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Abstract 
 

In this paper it is presented the design of a controller for a reaction wheel pendulum using a discrete-time representation 

via optimal control from the point of view of passivity-based control analysis. The main advantage of the proposed 

approach is that it allows to guarantee asymptotic stability convergence using a quadratic candidate Lyapunov 

function. Numerical simulations show that the proposed inverse optimal control design permits to reach superior 

numerical performance reported by continuous approaches such as Lyapunov control functions and interconnection, 

and damping assignment passivity-based controllers. An additional advantage of the proposed inverse optimal control 

method is its easy implementation since it does not employ additional states. It is only required a basic discretization 

of the time-domain dynamical model based on the backward representation. All the simulations are carried out in 

MATLAB/OCTAVE software using a codification on the script environment. 

 

Keywords: inverse optimal control; reaction wheel pendulum; stability analysis; passivity-based control; Lyapunov 

functions; discrete analysis. 

 

Resumen 

 

Este documento presenta el diseño de un controlador para el péndulo con rueda de reacción usando una representación 

discreta a través de la técnica de control óptimo inverso desde el punto de vista de análisis basado en pasividad. La 

principal ventaja del controlador propuesto es que este permite garantizar estabilidad asintótica en el sentido de 

Lyapunov a través de una función cuadrática. Los resultados numéricos demuestran que el diseño de control óptimo 

inverso tiene in desempeño superior en comparación con enfoques continuos basados en Lyapunov y control basado 

en pasividad por inyección de interconexión y amortiguamiento. Una ventaja adicional del método de control óptimo 

inverso es su fácil implementación, ya que no requiere de la inclusión de estados adicionales (acciones integrales) y 

sólo requiere una discretización básica empleado un único paso hacia atrás. Todas las simulaciones presentadas en este 

trabajo han sido implementadas en el software MATLAB/OCTAVE empleando código en la ventana de desarrollo. 
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Palabras clave: control óptimo inverso; péndulo con rueda de reacción; análisis de estabilidad; control basado en 

pasividad; funciones de Lyapunov; análisis discreto. 

 

1. Introduction 

 

 Industrial processes are usually made up of nonlinear 

dynamic systems that must be controlled to properly 

carry out a specific process [1]. For this reason, the study 

of diverse linear and nonlinear control strategies in the 

prototype test systems is a very important step to validate 

their performance [2, 3]. Since this helps to understand 

the phenomena and the physical behavior of the nonlinear 

dynamic system, simplifications in practical applications 

are feasible [4]. A classical nonlinear dynamic system 

used to assess the capacity and robustness of the 

controllers is the pendulum, which has different variants, 

such as the reaction wheel pendulum, Pendubot, Acrobot, 

the pendulum on a cart with linear displacement, 

pendulum models with two and three bars and the Furuta 

pendulum with a rotating base [3, 5, 6, 7], among others. 

All of these prototype test systems can emulate the 

challenges of nonlinear dynamics such as mobile robots, 

walking robots, aircraft, rockets, and electrical machines 

(motors/generators), among others. 

 

The reaction wheel pendulum (RWP) is analyzed in this 

paper, which was introduced by Spong in [6]. The RWP 

is varied in the classic inverted pendulum. It contains a 

bar that can spin without restrictions around the bracket 

point (pivot) at one of its ends, as illustrated in Fig. 1. 

 

In general, the RWP has two main challenges. The first 

one is local, which maintains stability at the equilibrium 

point [9]. The second challenge consists of raising the 

pendulum from its rest position to the vertical position, 

this challenge is well-known as swing-up [10]. The 

swingup challenge is a solved problem where the energy-

based strategies can take the pendulum closer to the 

equilibrium position without any problem [8, 11, 12]. 

 

Several linear and nonlinear controllers have been 

proposed to tackle the local problem. In the case of linear 

controllers, it is needed to use linearization methods (e.g., 

Taylor’s series or trigonometric approximations) that 

properly works nearly at the operating point [5, 13]. 

