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Abstract

In this paper it is presented the design of a controller for a reaction wheel pendulum using a discrete-time representation
via optimal control from the point of view of passivity-based control analysis. The main advantage of the proposed
approach is that it allows to guarantee asymptotic stability convergence using a quadratic candidate Lyapunov
function. Numerical simulations show that the proposed inverse optimal control design permits to reach superior
numerical performance reported by continuous approaches such as Lyapunov control functions and interconnection,
and damping assignment passivity-based controllers. An additional advantage of the proposed inverse optimal control
method is its easy implementation since it does not employ additional states. It is only required a basic discretization
of the time-domain dynamical model based on the backward representation. All the simulations are carried out in
MATLAB/OCTAVE software using a codification on the script environment.

Keywords: inverse optimal control; reaction wheel pendulum; stability analysis; passivity-based control; Lyapunov
functions; discrete analysis.

Resumen

Este documento presenta el disefio de un controlador para el péndulo con rueda de reaccién usando una representacion
discreta a través de la técnica de control 6ptimo inverso desde el punto de vista de analisis basado en pasividad. La
principal ventaja del controlador propuesto es que este permite garantizar estabilidad asintdtica en el sentido de
Lyapunov a través de una funcion cuadrética. Los resultados numéricos demuestran que el disefio de control 6ptimo
inverso tiene in desempefio superior en comparacion con enfoques continuos basados en Lyapunov y control basado
en pasividad por inyeccion de interconexion y amortiguamiento. Una ventaja adicional del método de control 6ptimo
inverso es su facil implementacion, ya que no requiere de la inclusién de estados adicionales (acciones integrales) y
solo requiere una discretizacién basica empleado un Gnico paso hacia atras. Todas las simulaciones presentadas en este
trabajo han sido implementadas en el software MATLAB/OCTAVE empleando cddigo en la ventana de desarrollo.
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1. Introduction

Industrial processes are usually made up of nonlinear
dynamic systems that must be controlled to properly
carry out a specific process [1]. For this reason, the study
of diverse linear and nonlinear control strategies in the
prototype test systems is a very important step to validate
their performance [2, 3]. Since this helps to understand
the phenomena and the physical behavior of the nonlinear
dynamic system, simplifications in practical applications
are feasible [4]. A classical nonlinear dynamic system
used to assess the capacity and robustness of the
controllers is the pendulum, which has different variants,
such as the reaction wheel pendulum, Pendubot, Acrobot,
the pendulum on a cart with linear displacement,
pendulum models with two and three bars and the Furuta
pendulum with a rotating base [3, 5, 6, 7], among others.
All of these prototype test systems can emulate the
challenges of nonlinear dynamics such as mobile robots,
walking robots, aircraft, rockets, and electrical machines
(motors/generators), among others.

The reaction wheel pendulum (RWP) is analyzed in this
paper, which was introduced by Spong in [6]. The RWP
is varied in the classic inverted pendulum. It contains a
bar that can spin without restrictions around the bracket
point (pivot) at one of its ends, as illustrated in Fig. 1.
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Figure 1. Reaction wheel pendulum representation
in two dimensions. Source [8].

In general, the RWP has two main challenges. The first
one is local, which maintains stability at the equilibrium
point [9]. The second challenge consists of raising the

pendulum from its rest position to the vertical position,
this challenge is well-known as swing-up [10]. The
swingup challenge is a solved problem where the energy-
based strategies can take the pendulum closer to the
equilibrium position without any problem [8, 11, 12].

Several linear and nonlinear controllers have been
proposed to tackle the local problem. In the case of linear
controllers, it is needed to use linearization methods (e.g.,
Taylor’s series or trigonometric approximations) that
properly works nearly at the operating point [5, 13].
However, the performance and stability of these
techniques are risky when the RWP moves away from the
linearization point [14]. In the case of nonlinear
controllers several approaches have been proposed, such
as fuzzy logic [15], artificial neural networks [10], exact
or partial feedback linearization [16], passivity-based
control [14], Lyapunov-based control approach [8], and
function sliding control [17], among others. However,
some of these approaches may present some issues, such
as not ensuring closed-loop stability, oscillations at the
operation point, or performing an online optimization
process [13]. Other approaches can be difficult to
implement in practice and require many adjustment
parameters. Although some of them guarantee the closed-
loop system’s stability, their control law may not be
optimal. Unlike these previous works, we propose a
nonlinear optimal discrete control method based on the
discrete representation of the system, which ensures the
asymptotic stability of the RWP in closed-loop. In
addition, this controller has the advantage that does not
require to solve the associated Hamilton-Jacobi-Bellman
equation, which typically appears in optimal control [2].

