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Abstract

The definition of a traction-separation relationship is a fundamental issue in cohesive zone models because it describes
the nonlinear fracture process. Cohesive interactions are generally a function of displacement jump (or separation). If
the displacement jump is greater than a characteristic length (5n), complete failure occurs. In this study, the softening
condition behavior of a cohesive interface between two identical materials was assessed for different stiffness values
of solid and cohesive. The cohesive interface was modeled with a traction-separation linear relationship and for the
solids continuum elastic constitutive models were used. The softening condition was obtained by analytical and finite
element method. The whole system behavior was modeled using ABAQUS 6.14 to obtain stress-displacement
relationship. The analytical solution and computational results were compared. The computational results matched the
analytical solutions and the simulations allowed to obtain a response in the cases where the analytical solution has
singularities “backslash effect”.

Keywords: Abaqus; cohesive element; cohesive zone model; finite element simulation; traction separation law.
Resumen

La definicién de la relacién traccién-separacion es una cuestion fundamental en los modelos de zona cohesiva porque
describe procesos de fractura no lineal. Las interacciones cohesivas son generalmente una funcion del desplazamiento
(o separacidn). Si el cambio en el desplazamiento es mayor que una longitud caracteristica (dn), ocurre una falla
completa. En este estudio la condicidn de ablandamiento de la interfaz cohesiva entre dos materiales idénticos fue
evaluada para diferentes valores de rigidez del solido y del cohesivo. La interfaz cohesiva fue modelada con la relacion
lineal de traccién-separacion y para los sélidos se utilizaron modelos constitutivos continuos elasticos. El
comportamiento de todo el sistema fue modelado usando ABAQUS 6.14 para obtener la relacion esfuerzo-
deformacion. La solucién analitica y los resultados computacionales fueron comparados. Los resultados
computacionales concordaron con la solucion analitica y las simulaciones permitieron obtener una respuesta en los
casos donde la solucion analitica tiene singularidades "backslash effect".

Palabras clave: modelo de zona cohesiva; ley traccion separacidn; elemento cohesivo; simulacion por elemento finito;
Abaqus.
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1. Introduccién

Cohesive zone models have been used to treat fracture
nonlinear problems since it provides a more realistic
feature of the failure process [1]. The cohesive zone is a
surface in a bulk material where displacement
discontinuities occur. Thus, continuum is enhanced with
discontinuities in the form of displacement jumps. These
displacement jumps require a constitutive description
called traction -separations relationship (cohesive laws)
to describe cohesive interactions. In general, traction-
separation relationships can be classified into potential-
based models and non-potential-based models. Potential-
based models use the concept of cohesive energy
potential, for example, Needleman and Tvergaard [2],
[3]. For non-potential-based models, several constitutive
relationships of the cohesive zone model with various
shapes have been developed, e.g., linear softening [4],
trapezoidal shape [5], bilinear softening [6], cubic
polynomial, and exponential, as shown in Fig.1. All these
models, irrespective of the choice of the elementary
functions, are constructed qualitatively as follows:
tractions increase, reach a maximum, and then approach
zero with increasing separation. This scenario is in
harmony with our intuitive understanding of the rupture
process. It is analogous to atomic interactions [7]-[9].

Needleman introduced the cohesive zone models
(CZMs) in computational practice. Since then CZMs are
used increasingly in finite element simulations of crack
tip plasticity and creep; crazing in polymers; adhesively
bonded joints; interface cracks in bimaterials;
delamination in composites and multilayers; fast crack
propagation in polymers, and so on [7], [9].

One of essential aspects in the CMZ is the choice of a
traction—separation relation also called traction-
separation law. Because most of these relationships
exhibit limitations, especially under mixed-mode
conditions, the relationship should be selected with great
caution. Many researchers using CZMs consider that the
separation work and the cohesive strength are two main
parameters characterizing of the separation process. But,
if the cohesive element stiffness is less than the stiffness
of the surrounding elements, the global response can be
affected when the failure process is computed by
computational techniques and the back-slash effect is
produced during the softening condition. On the other
hand, when the analytical solution is considered to solve
this situation, it is no possible obtain a response for cases
in which the cohesive element stiffness is equal to
surrounding elements stiffness. For this reason, we
investigated the softening condition behavior of a
cohesive interface between two identical materials for
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different stiffness values of solid and cohesive elements
by analytical and computational methods.