However, the performance and stability of these 

techniques are risky when the RWP moves away from the 

linearization point [14]. In the case of nonlinear 

controllers several approaches have been proposed, such 

as fuzzy logic [15], artificial neural networks [10], exact 

or partial feedback linearization [16], passivity-based 

control [14], Lyapunov-based control approach [8], and 

function sliding control [17], among others. However, 

some of these approaches may present some issues, such 

as not ensuring closed-loop stability, oscillations at the 

operation point, or performing an online optimization 

process [13]. Other approaches can be difficult to 

implement in practice and require many adjustment 

parameters. Although some of them guarantee the closed-

loop system’s stability, their control law may not be 

optimal. Unlike these previous works, we propose a 

nonlinear optimal discrete control method based on the 

discrete representation of the system, which ensures the 

asymptotic stability of the RWP in closed-loop. In 

addition, this controller has the advantage that does not 

require to solve the associated Hamilton-Jacobi-Bellman 

equation, which typically appears in optimal control [2]. 

 

The main contributions of this research are summarized 

below: 

 

✓ The application of the inverse optimal control to 

regulate state variables in a classical and well-known 

nonlinear system, i.e., the RWP mechanism, with the 

possibility of ensuring asymptotic stability, passivity and 

optimal design based on the minimization of the 

Lagrangian function of the system. This control works by 

making negative the feedback of the passive output that 

is defined as a combination of the quadratic Lyapunov 

function and the desired control input. 

 

✓ The description step by step of the control design by 

presenting the demonstration of the passivity. stability 

and optimally properties, which will help readers in the 

comprehension of the inverse optimal control design for 

 
Figure 1. Reaction wheel pendulum representation 

in two dimensions. Source [8]. 
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regulating state variables in nonlinear systems in a 

tutorial form. 

 

✓ The comparison of the inverse control approach with 

classical and strong nonlinear techniques such as 

passivity-based and Lyapunov-based, which can 

demonstrate the superior performance of the proposed 

approach in terms of numerical convergence, i.e., time of 

stabilization. 

 

It is important to mention that after a complete review of 

the significant literature about inverse optimal control 

applications, we do not find evidence of the 

implementation of this control strategy to regulate the 

position and velocity in the reaction wheel pendulum, 

which was identified as a gap in the current literature that 

this research intends to complete.  

 

The remainder of this document is organized as follows: 

Section 2 presents the continuous and discrete modeling 

of the RWP system by offering its simplified version with 

two state variables as recommended in [8]. Section 3 

describes in detail the inverse optimal control theory 

applied to discrete nonlinear systems by presenting three 

lemmas related to passivity, stability, and optimality, 

which guarantees the best control design. Section 4 offers 

the numerical validation of the proposed inverse optimal 

control design and its comparison with nonlinear 

approaches based on passivity and Lyapunov designs, 

demonstrating the superior performance of the proposed 

controller regarding convergence times, i.e., time of 

stabilization. Section 5 presents the main conclusions 

derived from this research as well as possible future 

works using inverse optimal control design for trajectory 

tracking. 

 

2. Dynamical modeling of the reaction wheel 

pendulum 

 

The RWP is a classical dynamical system used to validate 

linear and nonlinear control strategies since it contains 

strong non-linearities with trigonometric functions that 

make it comparable with second-order synchronous 

machine models, transportation systems, or bridge crane 

models, among others. In Fig. 1 it is presented a 

representation of the RWP system with its main physical 

variables. 

 

2.1. Continuous formulation 

 

The RWP has a motor coupled to the opposite end of the 

pivot, acting on an inertia wheel in which the oscillations 

of the wheel are controlled due to the reaction torque τ. 

The pendulum angle 𝜑 (from the vertical axis) and the 

angle α between the pendulum and wheel are measured 

with sensors located at each of the axes of rotation. 

Defining θ = 𝜑 + α, the dynamical model of the RWP 

system can be written as follows: 

 

φ̈ = 𝑎 sin(φ) − 𝑏𝑢, 

𝜃̈ = 𝑐𝑢, 
(1) 

 

where 𝑎, 𝑏 and c are constants related to the physical 

parameters of the system, 𝜑 represents the angular 

position of the pendulum measured from the vertical axis, 

and θ is the relative angle of the reaction wheel measured 

from the same vertical reference. For the implementation 

of the control design, since the behavior of the variable θ 

is defined as the double integral of the control input, this 

is not needed to be included in the state variable 

representation as recommended in [6]. Note that the 

angular position of the wheel can be completely 

determined by the integral of the control input as follows: 

 

θ =
1

𝑐
∫ 𝑢(τ)𝑑τ

𝑡

0

. 

which implies that if the control input well-defined, then 

the speed position of the wheel will tend to zero when the 

angular position of the pendulum reach the equilibrium 

point.  