The main contributions of this research are summarized
below:

v The application of the inverse optimal control to
regulate state variables in a classical and well-known
nonlinear system, i.e., the RWP mechanism, with the
possibility of ensuring asymptotic stability, passivity and
optimal design based on the minimization of the
Lagrangian function of the system. This control works by
making negative the feedback of the passive output that
is defined as a combination of the quadratic Lyapunov
function and the desired control input.

v' The description step by step of the control design by
presenting the demonstration of the passivity. stability
and optimally properties, which will help readers in the
comprehension of the inverse optimal control design for
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regulating state variables in nonlinear systems in a
tutorial form.

v The comparison of the inverse control approach with
classical and strong nonlinear techniques such as
passivity-based and Lyapunov-based, which can
demonstrate the superior performance of the proposed
approach in terms of numerical convergence, i.e., time of
stabilization.

It is important to mention that after a complete review of
the significant literature about inverse optimal control
applications, we do not find evidence of the
implementation of this control strategy to regulate the
position and velocity in the reaction wheel pendulum,
which was identified as a gap in the current literature that
this research intends to complete.

The remainder of this document is organized as follows:
Section 2 presents the continuous and discrete modeling
of the RWP system by offering its simplified version with
two state variables as recommended in [8]. Section 3
describes in detail the inverse optimal control theory
applied to discrete nonlinear systems by presenting three
lemmas related to passivity, stability, and optimality,
which guarantees the best control design. Section 4 offers
the numerical validation of the proposed inverse optimal
control design and its comparison with nonlinear
approaches based on passivity and Lyapunov designs,
demonstrating the superior performance of the proposed
controller regarding convergence times, i.e., time of
stabilization. Section 5 presents the main conclusions
derived from this research as well as possible future
works using inverse optimal control design for trajectory
tracking.

2. Dynamical reaction wheel
pendulum

modeling of the

The RWP is a classical dynamical system used to validate
linear and nonlinear control strategies since it contains
strong non-linearities with trigonometric functions that
make it comparable with second-order synchronous
machine models, transportation systems, or bridge crane
models, among others. In Fig. 1 it is presented a
representation of the RWP system with its main physical
variables.

2.1. Continuous formulation

The RWP has a motor coupled to the opposite end of the
pivot, acting on an inertia wheel in which the oscillations
of the wheel are controlled due to the reaction torque .
The pendulum angle ¢ (from the vertical axis) and the
angle a between the pendulum and wheel are measured
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with sensors located at each of the axes of rotation.
Defining 6 = ¢ + o, the dynamical model of the RWP
system can be written as follows:

O = asin — bu,
% =(2pu) &)

where a,b and ¢ are constants related to the physical
parameters of the system, ¢ represents the angular
position of the pendulum measured from the vertical axis,
and 0 is the relative angle of the reaction wheel measured
from the same vertical reference. For the implementation
of the control design, since the behavior of the variable 6
is defined as the double integral of the control input, this
is not needed to be included in the state variable
representation as recommended in [6]. Note that the
angular position of the wheel can be completely
determined by the integral of the control input as follows:

t

0= %fo u(t)dr.

which implies that if the control input well-defined, then
the speed position of the wheel will tend to zero when the
angular position of the pendulum reach the equilibrium
point.

To transform the set of equations (1) to a state-space
representation, the following state variables will be used:
X1 = ¢ and xo = x1. After substituting these into (1), the
following second-order dynamical model is obtained:

‘X:l = xz,

2

X, = asin(x;) — bu, 2)

It is important to mention that the objective of control in

the RWP model is to regulate all the state variables, i.e.,
take all of them to zero from any initial condition.

