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Abstract

In this study, a novel technique for multiple damage detection of structures using modal characterization to evaluate
the dynamic response of the structure given a damage model is investigated. The damage identification problem is
seen as an optimization problem to be solved using a firefly optimization algorithm. The objective function is based
on a numerical damage model that considers the modal response of the structures. We show some implementation
details and discuss the obtained results for a benchmark problem used to assess the performance of the method and its
advantages for structural health monitoring.

Keywords: firefly algorithm; optimization; finite element method; modal analysis; structural health monitoring.
Resumen

En este estudio, se investiga una técnica novedosa para la deteccion de dafios maltiples de estructuras mediante la
caracterizaciéon modal para evaluar la respuesta dinamica de la estructura dado un modelo de dafio. El problema de
identificacion de dafios se plantea como un problema de optimizacién que se resuelve utilizando un algoritmo de
optimizacion tipo firefly. La funcion objetivo se basa en un modelo de dafio numérico que considera la respuesta modal
de las estructuras. Mostramos algunos detalles de implementacion y discutimos los resultados obtenidos para un
problema de referencia utilizado para evaluar el rendimiento del método y sus ventajas para el monitoreo de la salud
estructural.

Palabras clave: algoritmo firefly; optimizacién; método de elementos finitos; andlisis modal; monitoreo de salud
estructural.
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1. Introduction

The importance of early detection of damage has become
more important during the last decades in industry and
academy, going through visual inspection to vibrational
analysis for many engineering applications [1]-[5].
Structural health monitoring (SHM) systems have been
implemented widely in bridges such as the Great Belt
Bridge in Denmark, the Confederation Bridge in Canada,
among others [6]. The identification of the location and
the depth of cracks in elements of the structure have
received considerable attention in the Structural Health
Monitoring (SHM) field.

Damage detection methods can be classified into two
categories: those based on identification with dynamic
data, and methods based on identification with static data
(deformations and stiffness matrices), the latter having
less information available for analysis, as well as the
difficulty to find damage in components of structures
whose contribution to total deformation is low [7].

Damage detection in structures through modal analysis is
one of the most used methods including dynamic data of
structures. This is based on the fact that deterioration of
the condition of a structure or element is linked to the loss
of stiffness [1], [8], affecting the dynamic properties of
the system. The variation presented in modal parameters
is an indicator of the magnitude and localization of
damage [9]-[11]. SHM using dynamic response can be
classified into two groups according to the
implementation [12]: experimental methods based on
non-destructive technigues and numerical methods based
on FEA (Finite Element Analysis) [2], where the use of
this analytical tool with previous experimental validation
is a great asset in the process [13]. The last one has
particularly led to the development of intelligent
structures or systems, which are capable of detecting
damage online and quantifying the degree of severity of
the damage.

In the literature, there are different methods for the
detection of damage based on the analysis of the dynamic
parameters due to changes in the rigidity of the system
[9], [14]-[16]. In [14], neural networks combined with
fuzzy pattern recognition were used to do an online
categorization of the health state of a bridge among four
categories (healthy, little damage, moderate damage, and
significant damage) through FEA computations of
natural frequencies. This algorithm, although its
satisfactory results in categorization, is not able to
estimate damage quantity or location.

In [15], genetic algorithms were considered to solve the
problem of the detection of damage in structures and
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machine elements, which was addressed as an
optimization problem. In seminal works, binary codified
genetic algorithms were used, the objective function was
based on the residual forces vector [16]. Such an
approach has the disadvantage of requiring full modal
forms, which in practice is currently not feasible due to
technical and economic reasons.

Later works proposed to detect the damage dividing the
process into two stages to define its location and
magnitude [17]. In the first stage, a set of elements
possibly damaged was determined through a
methodology of locating elements with damage based on
energy. In the second stage, the damage is quantified
using a micro-genetic algorithm, which performs an
optimization process, where the optimal combination of
damaged elements and damage extensions is sought to
minimize a target function based on natural frequencies
and modal forms. Metaheuristic algorithms have been
also used for determining the optimal sensor placement
(OSP) [18] before the implementation of SHM systems
in real structures, which is a general concern for this type
of applications, considering that the number and quality
of identified mode shapes depend on the type of sensors
used and their placements [19].

In [20], a modified genetic algorithm for the detection of
structural damage was used. The algorithm considers a
chromosome representation defined with real numbers
and an objective function based on changes in natural
frequencies and modal forms. Subsequently, it restarts
the individuals who present a minimum difference in the
objective function to define the new population. This
type of coding is highly applicable to solve the problem
of damage detection since the number and position of the
damage elements are not known a priori.