 

To transform the set of equations (1) to a state-space 

representation, the following state variables will be used: 

x1 = 𝜑 and x2 = 𝑥̇1. After substituting these into (1), the 

following second-order dynamical model is obtained: 

 

𝑥1̇ = 𝑥2, 

𝑥2̇ = 𝑎 sin(𝑥1) − 𝑏𝑢, 
(2) 

 

It is important to mention that the objective of control in 

the RWP model is to regulate all the state variables, i.e., 

take all of them to zero from any initial condition. 

 

2.2. Discretization of the dynamical model 

 

To obtain a time discretization of the dynamical of the 

reaction wheel pendulum, it is used the backward 

differences in order to determine the next step (xk+1) as 

function of the current information xk of the dynamical 

system, i.e., 

 
𝑑

𝑑𝑡
𝑥 =

𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

, (3) 

where 𝑇𝑠 is the discretization time. Now, if we apply the 

discretization defined in (3) on (2), then, we reach the 

following discrete model for the reaction wheel 

pendulum. 
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𝑥1𝑘+1
= 𝑇𝑠𝑥2𝑘

+ 𝑥1𝑘
, 

𝑥2𝑘+1
= 𝑇𝑠𝑎 sin(𝑥1𝑘

) + 𝑥2𝑘
− 𝑇𝑠𝑏𝑢𝑘 

 

(4) 

It is worthy to mention that the discrete model presented 

by (4) is not unique, since it is dependent on the 

approximation used in the time derivative function of the 

state variables; nevertheless, the backward approach is 

one of the most employed in literature due to its 

simplicity [18]. 

 

Note that in a compact representation the discrete model 

(4) can be rewritten as follows: 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)𝑢𝑘, (5) 

 

where 𝑓(𝑥𝑘) ∈ ℝ𝑛 is a vector of nonlinear functions of 

the state variables and 𝑓(𝑥𝑘) ∈ ℝ𝑛𝑥𝑚 is known as the 

input matrix. Note that in the case of the RWP model n = 

2 and m = 1. Note that these functions take the following 

form:  

 

𝑓(𝑥𝑘) = [
𝑇𝑠𝑥2𝑘

+ 𝑥1𝑘

𝑇𝑠𝑎 sin(𝑥1𝑘
) + 𝑥2𝑘

] , 𝑔(𝑥𝑘)

= [
0

−𝑇𝑠𝑏
] 

 

(6) 

To develop a controller based on the discrete 

representation in the following section, it is considered 

the compact structure defined in (5) with nonlinear 

functions (vectors and matrices) presented in (6). 

 

3. Inverse optimal control design 

 

In this section three main aspects of the inverse optimal 

control design are explored for nonlinear discrete 

systems. For doing so, let us define the general structure 

of the system under analysis as follows. 

 

Definition 1. A nonlinear dynamical system in the 

discrete domain with the form, 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)𝑢𝑘, (7a) 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑗(𝑥𝑘)𝑢𝑘, (7b) 

 

fulfills passivity properties, is globally asymptotically 

stable and there is a control law with the form 𝑢𝑘 = − 𝑦𝑘, 

such that a functional cost function is minimized, i.e., uk 

is an optimal control law. Note that in (7), yk is the output 

of the system and h(xk) and j(xk) take the followings 

structures: 

 

ℎ(𝑥𝑘) = 𝑔𝑇(𝑥𝑘)𝑄𝑓(𝑥𝑘), (8a) 

𝑗(𝑥𝑘) =
1

2
𝑔𝑇(𝑥𝑘)𝑄𝑔(𝑥𝑘) (8b) 

being 𝑄 a symmetry positive definite matrix, i.e., 𝑄 = 𝑄T 

> 0. 