2.2. Discretization of the dynamical model

To obtain a time discretization of the dynamical of the
reaction wheel pendulum, it is used the backward
differences in order to determine the next step (Xi+1) as
function of the current information xx of the dynamical
system, i.e.,

ix _ Xr+1 T Xk
dt T, '
where T is the discretization time. Now, if we apply the
discretization defined in (3) on (2), then, we reach the

following discrete model for the reaction wheel
pendulum.

©)
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Xy = TSka + Xy

X2, = Tsa sin(xlk) + Xz, — Tsbuy (4)

It is worthy to mention that the discrete model presented
by (4) is not unique, since it is dependent on the
approximation used in the time derivative function of the
state variables; nevertheless, the backward approach is
one of the most employed in literature due to its
simplicity [18].

Note that in a compact representation the discrete model
(4) can be rewritten as follows:

Xer1 = f () + gCoduy, (5)

where f(x,) € R™is a vector of nonlinear functions of
the state variables and f(x,) € R™™ is known as the
input matrix. Note that in the case of the RWP model n =
2 and m = 1. Note that these functions take the following
form:

Tsxzk + Xy,

fla) = [Tsasin(x1 )+x2 ],g(xk)

- [—2 b] ©

To develop a controller based on the discrete
representation in the following section, it is considered
the compact structure defined in (5) with nonlinear
functions (vectors and matrices) presented in (6).

3. Inverse optimal control design

In this section three main aspects of the inverse optimal
control design are explored for nonlinear discrete
systems. For doing so, let us define the general structure
of the system under analysis as follows.

Definition 1. A nonlinear dynamical system in the
discrete domain with the form,

X1 = f () + g Qo) u, (72)
Vi = h(x) + jOg)uy, (7b)

fulfills passivity properties, is globally asymptotically
stable and there is a control law with the form w;, =—y,,
such that a functional cost function is minimized, i.e., uk
is an optimal control law. Note that in (7), y« is the output
of the system and h(x) and j(x) take the followings
structures:
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h(x) = g" () Qf (i), (8a)

1
Jj@a) = 59" (1)Qg () (8b)

being Q a symmetry positive definite matrix, i.e., Q = QT
>0.

To demonstrate each one of the properties presented in
Definition 1, let us consider a candidate Lyapunov
function with a quadratic form as follow.
I
V(x) = 5%k Qxy, 9)

which is positive definite for all xc # 0 and zero only for
Xk = 0. In addition, let us define a general form for the
control input uxas follow

U = B(xx) + wy, (10)

where wy is the new input and S (xk) can be defined as
presented bellow

BCo) = —(1 +j(x) ™ h(xe), (11)

being | an identity matrix with appropriate dimensions.

Definition 2. The dynamical system (7) exhibits passivity
properties if there is a matrix Q such that the following
inequality is held.

(f Ca) + g (x1) Bxi))" Q(f (i)

+9(x) B(a)) < xgQxy, (12)

3.1. Passivit

To demonstrate passivity properties in the the dynamical
discrete system consider Lemma 1 as presented below.

Lemma 1. The dynamical system in (7) is a feedback
passive system for the output 3, The control input is
defined as (10), where j,takes the following form

Fie = h(x) + j G we. (13)

where
h(x) = 9" () Qf (xi), (14a)
F) = () + g(udBlx) (14b)

Proof. To proof the feedback passivity properties of the
dynamical system (7), consider the variation of the
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Lyapunov function for the current and the future states as
follows

AV =V (xy41) — V(x). (15)
Note that using (7) and (10) in (15), we have

1
AV = 2 (F () + g (i) BC)) Q(f ()
+ g(x)B(xi))
1
= 5% Qi + (f () (16)
+ g(x)B()) QB IW

1 .5
+§Wkg () Qg (i) wy.

From (16), we can observe that:

(f (i) + 9(adBx)) Qg Crdwye

=hT Cadwy, (172)

wi g" () Qg (i wi = 2wigj T (i )wy. (17b)

Now, if we consider Definition 2 and expressions in (17)
to be replaced in (16), then, we have

AV < Fiwy, (18)

which confirms that the discrete system is passive from
the output ¥, to the new input wy and the proof about
passivity is completed.