In this research work, interfaces along two elastic similar
solids were studied by using linear form of CZMs and
modeled by element finite approach includes in
ABAQUS (section 2). The analytical solution was
performed considering two blocks bridged by a cohesive
zone of zero thickness due to this assembly allows to
verify easily the solution (section 3). In section 4 we
concluded, based on the obtained results that simulations
allow to obtain a response in the cases where analytical
solutions have singularities called “back slash effect”.

The aim of this study is to establish how the numerical
modeling using the finite element method can be used to
represent the different cases in which the stiffness
modulus of the bulk material can vary and obtain
adequate representations of the phenomena. These results
will be useful in future work modeling composite
materials and obtain their mechanical response by using
computer simulations.

2. Cohesive zone model (CMZ)

The idea for the cohesive model is based on the
consideration that infinite stresses at the crack tip are not
realistic, the first models to overcome this drawback were
porposed by Dugdale [10] and Barenblatt [11]. For
practical applications the model became more interesting
when numerical methods, mostly the finite element
method, were applicable to nonlinear problems, in 1990
Needleman [12] used the model of crack propagation to
analyze ductile materials, since then it is a common
practice to analyze with this model the growth of cracks
in this type of materials.

Displacement of the tip position of a crack assumes
bonds stretching orthogonal to the crack surfaces until
they break According to CZM, the fracture process is
lumped into the crack line and is characterized by a
cohesive law that relates tractions and displacement
jumps across cohesive surfaces, the whole body volume
remains elastic while the nonlinearity is embedded in the
cohesive law which dictates the interfacial conditions
along the crack line (Fig. 1). Therefore, the continuum
should be characterized by two constitutive laws; a linear
stress-strain relation for the bulk material and a cohesive
surface relation (cohesive law) that allows crack
spontaneous initiation and growth [13].

Cohesive zone model adds a zone of vanishing thickness
ahead of the crack tip with the intention of describing
more realistically the fracture process without the use of
stress singularity. The cohesive zone is idealized as two
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cohesive surfaces, which are held together by a cohesive
traction (see Figure 1). The cohesive crack propagation
may consist of four stages: elastic, initiation, softening
and complete failure [1], [14].

Since the CZMs are a phenomenological model, there is
not a rule evidence cohesive law shape most suitable
according to failure process. Therefore, the cohesive
relationship is assumed independent of a specific
material and many authors use the traction separation
relationship created by themselves.

The magnitude of the parameters in CZMs vary widely,
ranging from MPa to GPa for traction, J to kJ for energy,
and nanometers to micrometers for separation distance
[15].

The intrinsic traction-separation relationships used by
ABAQUS, is briefly explained below.

2. ”m‘ Cohesivei-\’“
‘Hnl Zone

Figure 1. Schematics of the cohesive zone model.
Source: authors.

2.1. Traction-Separation relationship in ABAQUS

Since the cohesive model is a phenomenological model
there is no evidence which form to take for T (3). So it
has to be assumed independent from the material as a
model quality [16]. In the literature it can be found
several approaches (Figure 3). ABAQUS considers the
traction-separation relationship as the variation of
fracture toughness as a function of a mode-mixity ratio.
This model was originally developed by Camanho et al.
[4]. To describe the mixed-mode condition across the
interface, an effective separation (A) is defined in
equation (1).

A= |AZ+ A2 1
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Where A, and A, are the normal and tangential
separations, respectively.

The available traction-separation model in ABAQUS
assumes initially linear elastic behavior followed by the
initiation and evolution of damage (see Figure 2). The
elastic behavior is written in terms of an elastic
constitutive matrix that relates the nominal stresses to the
nominal strains across the interface, according to
constitutive relationship describes below:

Tn Cnn CTIS Cnt Sn
T=|T;|=|Cn Css Cs||&|=C-& 2
T¢ Con Ces Ceellée

Where T is nominal traction stress vector, C is the
elasticity matrix and g is the strain vector defined by ¢; =

%, denoting by Ty the original thickness of the cohesive
0

element.
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Figure 2. Traction-separation law in ABAQUS v6.14.1.
Source: authors.

2.1.1. Damage initiation

Damage initiation refers to the beginning of degradation
of the response of a material point. When the separations
reach the effective critical separation, the state of
separation corresponds to the onset of damage and/or
crack initiation. ABAQUS has several failure criteria. A
maximum nominal stress criterion is employed to
determine the onset of damage, which the damage is
assumed to initiate when the maximum nominal stress
ratio (as defined in the expression below) reaches a value
equal to one. This criterion is represented by ecuation (3).