 

To demonstrate each one of the properties presented in 

Definition 1, let us consider a candidate Lyapunov 

function with a quadratic form as follow. 

 

𝒱(𝑥𝑘) =
1

2
𝑥𝑘

𝑇𝑄𝑥𝑘, (9) 

which is positive definite for all xk  ≠ 0 and zero only for 

xk = 0. In addition, let us define a general form for the 

control input uk as follow 

 

𝑢𝑘 = β(𝑥𝑘) + 𝑤𝑘 , (10) 

 

where wk is the new input and β (xk) can be defined as 

presented bellow 

 

β(𝑥𝑘) = −(𝐼 + 𝑗(𝑥𝑘))
−1

ℎ(𝑥𝑘), (11) 

 

being I an identity matrix with appropriate dimensions. 

 

Definition 2. The dynamical system (7) exhibits passivity 

properties if there is a matrix Q such that the following 

inequality is held. 

 

(𝑓(𝑥𝑘) + 𝑔(𝑥𝑘) 𝛽(𝑥𝑘))𝑇𝑄(𝑓(𝑥𝑘)  

+ 𝑔(𝑥𝑘) 𝛽(𝑥𝑘))  ≤ 𝑥𝑘
𝑇𝑄𝑥𝑘 , 

(12) 

 

3.1. Passivit 

 

To demonstrate passivity properties in the the dynamical 

discrete system consider Lemma 1 as presented below. 

 

Lemma 1. The dynamical system in (7) is a feedback 

passive system for the output 𝑦̃𝑘The control input is 

defined as (10), where 𝑦̃𝑘takes the following form 

 

𝑦̃𝑘 = ℎ̃(𝑥𝑘) + 𝑗(𝑥𝑘)𝑤𝑘 . (13) 

where 

 

ℎ̃(𝑥𝑘) = 𝑔𝑇(𝑥𝑘)𝑄𝑓(𝑥𝑘), (14a) 

𝑓(𝑥𝑘) = 𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)β(𝑥𝑘) (14b) 

 

Proof. To proof the feedback passivity properties of the 

dynamical system (7), consider the variation of the 
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Lyapunov function for the current and the future states as 

follows 

Δ𝒱 = 𝒱(𝑥𝑘+1) − 𝒱(𝑥𝑘). (15) 

Note that using (7) and (10) in (15), we have 

 

Δ𝒱 =
1

2
(𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)β(𝑥𝑘))

𝑇
𝑄(𝑓(𝑥𝑘)

+ 𝑔(𝑥𝑘)β(𝑥𝑘))  

−
1

2
𝑥𝑘

𝑇Q𝑥𝑘 + (𝑓(𝑥𝑘)

+ 𝑔(𝑥𝑘)β(𝑥𝑘))
𝑇

Qg(𝑥𝑘)𝑤𝑘

+
1

2
𝑤𝑘

𝑇𝑔𝑇(𝑥𝑘)Qg(𝑥𝑘)𝑤𝑘 . 

(16) 

 

From (16), we can observe that: 

 

(𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)β(𝑥𝑘))
𝑇

𝑄𝑔(𝑥𝑘)𝑤𝑘

= ℎ̃𝑇(𝑥𝑘)𝑤𝑘 , 
(17a) 

𝑤𝑘
𝑇𝑔𝑇(𝑥𝑘)𝑄𝑔(𝑥𝑘)𝑤𝑘 = 2𝑤𝑘

𝑇𝑗𝑇(𝑥𝑘)𝑤𝑘 . (17b) 

 

Now, if we consider Definition 2 and expressions in (17) 

to be replaced in (16), then, we have 

 

Δ𝒱 ≤ 𝑦̃𝑘
𝑇wk, (18) 

 

which confirms that the discrete system is passive from 

the output 𝑦̃𝑘 to the new input wk and the proof about 

passivity is completed. 

 

3.2. Stability 

 

To demonstrate passivity properties the stability 

properties in the sense of Lyapunov for closed-loop 

operation, let us consider the following Lemma. 