3.2. Stability

To demonstrate passivity properties the stability
properties in the sense of Lyapunov for closed-loop
operation, let us consider the following Lemma.

Lemma 2. The system (7) is asymptotically stable in the
sense of Lyapunov with the control input ((10)) if wy is
defined as

Wi = —Fie = —(1+j(x0) " hx). (19)

Proof. To proof stability in the sense of Lyapunov, we
can transform the dynamical system (7) with the control
input (10) as an equivalent system with the following
structure

Xp+1 = f(xk) + g(xk)wk' (20)
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Now, if we consider the difference between the current
and the next step of the Lyapunov function defined in
(15), we have

1 . "
AV = > (Fxi) + g(Xk)Wk)TQ(f(Xk)

1
+ g(xwy) — EXEQX}(
= fT(x) Qg (x1) W

1
+ ) wi " (x1) Qg (X1 ) Wi (21)

1. . -
+ 2 (FT (x)QE(xw)

— Xk Qxy ).
From (21), we can note that:

7 1 oo
[T Qe wy + > W8 (x1) Qg (xR )Wy
22)

— T
= Yk Wk

in addition, from Lemma 2, we know that w;,= —¥, which
implies that in conjunction with (22), the expression (21)
takes the following form

1 ~ B 2
&V = 2 (FT (o) Qf () = ¥ Q) = 1wl

<0,

(23)

which allows to conclude that the system (7) is globally
asymptotically stable in x,= 0 since the candidate

Lyapunov  function V(x,) = %x,fok is radially
unbounded. This completes the proof.

3.3. Optimality
Lemma 3. The inverse control law (10) is considered
optimal since it stabilizes the dynamical system as

presented in Subsection 3.2, and it minimizes the
following functional cost

F= Z £(x0 B)), (24)
k=0

where L(x;, B(x;)) is the LaGrangian function of the
system that can be written as
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L(Xk' B(Xk)) = 1(xp) + BT (x1) B(xy0)- (25)
being I(x;) defined as

xpQxy — F T (x) QF(xy)

1(xy) = >

(26)

Note that the optimal solution for the functional cost is
F* = V(x,), being it x0 the initial condition for the
dynamical system (7).

Proof. To demonstrate the control law S(x;), that is an
optimal function, let us consider the Hamiltonian of the
system as

H (e, uge) = L(xk' B(xk)) +V(x41)

V), @7)

aﬂ(xk,uk)

which has the global minimum as = 0.

To minimize this Hamiltonian function, we can rewrite
(26) considering (25) as follows

[g?xix?){l(xk) + BT () Bxx) + V (xge41)

28
—V(x)}=0 #)

The solution of the minimization function (28)
considering (26) and the variation of the candidate
Lyapunov function (15) as presented in [2], it is taken the
following form

—h" () + 287 () (i)
+ (fT(xk) (29)
—yig" (%)) Qg(x) = 0

in addition, if we consider (7b) and (8), then, we can
simplify (30) as presented below

BT (xi)j (xx) + AT () j (i)
+ BT ()i " Ce)j (i) = 0.

It is important to mention that the solution of (30) for
B (x;) takes the following structure

(30)

B = —(I +j(x0) h(xe), (31)

0. D. Montoya, W. Gil-Gonzélez, F. M. Serra

which confirms control function initially defined in (11)
as an optimal control law since it minimizes the
functional cost (24).

In order to determine the optimal value for the
LaGrangian function (24), let us consider that the interval
of analysis [0, N], being N a natural number with the
following result

[oe]

D Ll Br)) = V) + V()
k=0

o (32)
+ Z }[(xk! B(xk))
k=0

In the case of the optimal control law B(x;),this is
optimal if it makes zero the Hamiltonian function
H (%, B(x;)) demonstrated in [2]; in addition, we know
based on the stability properties of the inverse optimal
control that when N — oo the Lyapunov function
V(xy) — Ofor any initial condition x0, which implies
that V(x,).

3.4. General commentaries

In the application of the studied inverse optimal control
it is worthy to mention that:

v' To stabilize a nonlinear discrete dynamical
system with the form defined in (7) it is used the
optimal control law (w;, = B(x;))guaranteeing
passivity, stability and optimallity properties.

v" The application of the inverse optimal control
design is subject to the fact that the dynamical
system be zero detectable, which can be
expressed mathematically as presented in
Definition 3.