The work in [21] analyzes in detail the rigidity matrix of
cracked beams and the non-linearity linked to the
opening employing fracture mechanics. Fault detection is
performed by comparing the natural frequencies of the
models. They conclude that plate or brick elements in
FEA are not necessary for SHM techniques for this type
of structure. However, further work is required in the area
since the developed algorithm satisfactorily detects the
location of the damage, but gives an estimate of damage
minor than the actual value.

In [22], the failure is modeled by fracture mechanics, and
using FEA the dynamic mode shapes are determined,
allowing to associate the modal stiffness with the work
of the internal forces and the displacement field. Then,
the virtual work is calculated as a scalar product of the
mode shapes. This allows computing the Modal
Assurance Criterion (MAC), knowing that virtual work
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is the square root of it. Based on this, a failure indicator
for a life-time and service-life estimation is proposed.

A framework with FEA updating simulations for
probabilistic lifetime estimation for wind energy
converter structures is developed by [23]. A detailed
model of the structure is created using the FEA software
ANSYS to compute the eigenvalues of the system, then
a simplified one, with less computational cost, is
validated, obtaining nearly perfect matches in the
eigenvalues. The assumption of the reliability of the
highly detailed FEA model is corroborated in [24]
finding a 1.3% deviation with respect to measured data.
This is used to develop a tool for online SHM. The
eigenvalues are obtained by Operational Modal Analysis
(OMA) of the real structure and through MAC-matrix
diagonal values, an optimization problem with an
objective function of the similarity between real-time
simulations allows the identification of damage. A
damage catalog with patterns is created a priori with
FEA to allow rapid assessment of damage.

In this paper, we propose the use of a metaheuristic
optimization algorithm, called Firefly Algorithm (FA),
for the online detection of structural damage through
modal characterization. The swarm algorithm considers
variations in the dynamic response of the structure, given
a simple damage model, which is characterized by a
decrease in the elastic properties of the damaged
elements. The modal characterization is done using a
finite element (FE) numerical model. In the next section,
we present the problem statement and the definition of
the optimization problem using FA. Then, numerical
results are presented for a benchmark problem, where
different damage configurations are considered. We
perform the analysis of the different optimization
parameters and their impact on the proposed FA
algorithm. Finally, we present the most relevant
conclusions.

2. Methodology
2.1. Problem Statement

Consider the problem of free vibration without damping.
The mathematical model that defines the equation of
motion for the system with one degree of freedom can be
written as:

mii(t) + ku(t) = 0, (1)

where m is the mass, k is the elastic constant, u is the
displacement solution of the system and ii is its second
derivative, which depend on the time t. The general
solution of (1) is:
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x = Asin(wt + B),w =/ k/m, 2)

where A and B are real constants and w represents the
natural frequency of the system. Equation (1) can be
generalized for systems of several degrees of freedom as:

Mii(t) + Ku(t) = 0, ?3)

where M is the mass matrix, K is the stiffness matrix of
the system, and u is the displacement field. The solution
of (3) is not unique and for a system of n degrees of
freedom there are n solutions u; or mode shapes, each
one associated with a natural frequency of the system w;.

2.2. Finite element formulation and modal analysis

For a continuous system, it is possible to find the solution
employing a finite element discretization where, in
equation (3), u represents the nodal displacements u”
and matrices M and K are constructed from the matrices
evaluated in the domain of each element, defined as:

Me = f NTpN dQ,
Ne

4
K¢ =f BTDB dQ,
Ne

where p is the mass per unit volume, N are the basis
functions used for the finite element approximation and
B their derivatives, D is the material matrix, and 0,
denotes the finite domain of the element.

2.3. Firefly Algorithm

The firefly algorithm was proposed by Yang [25],
inspired by the behavior of fireflies. It is a metaheuristic
optimization algorithm for swarm intelligence. This
algorithm offers advantages of operation when searching
in extensive solution spaces since it does not have a
starting point and it avoids falling into local optimum,
improving its performance in the global space [26].
Figure 1 presents the pseudocode proposed in [25].