 

Lemma 2. The system (7) is asymptotically stable in the 

sense of Lyapunov with the control input ((10)) if wk is 

defined as 

wk = −𝑦̃𝑘 = −(I + j(xk))
−1

h̃(xk). (19) 

 

Proof. To proof stability in the sense of Lyapunov, we 

can transform the dynamical system (7) with the control 

input (10) as an equivalent system with the following 

structure 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)𝑤𝑘 . (20) 

 

Now, if we consider the difference between the current 

and the next step of the Lyapunov function defined in 

(15), we have 

 

Δ𝒱 =
1

2
(f̃(xk) + g(xk)wk)

T
Q(f̃(xk)

+ g(xk)wk) −
1

2
xk

TQxk

= 𝑓𝑇(xk)Qg(xk)wk

+
1

2
wk

TgT(xk)Qg(xk)wk

+
1

2
(𝑓𝑇(xk)Qf̃(xk)

− xk
TQxk). 

 

(21) 

From (21), we can note that: 

 

𝑓𝑇(xk)Qg(xk)wk +
1

2
wk

TgT(xk)Qg(xk)wk

= 𝑦̃𝑘
𝑇wk, 

(22) 

 

in addition, from Lemma 2, we know that 𝑤𝑘= −𝑦̃𝑘 which 

implies that in conjunction with (22), the expression (21) 

takes the following form 

 

Δ𝒱 =
1

2
(𝑓𝑇(𝑥𝑘)𝑄𝑓(𝑥𝑘) − 𝑥𝑘

𝑇𝑄𝑥𝑘) − ||𝑤𝑘||
2

< 0, 
(23) 

which allows to conclude that the system (7) is globally 

asymptotically stable in 𝑥𝑘= 0 since the candidate 

Lyapunov function 𝒱(𝑥𝑘) =
1

2
𝑥𝑘

𝑇𝑄𝑥𝑘  is radially 

unbounded. This completes the proof. 

 

3.3. Optimality 

 

Lemma 3. The inverse control law (10) is considered 

optimal since it stabilizes the dynamical system as 

presented in Subsection 3.2, and it minimizes the 

following functional cost 

 

ℱ = ∑ ℒ(xk, β(xk))

∞

k=0

, (24) 

 

where 𝐿(𝑥𝑘 , β(𝑥𝑘)) is the LaGrangian function of the 

system that can be written as 
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ℒ(xk, β(xk)) = l(xk) + βT(xk)β(xk). (25) 

being 𝑙(𝑥𝑘) defined as 

 

l(xk) =
xk

TQxk − 𝑓𝑇(xk)Qf̃(xk)

2
, (26) 

 

Note that the optimal solution for the functional cost is 

ℱ⋆ = 𝒱(𝑥0), being it x0 the initial condition for the 

dynamical system (7). 

 

Proof. To demonstrate the control law 𝛽(𝑥𝑘), that is an 

optimal function, let us consider the Hamiltonian of the 

system as 

 

ℋ(𝑥𝑘 , 𝑢𝑘) = ℒ(𝑥𝑘 , β(𝑥𝑘)) + 𝒱(𝑥𝑘+1)

− 𝒱(𝑥𝑘), 
(27) 

 

which has the global minimum as 
∂ℋ(xk,uk)

∂ uk
  =  0. 

 

To minimize this Hamiltonian function, we can rewrite 

(26) considering (25) as follows 

 

min
β(𝑥𝑘)

{𝑙(𝑥𝑘) + β𝑇(𝑥𝑘)β(𝑥𝑘) + 𝒱(𝑥𝑘+1)

− 𝒱(𝑥𝑘)} = 0 
(28) 

 

The solution of the minimization function (28) 

considering (26) and the variation of the candidate 

Lyapunov function (15) as presented in [2], it is taken the 

following form 

 

−ℎ𝑇(𝑥𝑘) + 2β𝑇(𝑥𝑘)𝑗(𝑥𝑘)

+ (𝑓𝑇(𝑥𝑘)

− 𝑦𝑘
𝑇𝑔𝑇(𝑥𝑘)) 𝑄𝑔(𝑥𝑘) = 0 

(29) 

 

in addition, if we consider (7b) and (8), then, we can 

simplify (30) as presented below 

 

