (perturbation).
Consequently, (8) and (9) are written as follows:

<0 >=Lyy <e>+ XM e (Ly — Lngd)er (10)

<P >=pPn41 < u> +Z¥:% Cr(p'r - pn+1)ur' (11)

The final solution is then obtained for e, and ., expressed
as a function of the mean fields < e > and < u >. For
this aim, the problem is simplified by introducing the
single scattering problem for spherical inclusions, as
presented below.

2.2. Single scattering problem

This problem considers a single inclusion of volume Q,.
embedded in an elastic or viscoelastic effective matrix.
The displacement field of the composite is coincident
with the displacement field of the wave that is
represented through the wave propagation equation in
solids:

<u >=mexp[i(kx — wt)], (12)

where m is the wave amplitude, k is the wave number,
and w is the frequency. Consequently, the dynamic
response of an effective media of subscript ‘0°, Equation
(13), must be equivalent to Equations (10) and (11):
g =1Lge, p=pol. (13)

The mathematical treatment that follows requires of
perturbation theory, micromechanical Green’s function,
‘polarization’ theory and operation of convolution. This
development is well presented in previous works [14],
[18]. Final equations represent the dynamic response of
effective properties (Lg,py) to the elastic wave
propagation:

Lo=Lpy +X0 crhr(k)hr(—kg (L, — 14)
Lns) [T+ 57 = Lo))]

Po = Pnt+1 T+ Zz}zlcrhr(k)hr(_k) (pr — (15)
Pl + M (o, = po)] ™

where h, (k), h,(—k) and ST, MT are localization

functions and dynamic tensors, respectively. They are

dependent on the shape and size of the inclusion, the

wave frequency as well as effective properties. As shown
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in (14) and (15), the equation system is implicit, and it
must be solved by iteration.

In addition, the static response of a composite can be
estimated from (14) and (15), considering the zero-
frequency limit of equations, w = 0, k =0, h,(k) =1
and 1\715” = 0. Thus, equations are reduced to the

classical micromechanical approach for the static
problem:
Lo = Lpyy + X7o1¢r (Ly — Ly 1) Ay, (16)

Po = Z;l:l Cr Pr» (17)

where A, are localization tensors in the classical
micromechanical theory.

2.3. Spherical inclusions case

As proposed in Section 2.2, Equations (14) and (15) are
dependent on the shape of the inclusion. In this section,
the system of equations that describes the dynamic
effective response to the elastic wave propagating in a
spherical particle composite is presented.

Since a heterogeneous media has become homogenised
by a self-consistent approach, the effective media can be
described with the aid of elastic moduli. Thus, the
behaviour of the phase r is represented by two elastic
constants [12], L, = (3k,, 2i4,.).

The dynamic response for a phase of random spherical
inclusions, each of radius a, is as follows:

c1hy (K)hy (k) (kg — K3)

Ko =¥+ 3(ky — Ko)ea/(BKg + 4ug) (18)
Ho = Uz +
crhy (K hy (=) (uy — uz) (19)
L4 20— 1o)[210q + (kg + 410)g5]
[5u0(Bxo + 4p10)]
o = py + c1hy(K)hy (k) (py — p2) (20)

1+ (p1 = po)(3 — €a — 2£5)/(3p0)

Subscripts ‘1° and ‘2’ represent the inclusion and matrix
response. The Equations (18-20) are function of volume
inclusion concentration c,, the functions h, (k) and ¢,
which are presented for the spherical case below:

hy(k) = 3(sinka — ka cos ka)/(ka)? (21)
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&, = —3(1 ! kya) sin(k,a
Y — (kya)S [ (ky ) (22)

— kya cos(kya)|e~tra

Subscript y denotes two possible polarizations for the
wave propagation problem in homogeneous solid media,
y =a and y = B for the longitudinal and transversal
wave propagation, respectively. Polarization for the
wave propagation problem is displayed in detail in [12]
with the aid of the wave number in (1); therefore:

Longitudinal wave

k =kq = w[(3ky + 4110)/3p0] "2 (23)
Transverse wave
k= kg = w(to/po) "/ (24)

Finally, (18-24) is a system of implicit equations, which
is solved by iteration. The first iteration is done by
assigning to the effective properties the matrix properties
(Lo = Ly, py = p). Because this study is interested in
seeking the dynamic response of the composite adding
viscoelastic properties, the next section presents the
dynamic viscoelastic response (L,,p,) that will be
integrated to the formulation in (18-20).