Fireflies use light to attract other fireflies during mating.
In the algorithm, the light intensity can be formulated in
such a way that it is associated with the objective function
to be optimized. The algorithm generates a determined
number of possible solutions within the search field, in
which the configurations (fireflies) that give the best
response of the objective function will be those that will
attract the other configurations that are close. In this way,
key points of the solution field are examined more
efficiently.
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FIREFLY ALGORITHM

Objective function f(x), x =[xy, ..., x4]7 -
Generate an initial population of n fireflies x; (i = 1,2,...,n).
Light intensity I; at x;, is determined by f(x;).
Define light absorption coefficient y.
while (t < MaxGeneration),
fori = 1: n(all nfireflies)|
forj = 1: n(all nfireflies) (inner loop)
if (I, < I; )
Move firefly i towards j.
end if
Vary attractiveness with distance 7 via e 772,
Evaluate new solutions and update light intensity.
end for |
end fori
Rank the fireflies and find the current global best g+
end while
Postprocess results and visualization.

Figure 1. Pseudocode of the FA algorithm.

The control parameters of the FA algorithm are defined
as:

x: Population of fireflies.

n: Size of the population, total number of fireflies.

I;: Light intensity of the firefly i.

MaxGeneration: Maximum number of generations for
fireflies.

a: Sets the randomness of the process. It defines the step
in the movement of the fireflies.

y: Coefficient of light absorption.

A: It establishes the reduction of randomness whenever a
new generation originates.

B: Attractiveness. Coefficient of attraction between
fireflies, which varies with respect to the light absorption
coefficient and the distance between them, given by

B(r) = ,BOe_VTm,m >1 (5)
where B, is the attractiveness at r = 0.

Yang [9] established three fundamental rules governing
the algorithm, which determine the behavior pattern of
fireflies. These rules include:

Fireflies are unisex, meaning a firefly will be attracted to
another firefly regardless of sex.

The attractiveness of a firefly is proportional to its
brightness, and these two (attractiveness and brightness)
are forced to decrease when the distance from another
firefly increases. Less bright fireflies will move toward
one with greater brightness. If a firefly is not attracted to
any other, because there is none with a brightness greater
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than its own, it will move randomly. The brightness of a
firefly is obtained by evaluating the objective function.

2.4. Objective Function

Different objective functions have been proposed in the
literature for damage detection methods. In [27], [28], the
authors considered a function using a correlation
coefficient between the reference and test frequencies.
However, it may not handle properly the non-uniqueness
of the solution and the case for symmetric problems as it
only considers the frequency information. In this study,
the optimization problem for the detection of structural
damage is defined through a functional that expresses the
weighted difference between the response of the test
model and the damaged models in a database [1], [11].
The objective function to be optimized reads:

reo= 2= (G2)
+ Z Z W¢ji ((pmﬁ ©

j=1i=1

- ¢aij)x

where the difference is minimized as a function of the
natural frequencies w and the mode shapes ¢ of the
problem under consideration normalized to the mass
matrix, such that the ¢ values correspond to the
eigenvectors. Ww]. and W¢ji are the weighting factors for

w and ¢ respectively, n, represents the number of
natural frequencies to be considered and s defines the
size of the mode shape vector. ¢,,;; and w,,; are the
mode shapes and natural frequencies of the test model,
¢qij and w,; are the mode shapes and natural frequencies
read from the database during the optimization process.
In this sense, the objective function will be in charge of
the comparison of the dynamic characteristics of the test
model and the models of the database that has
preconfigurations of possible damages.

2.5. Noise

In general, it is not possible to measure and obtain exactly
the natural frequencies and mode shapes for a given
model. Although these errors are mostly corrected using
cross- and auto-spectra, it is necessary to consider a
robust algorithm that can manage certain levels of noise.
To simulate distortion in the signals of the test model,
noise was introduced in the values of natural frequencies
w and modal forms ¢ following the procedure shown in
references [11], [29]-[33]. Perturbation is expressed in
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terms of small sums or subtractions that could be related  2.6. Algorithm description
to the power of the noise in the signal, given by

o, = w(1+ Rand(—1,1)N,),

br

¢(1 + Rand(—1,1)Ny),

For the solution of the problem two programs are used:
Ansys APDL and Matlab. First, it is required to evaluate
(7)  the dynamic response to different damage scenarios. In
(8) Matlab, a database containing the dynamic responses for
different damage configurations (affected bars and

where N, and Ny represent the percentages of noise to  percentage of elasticity reduction) is constructed offline.
be used in natural frequencies and mode shapes, Ansys APDL code is used to simulate stiffness losses in

randomly distributed.

the bars and to obtain the modal characterization.