β𝑇(𝑥𝑘)𝑗(𝑥𝑘) + ℎ𝑇(𝑥𝑘)𝑗(𝑥𝑘)

+ β𝑇(𝑥𝑘)𝑗𝑇(𝑥𝑘)𝑗(𝑥𝑘) = 0. 
(30) 

It is important to mention that the solution of (30) for 

𝛽(𝑥𝑘) takes the following structure 

 

β(𝑥𝑘) = −(𝐼 + 𝑗(𝑥𝑘))
−1

ℎ(𝑥𝑘), (31) 

 

which confirms control function initially defined in (11) 

as an optimal control law since it minimizes the 

functional cost (24).  

 

In order to determine the optimal value for the 

LaGrangian function (24), let us consider that the interval 

of analysis [0, N], being N a natural number with the 

following result 

 

∑ ℒ(𝑥𝑘 , β(𝑥𝑘))

∞

𝑘=0

= −𝒱(𝑥𝑁) + 𝒱(𝑥0)

+ ∑ ℋ(𝑥𝑘 , β(𝑥𝑘))

∞

𝑘=0

 

(32) 

 

In the case of the optimal control law β(𝑥𝑘),this is 

optimal if it makes zero the Hamiltonian function 

ℋ(𝑥𝑘 , β(𝑥𝑘)) demonstrated in [2]; in addition, we know 

based on the stability properties of the inverse optimal 

control that when N → ∞ the Lyapunov function 

𝒱(𝑥𝑁) → 0for any initial condition x0, which implies 

that 𝒱(𝑥0). 
 

3.4. General commentaries 

 

In the application of the studied inverse optimal control 

it is worthy to mention that:  

 

✓ To stabilize a nonlinear discrete dynamical 

system with the form defined in (7) it is used the 

optimal control law (𝑢𝑘 = β(𝑥𝑘))guaranteeing 

passivity, stability and optimallity properties.  

  

✓ The application of the inverse optimal control 

design is subject to the fact that the dynamical 

system be zero detectable, which can be 

expressed mathematically as presented in 

Definition 3.  

 

Definition 3. A system (7) is locally zero-state observable 

(locally zero-state detectable) if there is a neighborhood 

𝒵 of 𝑥𝑘 = 0 ∈ ℝ𝑛 such that for all 𝑥0 ∈ 𝒵 

 

𝑦𝑘|𝑢𝑘=0
= ℎ (ϕ(𝑘, 𝑥0,0)) = 0∀𝑘 → 𝑥𝑘 = 0 

 

where 𝜙(𝑘, 𝑥0,0) = 𝑓(𝑥𝑘) is the trajectory of the 

unforced dynamics 𝑥𝑘+1 = 𝑓(𝑥𝑘) with initial condition 

𝑥0. If  𝒵 = ℝ𝑛, the system is zero-state observable 

(respectively zero-state detectable). 
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4. Numerical validation 

 

In this section the numerical validation of the inverse 

optimal control design is presented for a reaction wheel 

pendulum defined in (6) with constants 𝑎 =

78.4 (
rad

𝑠
)

2

and 𝑏 = 1.08
rad

𝑠2  as reported in [8]. In these 

simulations, we consider the following cases: i) the 

evaluation of the controller for multiple control gains, 

i.e., values in the Q matrix; and ii) the comparison of the 

inverse control design with a Lyapunov-based control 

design reported in [8] and the passivity-based control 

design reported in [14]. It is important to mention that as 

recommended in [5], the magnitude of the control 

function, i.e., |𝑢𝑘| can be at most 10. 

 

Note that the resulting control law 𝑢𝑘 = β(𝑥𝑘) for the 

reaction wheel pendulum presented in (6) by using the 

definition (11), takes the following structure 

  𝑢𝑘 =
𝑇𝑠𝑏(𝑞21(𝑇𝑠𝑥2𝑘

+𝑥1𝑘)+𝑞22(𝑇𝑠𝑎 sin(𝑥1𝑘
)+𝑥2𝑘

))

(1+
1

2
𝑞22∗(𝑇𝑠𝑏)2)

,          (33) 

 

4.1. Simulation for different values of Q 

 

In this simulation case, we select the components of the 

the matrix Q that appear in the control law (33) as follows 

5 × 106 ≤ q21 ≤ 40 × 106 by fixing q22 as 12 × 105. Figure 

2 presents the physical performance of the reaction wheel 

pendulum regarding the state variables x1 and x2 (angular 

position and speed of the pendulum bar) and the control 

input u when different values of the gains in the matrix Q 

are evaluated.  