2.4. Viscoelastic properties

Viscoelastic homogeneous behaviour is represented in
the complex domain, acknowledging the elastic-
viscoelastic duality of material. Several rheological
models have been proposed in the literature [19]. The
chosen model to apply in the present study, due to its
simplicity, is the Maxwell rheological model. In this
model, mechanical behaviour of the material is
represented with the aid of a spring for elasticity
behaviour and a damper for viscosity behaviour, both
connected in series.

For homogeneous viscoelastic materials, the dynamic
behaviour is described by two mechanical constants just
as the homogeneous elastic material. This time, these
properties are described in the complex domain. For this
purpose, the fundamental equation stress-deformation for
Maxwell materials,

o = & [K*(w) — g,u*(w)] g + 21" (w)ef; (25)
is introduced in (3). Since the solicitation remains in a

propagating wave as (12), the equations obtained [12] for
the dynamic response in viscoelastic materials are:
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A+2u=p (%)2 = pc? (1 + i%)_z (26)
w=p () =pi(1+i20)”

where, ¢y and ¢, denote the phase velocity, and a; and
ay are the attenuation coefficients of the longitudinal and
transverse waves, respectively.

2.4.1. Dynamic characterization of viscoelastic matrix

To calculate (26) and (27) to be introduced in the
formulation model (18-20), viscoelastic properties of the
matrix must be experimentally characterised through the
dynamic values (¢, ¢;, ar and «;) and be introduced as
frequency dependent parameters defined by (26) and (27)
in the propagation wave model (18-20).

Several previous experimental studies for the
measurement of longitudinal wave propagation in
viscoelastic materials have been carried out. It has been
found that for a large frequency interval, phase velocity
is invariant. Furthermore, the attenuation coefficient
increases linearly with frequency (a = mw + «a,) [15].
This behaviour is presented in Table 1 and Figure 1. As
EPOXY is often used as a matrix in the literature, we
have also analysed the wave propagation problem with
this material in Section 3. EPOXY and PMMA
experimental characterization are taken from [16]. In
addition, an experimental characterization for the PDMS
has been studied in [20].

Table 1. Dynamic characterization of viscoelastic

matrix.
Viscoelastic Attenuation longitudinal coefficient
matrix material [np/cm]
. (3,538 w[MHz] — 2,262)
PDMS 50:1 « (1/8,68589)
. (3,648 w[MHz] — 1,36)

PDMS 10:1 « (1/8,68589)
EPOXY (45,4 w[MHz] — 9,5) * (1/100)
PMMA (13,33 w[MHz] — 6,67)

3. Results

As mentioned before, the dynamic response to the wave
propagation in a solid can be estimated with the
wavenumber in (1). The phase velocity as well as
attenuation coefficient are evaluated using (23,24).

Three special studies have been carried out in this work.
First, it was the validation of micromechanical self-
consistent, adding the viscoelastic properties to the
formulation (18-20) developed in Section 2 and
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presented in [14], where the formulation is solved for an
elastic particulate composite. Second, once the model is
validated, it is subjected to the change of different
parameters such as the volume concentration of
inclusions and their size. Finally, these results are
compared with experimental results, with [21] for phase
velocity and [16] for the attenuation coefficient. The
labels corresponding to the various configurations
illustrated in the following figures are presented in Table
2.

l/icm
EPOXY
20 — PMMA
PDMS 10:1
15
1.0

05 |~ -
/MMHZ 4 5

Figure 1. Dynamic characterization of viscoelastic
matrix: EPOXY, PMMA, AND PDMS.

0.0

Table 2. Descriptions used in the figures.

Label Description

Viscoelastic matrix Adding viscoelastic matrix
response to (18-20) formulation.
Elastic matrix response in (18-
20).

Experimentation values [21].
Work carried out by [16].

Elastic Matrix

Experimentation
Theoretical Biwa work.

Table 3 summarizes the dynamic properties used for the
materials in the study, taken from [14], [16]:

Table 3. Properties of the materials.