Definition of the parameters of the firefly
algorithm [n, MaxGen, o, B, v, and A]. Set
the boundaries of the solution field

The values of natural
frequencies and modal
forms of the test
model are taken

-

Random generation of the n fireflies with
their respective position (pairs of elements

with their respective damages)

v

Each firefly enters the database with the number
of selected items and damage percentages. The
fireflies obtain the respective values of natural

frequencies and modal forms

v

Comparison of responses between the values of the models of the
database and test model using the objective function

v

Comparative cycle between all fireflies to define
the most attractive and new positions according to

the attraction formula

New positions
within the field of
solutions

Border position
is assigned

MaxGen = MaxGen + 1

4

MaxGen value
defined per user
reached

Results of location and magnitude of

damage are printed according to the
algorithm according to the concept of
most of the fireflies.

Figure 2. Flowchart of the proposed algorithm.
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With the database already built, the firefly algorithm is
implemented. The algorithm generates a given number of
fireflies (possible solutions within the database) that
explore the solution field. The fireflies are evaluating the
objective function and, through the intensity, they are
grouped in the optimal local of the solution space.

The optimization problem proposed by the objective
function in (6) compares the test model with different
damage models and finds the one that best fits the input
data. The general flowchart of the proposed algorithm is
shown in Figure 2.

3. Numerical results

To evaluate the performance of the proposed
methodology, we implement the problem of a truss
subjected to damage in different configurations. Noise is
introduced into the model to simulate the effect of
problems in signal capture and processing. We modify
different optimization parameters to evaluate the
response of the FA algorithm.

3.1. Truss

The planar truss in Figure 3 is composed of 13 bars of
steel A-36, with Young’s modulus E = 2 x 10! Pq,
Poisson's ratio v = 0.3 and, density p = 7850 Kg/m?>.
The structure is simply supported on nodes 1 and 5, as
shown. The cross-sectional area of the bars is A =
4 x 10™* m?2. The total height of the structure is 2.4284
m and the span is 7.3152 m. The problem is to determine
if any of the bars of the structure have a failure that could
put the operation at risk. For the numerical model of the
structure implemented in Ansys, we considered LINK1
elements. We solve the problem of free vibration without
damping in equation (3) to obtain the natural frequencies
and mode shapes of the system. Initially, to set the
optimization problem defined by the objective function
in (6), the weighting is defined as W,,; = 1 and Wy;; =
1, representing the same level of uncertainty for both
measurements. Further study regarding the use of
different weighting factors may be performed during
experimental tests. The configuration parameters of the
FA algorithm, as indicated in [10], are taken as n = 40,
MaxGeneration = 5000, = 0.2,8, =1, v =1, and
A =0.97.

The flowchart shows the algorithm process where, in the
initial stage, the Firefly operating parameters are defined.
Afterward, the information of the test model is received,
which will be contrasted with the database in search of
the term with greater similarity to it using the objective
function. It is observed how the algorithm performs an
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intelligent scan of the database avoiding finding local
minimums thanks to the randomly generated swarm and
the rules of attraction between individuals.

The database containing different damage configurations
is generated offline to aid in the search for damage in the
input model. The database contains the responses for
damages in one or more bars within a range of [0, 95] in
damage percentage, discretized every 5%. For the
solution of (3), and to limit the problem size, only the
extraction of the first 8 modal forms was considered.

The optimization algorithm FA searches within a
precalculated database, which contains the dynamic
response of the structure for different faults. We
determine the damaged elements and quantify the loss of
rigidity for each element by means of the objective
function.

3.2. Multiple damage detection

To evaluate the response of the proposed algorithm
against noise a set of tests are performed. It is necessary
to identify the minimum number of mode shapes required
for the algorithm to behave appropriately, even in the
presence of noise in the input data. To do that, a set of
noise-scenarios are defined following (7], as
N=[N,, Ngy]: N1= [0%, 0%], N2= [0.5%, 1%], N3=
[1%, 3%], N4=[2%, 5%], where N, represents the noise
added to the natural frequency value and Ny, is the value
added to the mode shapes, for a corresponding input.

6 7 8

1 5

% 2 3 4 _é_

Figure 3. Truss simply supported.

Thus, accuracy tests were performed in the proposed
algorithm to verify how it responds to the noise, trying to
emulate the response to an input signal with distortions.
Three attempts were made for each combination of
damage configuration and number of modes extracted,
and the percentage of effectiveness was obtained.