 

From Fig. 2 the following facts can be extracted: 

 

✓ The value of the gain q22 in the control input (33) 

determines the time required to regulate the angular 

position of the pendulum; nevertheless, the lowest time 

to stabilize the system is about 400 samples, i.e., 400 ms, 

as can be seen in Fig. 2(a).  

 

✓ Values for the gain q22 lower than 30 × 106 produce 

responses on the angular position of the RWP system 

such as a first-order dynamical system (see Fig. 2(a)), 

while values greater than these produce responses similar 

to second-order dynamical systems. Note that the 

previous numerical performance was reached when q22 

has been fixed as 12 × 105. 

 

✓ The behavior of the angular speed in Fig. 2(b) is 

governed by the control input presented in 2(c) since the 

control input is saturated to its bounds, and the speed 

rapidly decreases. At the same time, uk is negative and 

quickly increases when uk becomes positive. In addition, 

the convergence of the angular speed to the origin 

(variable regulation) takes at least 500 ms in the best 

scenario, i.e., the best combination of gains q21 and q22.  

 

✓ The saturation of the control input presented in 2(c) is 

implemented as recommended in [9] to avoid 

unreachable solutions in real RWP systems since this 

control represents the torque applied to the reaction 

wheel by a direct-current motor, which can be understood 

as the current observed by the motor, that is small in these 

applications [6]. 

 

 

 
Figure 2: Behavior of the state variables and control 

input for different values in the matrix Q: (a) angle of 

the pendulum x1k , (b) speed of the pendulum x2k , and 

(c) control input. 
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4.2. Comparison with nonlinear controllers 

 

Here, the proposed inverse optimal control is compared 

with a nonlinear controller based on a direct Lyapunov 

control proposed in [8], the structure of this control law 

is presented below 

 

𝑢𝑘 =
1

𝑇𝑠𝑏
(𝑘1𝑥1𝑘

+ 𝑘2𝑥2𝑘
+ 2𝑎 sin(𝑥1𝑘

)), (34) 

being k1 and k2 defined as 3500 and 135, respectively. In 

addition, the proposed inverse optimal control is also 

compared with a nonlinear passivity-based controller 

proposed in [14], which has the following control law 

 

𝑢𝑘 =
1

𝑇𝑠𝑏
(−𝑗1α𝑥1𝑘

+ 𝑟2𝑥2𝑘
+ 𝑎 sin(𝑥1𝑘

)), (30) 

being 𝑗1 = −1, α = 3500 and 𝑟2 =135, which are selected 

to make it comparative with the Lyapunov-based design. 

 

It is important to mention that all the three controllers 

defined in (33), (34) and (35) are based on Lyapunov 

stability theory, which implies that all of them have 

global asymptotic stability properties for the closed-loop 

operation. In addition, it is possible to observe that all of 

them have a very similar control law, which is composed 

of linear feedback of the states x1k and x2k and the 

nonlinear effect of the sinusoidal function weighted by a 

constant [19]. 

 

In Fig. 3 it is presented the comparison between the 

proposed inverse optimal controller and the Lyapunov-

based design and the passivity-based approach reported 

in [8] and [14], respectively. 

 

 
Figure 3: Behavior of the angle of the pendulum bar 

when compared the proposed inverse optimal control 

with the Lyapunov-based and the passivity-based 

approaches. 

 

From results in Fig. 3 we can observe that the 

Lyapunovbased and the passivity-based approaches have 

the same numerical performances since the angular 

position are overlapping for both controllers. In addition, 

these controllers take about 470 ms to establish around 

the reference. In comparison, the proposed inverse 

optimal control approach reaches the reference signal in 

about 370 ms, which demonstrates its superiority in 

performance. It is worthy to mention that the comparative 

approaches present an overpass to the reference signal. 