Material EPOXY LEAD GLASS
Longitudinal phase
velocity (mm/ys) 2,210 2,21 5,28
Trans_verse phase 1197 0,86 324
velocity [mm/us]
Density [g/cm3] 1,202 11,3 2,47
Shear modulus [GPa] 1,731 8,357 26
Bulk modulus [GPa] 6,069 44,047 77.8

The next figures have been normalised for phase
velocity, attenuation coefficient and frequency. The
phase velocity measurement is taken as w /Re{ky}, where
y = a and y = B for longitudinal and transversal wave
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propagation, respectively and where k,, is defined by (23,
24). Phase velocities are normalised to the phase velocity
of a longitudinal wave propagation in the matrix material
(C2L). The measure of attenuation is Im{ak,}.
Normalised frequency is k,a, where k, = Re{k,}and is
evaluated for ky, = Ky, g = Uz, Po = P2-

3.1. Phase velocity

At first, the study focused on a composite with a large
contrast in density between its constituents, e.g. an
Epoxy-lead composite. It has been demonstrated that this
large difference directly affects the dynamic response,
mainly the effective density, which becomes the complex
domain [22].

3.1.1. Validation of the self-consistent model adding
the dynamic viscoelastic response

Lead-epoxy composite is first considered, with the size
of inclusions set at 660 [um]. Figures 2 and 3 show the
study carried out for an epoxy matrix containing 5% and
15% of volume concentration spherical lead inclusions.
The results are obtained for elastic and viscoelastic
matrices. However, it was noticed that accounting for
dynamic viscoelastic response leads to a global increase
of the phase velocity. The experimental study carried out
by Kinra [21] (yellow point in Figures 2 and 3) shows
some peaks due to the resonance phenomenon that are
also clearly represented by the micromechanical
approach. For this particular composite, resonance
phenomenon is close to k,a = 0.5.

Notice that the micromechanical approach gives good
approximations to experimentation, especially for upper-
frequency values.

1.1
o I o I
o
O
S~
-2 1.0
=~
oy
m . .
N *» Viscoelastic matrix
3 09 X .
Experimentation
Elastic matrix
0.8
0.5 1.0 k 15 2.0
za

Figure 2. Phase velocity for longitudinal propagation,
Epoxy — 5% Lead Composite.
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Finally, the micromechanical self-consistent approach
does not take into account the information on spatial
correlations between inclusions [14]. Thus, this fact is a
source of error and can be seen in the large difference in
the resonance zone. In the literature, the self-consistent
micromechanical approach gives a good approximation
to low volume concentration of inclusions, typically 30%
as in static problem.

121

. * Viscoelastic matrix
0.8 . Experimentation
: Elastic matrix

w/Re{k,}/caL

05 1.0 15 2.0
k,a

Figure 3. Phase velocity for longitudinal propagation,
Epoxy — 15% Lead Composite

3.1.2. Variation of volume concentration inclusion

The experimental study in [21] for Epoxy — Lead
particulate composite for longitudinal phase velocity
shows a displacement of resonance phenomenon when
the volume concentration of inclusions increases (Figure
4).

1.2
p—)
= ;
g :
A51.0 [
[5) ® 1%
o
3 5%
E 15%
0.8 ‘ ‘. 425%
05 10 15 2.0

k,a

Figure 4. Longitudinal phase velocity for Epoxy - Lead
composite. Variation of volume concentration.

3.2. Attenuation coefficient
In Section 2.3, it was shown the first characterization of

attenuation coefficient in the viscoelastic matrix (26) and
(27) that was necessary for the evaluation of dynamic
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effective properties in (18-20). In this section, the
imaginary parts of (23, 24) are analysed.

3.2.1. Validation of self-consistent micromechanical
model with viscoelastic matrix

Accounting for the viscoelastic behaviour of the matrix
leads to change in the attenuation coefficient, in
particular, at the high-frequency regime. Attenuation
coefficient becomes zero at high frequency for the elastic
matrix. This attenuation coefficient has a defined value
different from zero when viscoelasticity in the matrix is
considered. Dynamic response of the effective media at
high frequency corresponds to viscoelastic dynamic
linear behaviour, as introduced in 2.4.1. The validation
has been carried out for an Epoxy — Lead particulate
composite, with the size of particles supposed at a =
660 [um]. Volume concentrations of 5 and 15% have
been analysed in Figure 5.

03 ¢ Elastic matrix- ci 5%
- Elastic matrix - ci 15%
Ny Viscoelastic matrix- ci 5%
3,02 + Viscoelastic matrix- ci 15%
E

01

.................
"
T
.........

Figure 5. Longitudinal attenuation coefficient. Epoxy -
5% and 15% Lead.

The theoretical model developed in [16] evaluates
attenuation coefficient by absorption due to viscoelastic
behaviour and by scattering due to inclusions, separately.
One of the particulate composites used for that study has
been the Epoxy — Glass. In order to validate this approach
with the present work, Epoxy and Glass properties are
taken from Table 3, and the results are demonstrated in
Figure 6.