(Tn) Ts Tt
maX{T—r?,T—é),T—;) =1 (3)
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Where () is the Macauley bracket, T,?,T0,andT? T, Ts,and T, which represent the normal and the two
represent the peak values of the nominal stress when the  shear tractions, respectively.

deformation is either purely normal to the interface or

purely in the first or the second shear direction,
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Figure 3. Effective traction-separation relationships: (a) linear softening, (b) trapezoidal, (c) smoothed trapezoidal,
(d) bilinear softening, (e) cubic polynomial, and (f) exponential. Source: authors.

When the effective separation is smaller than an effective  tractions are proportional to the normal and tangential
critical separation (8.), the normal and tangential  separations, which are given as:



Assessment of cohesive traction-separation relationship according stiffness variation

T, = KpAy, T, = K,A; (4)

where Kp is a penalty stiffness.
2.1.2. Damage evolution

Damage evolution law describes the rate at which the
material stiffness is degraded once the corresponding
initiation criterion is reached. ABAQUS uses a scalar
damage variable D to represent the overall damage at the
contact point. This variable takes 0 and 1 values (if the
cohesive element is broken, D = 1 on the contrary, D =
0).

When the effective separation is greater than the effective
critical separation (5.) and smaller than the effective
complete failure separation (&) i.e. 6. < A < &, the state
of separation corresponds to the softening condition [7].
Then, the normal and tangential cohesive tractions are
defined by equation (5).

T, = (1 - D)K,A,
T, =(1- D)KZAt ©)

The definition of damage evolution in ABAQUS is
specified by two components. The first component
involves specifying either the effective complete failure
separation (6}) or energy fracture (G®). The second
component to the definition of damage evolution is the
specification of the nature of the evolution of the damage
variable, D, between initiation of damage and final
failure (softening condition). Three types of damage
evolution are available in ABAQUS: linear, exponential
or tabular. A linear model is employed to describe the
softening condition according to the equation (6).

_5(@-5) ©
A - 8,)

2.1.3. Mixed-mode definition

The mixed mode of deformation fields in the cohesive
zone quantify the relative proportions of normal and
shear deformation. ABAQUS uses three measures of
mixed mode, two are based on energies and the otherone
is based on tractions. Mixed mode definitions based on
energies are described by equations (7) and (8).

m=@m =&m =& (7
e e TG
Gr =G, +Gs; + G, (8)
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Where Gn, Gs, Gt are the work done by the tractions and
their conjugate displacements in the normal and shear
directions.

3. Analytical solution

In this study, a body compromising two symmetric rigid
parts bridged by a cohesive zone of zero thickness was
modeled as shown Figure 4. In addition, a linear cohesive
zone model is used to simulate the interfacial mechanical
response. For pure opening (At = 0) the variation of
normal traction with respect to A,, to solids and cohesive
layer are shown in Figure 5 (a) and (b), respectively, thus,
the constitutive response of system is shown in Fig. 6.
Increasing forces P or applying a vertical displacement
will lead to the nucleation of a crack at center if the
stiffness solid is less than the cohesive layer stiffness
(case i) or, at the right and left side if the stiffness solid
is equal or greater than the cohesive layer stiffness (case

e

Cohesive Z
ohesive Zone )
_ﬁ'
. o
Solid =
1
o4 4
Figure 4. Schema of the model simulated. Source:
authors.

An elastic linear behavior to the solid is assumed and
using the traction-separation law mentioned in section 2
the following equations (9) and (10) were obtained in
each stage of the damage evolution.

Stage I:

L 1\! _ 9)
+—) 0<5<8,

=A(_
g ETK
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Stage II: (10)

/L 1N\t -
o= (A—(Sc)(E+?) 5. <6<38,
Where K and K’ are the penalty stiffness and stiffness
degradation to linear traction-separation law of cohesive
layer, E and L are the Young’s modulus and length of the
solid and A are displacement jumps normal to the
cohesive zone.

To assess the cohesive traction-separation relationship
according stiffness variation, the values for Young’s
modulus of solid are arbitrarily selected as 1, 10, 70 GPa.
Mode | fracture is selected. In addition, the penalty
stiffness is 50 MPa/mm, effective critical separation is 10
pm, and the cohesive strength is 10 MPa.

a)

o O-max

5, 5
b)
Figure 5. Normal tractions (a) Solids (b) Cohesive layer.
Source: authors.
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(e} O—max
i | iii
/MAVAVAV
[ A
Figure 6. Constitutive response of system. Source:

authors.
4. Finite element approach

To compare the analytical solution with numeral
response the finite element method is employed by
simulations  conducted in  commercial software
ABAQUS 6.14.1. This software allows solving problems
in cases where analytical methods present singularities,

for example case ii shown in Figure.
Ahdbdbbdbbbbiarg

Figure 6. Mesh and boundary conditions used in the
finite element analysis. Source: authors.