Definition 3. A system (7) is locally zero-state observable
(locally zero-state detectable) if there is a neighborhood
Z of x;, = 0 € R™ such that for all x, € Z

Vicluy=o = h(d)(k’ xo,o)) =0k-ox,=0

where ¢(k,x00)= f(x,) is the trajectory of the
unforced dynamics x;,; = f(x;) with initial condition
Xo. If  Z =R" the system is zero-state observable
(respectively zero-state detectable).



Discrete-time inverse optimal control for a reaction wheel pendulum: a passivity-based control approach

4. Numerical validation

In this section the numerical validation of the inverse
optimal control design is presented for a reaction wheel
pendulum defined in (6) with constants a =

2
78.4 (%) and b = 1.08T—fas reported in [8]. In these

simulations, we consider the following cases: i) the
evaluation of the controller for multiple control gains,
i.e., values in the Q matrix; and ii) the comparison of the
inverse control design with a Lyapunov-based control
design reported in [8] and the passivity-based control
design reported in [14]. It is important to mention that as
recommended in [5], the magnitude of the control
function, i.e., |u,| can be at most 10.

Note that the resulting control law u; = B(x;) for the
reaction wheel pendulum presented in (6) by using the
definition (11), takes the following structure

st(qu(Tszk+x1k)+q22(TSa sin(xlk)+x2k))

(1+%QZ2*(st)2)

U =

, (33)

4.1. Simulation for different values of Q

In this simulation case, we select the components of the
the matrix Q that appear in the control law (33) as follows
5 x 10 < g1 < 40 x 10 by fixing g2 as 12 x 10°. Figure
2 presents the physical performance of the reaction wheel
pendulum regarding the state variables x; and X2 (angular
position and speed of the pendulum bar) and the control
input u when different values of the gains in the matrix Q
are evaluated.

From Fig. 2 the following facts can be extracted:

v The value of the gain gz in the control input (33)
determines the time required to regulate the angular
position of the pendulum; nevertheless, the lowest time
to stabilize the system is about 400 samples, i.e., 400 ms,
as can be seen in Fig. 2(a).

v" Values for the gain gz, lower than 30 x 10° produce
responses on the angular position of the RWP system
such as a first-order dynamical system (see Fig. 2(a)),
while values greater than these produce responses similar
to second-order dynamical systems. Note that the
previous numerical performance was reached when g2
has been fixed as 12 x 10°.

v' The behavior of the angular speed in Fig. 2(b) is
governed by the control input presented in 2(c) since the
control input is saturated to its bounds, and the speed
rapidly decreases. At the same time, uy is negative and
quickly increases when ux becomes positive. In addition,
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the convergence of the angular speed to the origin
(variable regulation) takes at least 500 ms in the best
scenario, i.e., the best combination of gains g1 and gz2.

v’ The saturation of the control input presented in 2(c) is
implemented as recommended in [9] to avoid
unreachable solutions in real RWP systems since this
control represents the torque applied to the reaction
wheel by a direct-current motor, which can be understood
as the current observed by the motor, that is small in these
applications [6].
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Figure 2: Behavior of the state variables and control
input for different values in the matrix Q: (a) angle of
the pendulum xi, (b) speed of the pendulum xz , and

(c) control input.
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4.2. Comparison with nonlinear controllers

Here, the proposed inverse optimal control is compared
with a nonlinear controller based on a direct Lyapunov
control proposed in [8], the structure of this control law
is presented below

1
Uy = Ts—b(klxlk + kzxzk + 2a Sin(xlk))’ (34)

being ki and k defined as 3500 and 135, respectively. In
addition, the proposed inverse optimal control is also
compared with a nonlinear passivity-based controller
proposed in [14], which has the following control law

1
U = T.b (_jlaxlk T Xy ta Sin(xlk))' (30)

being j; =—1, a = 3500 and r, =135, which are selected
to make it comparative with the Lyapunov-based design.