Comparing Figures 5 and 6, it can be observed that the
tendency of the curves is different for the same frequency
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range. Therefore, it is demonstrated that dynamic
composite response depends on the inclusion nature.

03 e
—
2
EJO 2
E
r ® \iscoelastic matrix
0.1 Elastic matrix
o5 10 15 20
k,a

Figure 6. Longitudinal attenuation coefficient. Epoxy
and 15% Glass.

3.2.2. Variation of volume concentration of inclusions

Figure 7 shows epoxy — lead composite with different
values of volume concentration. At low volume
concentration of inclusions, the attenuation coefficient
seems to be linear due to viscoelastic behaviour. That
means dissipation in wave propagation energy due to the
absorption in the matrix. On the other hand, when the
volume concentration increases, attenuation is due to the
scattering in single inclusion.

30
® Epoxy
1%
5%
£
S 20 4 15%
—
10
""""""" 2 4 6 8
MHz

Figure 7. Longitudinal attenuation coefficient for Epoxy
- Lead. Variation of volume concentration of inclusions.

3.2.3. Variation of the size of inclusions
As mentioned before, two factors cause attenuation of a

wave propagating in a viscoelastic matrix composite.
First, it is absorption due to the viscoelastic behaviour in
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the matrix, and second, it is scattering due to the
inclusions. In this section, the micromechanical dynamic
self-consistent approach is compared to the theoretical
model proposed by Biwa [16], who has studied the
influence of size variation of inclusions on the
attenuation coefficient.

Figure 8 depicts the results obtained by Biwa for Epoxy
— Glass composite; volume concentration of inclusions is
20%. It is worth to note that the attenuation coefficient in
particulate composites is always higher than attenuation
in pure viscoelastic material, contrary to the
unidirectional fibre composites case [16]. Figure 9 shows
the results for the micromechanical self-consistent

approach.
8" y; ® Epoxy
/ lum
/ 10pum
6 4 100um
c 2
($)
=
a4 T
ol S
2 4 6 8
MHz

Figure 8. Longitudinal attenuation coefficient,
theoretical approach Biwa [16]. Variation of the size of
inclusions.

The tendency in Figures 8, 9 is similar when the size of
the inclusions increases.

30 "Epoy
lum
10pum
4 100um
E 20 Y500um
-
10
""""" 2 4 6 8

Figure 9. Longitudinal attenuation coefficient in
micromechanical self-consistent approach. Variation of
the size of inclusions.

The increase of the attenuation value is greater for a
larger size of inclusions and at low frequencies (Figure

C. Rojas, F. Dinzart, O.A. Gonzélez-Estrada

8). However, for the dynamic — self-consistent approach
(Figure 9), this behaviour is rather observed at higher
frequencies.

3.2.4. Experimental validation

The self-consistent model is compared to experimental
results carried out by Kinra [21]. Attenuation coefficient
for Epoxy - Glass composite has been analysed. The size
of particles is 150 [um], and the volume concentration of
inclusions is supposed to be 8,6%.

30 " Epoxy
Theoretical, Biwa
Experimental

4 Viscoelastic matrix
520
—
10

o
)
O

Figure 10. Experimental validation of attenuation
coefficient. Epoxy - 8,6% Glass composite.

Both theoretical approaches presented in Figure 10 show
a good approximation with experimentation work for a
low volume concentration in inclusions (8,6%) and at
low frequency. When these values increase, both
approaches give an incorrect approximation; in the case
of dynamic self-consistent, this is due to the no
experimental information relating to the correlation
between particles. Thus, the single scattering problem
does not give a good approximation at high volume
concentration values.

4. Conclusions

In this work, elastic wave propagation in a heterogeneous
viscoelastic particulate media has been studied.

This approach is based on a dynamic micromechanical
self-consistent approach. The dynamic term has been
included in the Navier equation; it represents the
displacement field of the wave which is coincident with
the displacement field of effective media. In the
literature, this approach gives good approximations at
low concentration volume of inclusion, 30% maximum.

The dynamic micromechanical self-consistent approach
does not take into account correlations between
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inclusions. Therefore, this is a source of error compared
with experimental works. The dynamic composite
response also depends on the inclusion nature.

The integration of dynamic viscoelastic response of
matrix gives an increase in both phase velocity and
attenuation coefficient values in comparison with the
elastic model.
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