The simulated model is shown in Figure 4, on the upper
edge of the solid a positive displacement A,, of the axis y
is applied until cohesive elements fail. The lower border
is simulated as fixed. A standard analysis is used for case
iii whereas to case i and ii, explicit analysis is employed.
The discretized mesh has 512 linear quadrilateral
elements of type CPS4R to model solids. 160 linear
quadrilateral elements of type COH2D4 with zero
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thickness in the direction normal to the interface are used
to model interface behavior. The mesh and boundary
conditions used in the simulation are shown in Figure 6.

Cohesive law is defined in ABAQUS specifying the
damage evolution as: effective displacement 6, — &, =
20 um, a variable D linear softening type, mode-
independent behaviour and mixed-mode energy
definition. An elastic constitutive behavior is assumed for
the bulk.

5. Results and discussion

To evaluate the influence of stiffness on the traction-
separation relationship, the model is analyzed with three
different stiffness values for the solid. The analytical
response was obtained using the equations (9) y (10). The
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evolution of von Mises stress as the displacement
imposed on the upper edge occurs is shown in Figures 8
- 10. A comparison between the analytical and
computational solution is shown in Figures. 11 — 13.

In the simulation shown in Figure 7 the system presents
instabilities due to the bulk is compliant as compared to
the rigidity of the cohesive layer, which makes it
necessary to use explicit analysis to control the
deformation rate and convergence of system. Figure 8
shows a behavior similar to that of Figure 9, but the
analytical response is significantly affected since for
larger values of the critical separation the system has a
singularity called the back slash effect. This is shown in
stress-displacements plots computational through waves.
Since at this point the system becomes unstable.

448400800000 00010
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(Avg: 759%)
+1.315e+01
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InilietOd T T
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+5.430e+00
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T

Figure 7. History of the von Misses stress in different increments of the model for case i. Source: authors.
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Figure 8. History of the von Misses stress in different increments of the model for case ii. Source: authors.
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Figure 9. History of the von Misses stress in different increments of the model for case iii. Source: authors.

Observing the results shown in the figures 11-13 it is
evident that the static and explicit analysis report the
same tendency and the differences between the graphs
are due to the inertial effects of the system for the cases
in which the bulk is more compliant than the interface.
Figure 12 shows well agreement between both solutions.
In this case the bulk is stiffer than the cohesive layer
hence, the global response is stable and, the
computational solution is not depending of time
increment used. Therefore, standard analysis can be used
in this situation.

12 - === Analytical
Abaqus

S, (Mpa)

0,0 0.1 02 03 0.4 05 0.6 0,7
A (mm)
Figure 10. Stress - displacement plots analytical vs
computational case i with E = 1 GPa, omax = 10 MPa, K
=50 MPa/mm, & =10 umand & = 0.6 mm. Source:
authors.

Summarizing, it is recommended to use lower cohesive
interface stiffness values than the matrix to avoid
convergence problems and stability of simulations. In
cases where the interface is more compliant than the
matrix or bulk, an explicit type analysis is required using
very small time increments in order not to affect the
global system response and thus the peak strength and the
fracture energy remain unchanged
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Figure 11. Stress - displacement plots analytical vs
computational case ii with E = 10 GPa, omax = 10 MPa,
K =50 MPa/mm, & = 10 um and & = 40 um. Source:
authors.
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Figure 12. Stress - displacement plots analytical vs
computational case iii with E = 70 GPa, omax = 10 MPa,
K =50 MPa/mm, & = 10 um and & = 40 um. Source:
authors.
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6. Conclusions

Using the finite element method for the growth of cracks
by CMZ is a reliable and economical tool to predict the
behavior of these systems.

Since the CZM is a phenomenological model is important
to select an adequate traction-separation law and carry
out a robust validation process to guarantee the quality of
the results. It is recommended to use explicit simulations
for this type of systems, since these behave better than
the implicit simulations.

Lower cohesive interface stiffness values than the matrix
help to avoid convergence problems and give stability to
the simulations.

Finally, it is observed that for case iii, the simulations
predict very well the behavior of the system, while for the
other two cases the dynamic effects have a great impact
on the stability, for which it is recommended to use
stiffness values corresponding to the case iii, to obtain
results with low hysteresis.
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