This implies that some oscillations in the vertical position 

are experienced. At the same time, the proposed method 

does not present this behavior, which confirms its 

efficiency in contrast to powerful and well-known 

nonlinear approaches. 

 

5. Conclusions and future works 

 

A nonlinear discrete control method based on the inverse 

optimal design was presented in this paper to solve the 

problem of variable regulation in nonlinear physical 

systems by using a reaction wheel pendulum as an 

example of application. The studied control design has 

three main advantages, such as passivity, asymptotic 

stability in the sense of Lyapunov, and optimality. This 

implies that the stable behavior of all the state variables 

is ensured during closed-loop operation. 

 

Regarding nonlinear control approaches reported in 

specialized literature for regulating state variables in the 

RWP system, the inverse optimal control method 

demonstrated superior numerical performance in 

comparison to Lyapunovbased and passivity-based 

control reports, since the proposed controller stabilized 

the system in about 360 ms. Conversely, the comparative 

approaches make it in 470 ms, i.e., 110 samples before. 

In addition, the proposed approach presents a behavior 

similar to a first-order dynamical system without 

overpasses when control gains q21 and q22 are correctly 

selected, while the passivity-based and the Lyapunov 

based work as second-order systems by presenting small 

oscillations around the reference signals. 

 

As future works, it will be possible to have the following 

researches:  

 

✓ To apply the inverse optimal control to tracking 

trajectory problems such as voltage regulation in power 

electronic converters or motion control in robots.  

 

✓ The application of the inverse optimal control design 

to reduce sub-synchronous oscillation in single- and 

multimachine power systems.  

 

✓ Applied optimization methods to find the best control 

gains, i.e., components of the Q matrix to minimize 
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quality indicators such as mean square error or integral 

square error, among others. 
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Appendix 1. MATLAB implementation  

 

Here it is provided the MATLAB/OCTAVE 

implementation of the proposed inverse optimal control 

to regulate state variables in the reaction wheel pendulum 

application. 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

% REACTION WHEEL PENDULUM 

N = 1000; %𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

a = 78.4; b = 1.08; % 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

x1 = zeros(1, N);  x2 = zeros(1, N); 
u = zeros(1, N); 
x1(1) = 76 ∗ pi/180; x2(1) = 0; % 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

Ts = 1e − 3; %𝐷𝑖𝑠𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

Q = [12e3,2e4; 32e6,12e5]; 
% 𝑟𝑢𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

for k = 2: N 

      fxk = [Ts11 ∗ x2(k − 1) + x1(k − 1); Ts ∗ a

∗ sin(x1(k − 1)) + x2(k − 1)]; 

      gxk = [0; −Ts ∗ b]; 
      ℎ𝑥𝑘 = 𝑔𝑥𝑘’ ∗ 𝑄 ∗ 𝑓𝑥𝑘; 
      𝑗𝑥𝑘  = (1/2)14 ∗ 𝑔𝑥𝑘’ ∗ 𝑄 ∗ 𝑔𝑥𝑘; 
     𝑢(k − 1) = −𝑖𝑛𝑣(1 + jxk) ∗ ℎ𝑥𝑘; 
     𝑖𝑓 𝑢(k − 1) > 10 

          𝑢(k − 1) = 10; 
    𝑒𝑙𝑠𝑒𝑖𝑓 𝑢(k − 1) < −10 

          𝑢(k − 1) = −10; 
    𝑒𝑛𝑑 

    𝑥1(k) = 𝑇𝑠 ∗ 𝑥2(k − 1) + 𝑥1(k − 1); 

    𝑥2(k) = 𝑇𝑠 ∗ 𝑎 ∗ 𝑠𝑖𝑛(x1(k − 1)) − 𝑇𝑠 ∗ 𝑏

∗ 𝑢(k − 1) + 𝑥2(k − 1); 
end 

%𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒𝑡ℎ𝑒𝑜𝑢𝑡𝑝𝑢𝑡 

plot (1: N, x1, ’blue’, ’LineWidth’, 1.5); 
hold on 

 