It is important to mention that all the three controllers
defined in (33), (34) and (35) are based on Lyapunov
stability theory, which implies that all of them have
global asymptotic stability properties for the closed-loop
operation. In addition, it is possible to observe that all of
them have a very similar control law, which is composed
of linear feedback of the states xi and xx and the
nonlinear effect of the sinusoidal function weighted by a
constant [19].

In Fig. 3 it is presented the comparison between the
proposed inverse optimal controller and the Lyapunov-
based design and the passivity-based approach reported
in [8] and [14], respectively.
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Figure 3: Behavior of the angle of the pendulum bar
when compared the proposed inverse optimal control
with the Lyapunov-based and the passivity-based
approaches.

From results in Fig. 3 we can observe that the
Lyapunovbased and the passivity-based approaches have
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the same numerical performances since the angular
position are overlapping for both controllers. In addition,
these controllers take about 470 ms to establish around
the reference. In comparison, the proposed inverse
optimal control approach reaches the reference signal in
about 370 ms, which demonstrates its superiority in
performance. It is worthy to mention that the comparative
approaches present an overpass to the reference signal.
This implies that some oscillations in the vertical position
are experienced. At the same time, the proposed method
does not present this behavior, which confirms its
efficiency in contrast to powerful and well-known
nonlinear approaches.

5. Conclusions and future works

A nonlinear discrete control method based on the inverse
optimal design was presented in this paper to solve the
problem of variable regulation in nonlinear physical
systems by using a reaction wheel pendulum as an
example of application. The studied control design has
three main advantages, such as passivity, asymptotic
stability in the sense of Lyapunov, and optimality. This
implies that the stable behavior of all the state variables
is ensured during closed-loop operation.

Regarding nonlinear control approaches reported in
specialized literature for regulating state variables in the
RWP system, the inverse optimal control method
demonstrated superior numerical performance in
comparison to Lyapunovbased and passivity-based
control reports, since the proposed controller stabilized
the system in about 360 ms. Conversely, the comparative
approaches make it in 470 ms, i.e., 110 samples before.
In addition, the proposed approach presents a behavior
similar to a first-order dynamical system without
overpasses when control gains gz1 and g2 are correctly
selected, while the passivity-based and the Lyapunov
based work as second-order systems by presenting small
oscillations around the reference signals.

As future works, it will be possible to have the following
researches:

v' To apply the inverse optimal control to tracking
trajectory problems such as voltage regulation in power
electronic converters or motion control in robots.

v' The application of the inverse optimal control design
to reduce sub-synchronous oscillation in single- and
multimachine power systems.

v Applied optimization methods to find the best control
gains, i.e., components of the Q matrix to minimize



Discrete-time inverse optimal control for a reaction wheel pendulum: a passivity-based control approach

quality indicators such as mean square error or integral
square error, among others.
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Appendix 1. MATLAB implementation

Here it is provided the MATLAB/OCTAVE
implementation of the proposed inverse optimal control
to regulate state variables in the reaction wheel pendulum
application.

11 9% REACTION WHEEL PENDULUM
2 | N=1000; %Samples
3 | a=78.4;b = 1.08; % Parameters
4| X1 = zeros(1,N); x2 = zeros(1,N);

u = zeros(1,N);
5 x1(1) = 76 = pi/180;x2(1) = 0; % Initial
6 | conditions
7| Ts = 1e — 3; %Disretization time
8 | Q =[12e3,2e4;32e6,12e5];
9 | % run simulation

fork =2:N
10
1 fxk = [Tsll*xZ(k—l)+x1(k—1);Ts*a

«sin(x1(k — 1)) + x2(k — 1)];
12 gxk =[0; —Ts * b];
13 hxk = gxk’ = Q * fxk;
14 jxk = (1/2)14 = gxk’ = Q * gxk;
15 u(k — 1) = —inv(1 + jxk) * hxk;
16 if u(k—1)>10
o u(k — 1) = 10;
18 elseif u(k—1) < —10
u(k — 1) = —10;

190 end
20 x1(k) =Ts *x2(k— 1) + x1(k — 1);
21 x2(k) = Ts*a*sin(xl(k— 1)) —Tsx*b
22 xu(k—1) +x2(k—1);
23 | end
24 %Visualizetheoutput

plot (1: N, x1, 'blue’, 'LineWidth’, 1.5);
25 | hold on
26
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