Figure 4 shows the effectiveness of the algorithm against
noise for a different number of modal forms extracted.
The results show that when we consider only 2 mode
shapes the optimization algorithm is very sensitive to
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noise and is not able to find the damaged elements in
some cases. Increasing the number of mode shapes
between 4 and 6 increases the effectiveness of the method
by having an enriched search space. For 8 modes, the
percentage of effectiveness of the algorithm looking for
damaged elements was 100%. Therefore, for subsequent
analysis of the performance of the optimization
algorithm, we choose to extract 8 mode shapes.

120
100 8——
- 80
=
5
g 60 —&— 8 modes
2 —&— 6 modes
< 40 ——4 modes
—8—2 modes
20
0
N1 N2 N3 N4

Noise

Figure 4. Accuracy of the algorithm versus different

configurations of noise in the test model: N1 = [0%,

0%], N2 = [0.5%, 1%], N3 = [1%, 3%], N4 = [2%,
5%].

Figure 5 shows the results of the tests performed to
identify the sensitivity of the algorithm to the noise in the
natural frequency, modes of vibration, and both. We
evaluate the accuracy to detect the magnitude and

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
0% 5%

% Noise

10%

2 REVISTA UIS
@INGENIERI’AS 257

location of the damage when a discrete range of noise is
added to the sensitivity parameters. The input variables
Damage and Position are generated randomly to consider
the performance of the algorithm throughout the entire
database. Once the noise effect is added, the detection
algorithm is executed and the predictions are obtained,
which are compared with the original input variables to
evaluate the accuracy. This process is replicated ten times
to identify an average accuracy behavior given the
random nature of the metaheuristic.

Table 1. Damage performance against noise. P:
Location of damage, D: Magnitude of damage

NOISE %

—@— Natural Frequency
—— Vibration Modes
—&— Combined

25%

15% 20%

% Accuracy

Figure 5. Accuracy of the model versus noise.
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Table 2. Damage prediction performance under noise conditions. In: input data, Out: output data

NOISE %
4% 7% 10% 13% 16% 19% 22% 25%

In Out In Out In Out In Out In Out In Out In Out In Out

=3
@
<

30-85 | 30-85 | 45- 80 | 45- 80 | 60-25 | 45-20 | 55-50 | 45-40 | 95-70 | 95-70 | 35-60 | 15-50 | 85-75 | 20-25 | 90-85 | 45-75

45-75 | 45-75 | 55-80 | 55-80 | 85-35 | 85-35 | 85-80 | 70-75 | 30-65 | 30-50 | 50-15 | 40-10 | 85-90 | 40-85 | 95-60 | 90-35

15-35| 15-35 | 10-50 | 10-50 |65-25|60-25 | 70-90 | 45-80 | 55-25 | 55-25 | 65-80 | 65-80 | 85-85 | 85-75 | 95-65 | 70-20

20-75 | 20-75 | 60-10 | 60-10 | 55-15 | 45-10 | 25-85| 15-85| 20-80 | 5-70 | 60-30 | 35-30 | 95-65 | 90-30 | 10-60 | 10-60

30-20 | 30-20 | 5-15 |65-15 | 45-10 | 45-10 | 25-35|5-25 | 15-65 | 20-55 | 45-90 | 10-75 | 50-15 | 30-10 | 95-50 | 30-30

45-45 | 45-45 | 55-15 | 55-15 | 85-25 | 85-25 | 45-65 | 45-65 | 15-25 | 10-25 | 55-40 | 20-35 | 40-45 | 25-35 | 95-95 | 50-80

60-75 | 60- 75| 50-65 | 50-65 | 75-25 | 75-25 | 30-40 | 30-35 | 15-80 | 15-80 | 45-90 | 45-80 | 95-50 | 65-40 | 95-50 | 90-45

90-60 | 90- 60 | 85-75 | 85-70 | 85-25 | 85-25 | 75-60 | 70-60 | 45-80 | 10-75 | 95-50 | 55-25 | 25-55 | 40-85 | 85-15 | 80-15

|| N|OO|O(R|W|IN|F

95-20 | 95- 20 | 40-10 | 35-10 | 75-45 | 75-45 | 35-50 | 30-45 | 75-65 | 60-55 | 50-55 | 30-45 | 45-50 | 45-50 | 80-40 | 30-30

=
o

70-40 | 70- 40 | 20-10 | 20-10 | 85-85 | 85-85 | 25-50 | 25-50 | 30-35 | 10-10 | 70-75 | 20-25 | 55-85 | 25-20 | 95-70 | 85-55

It can be observed that an accuracy of 80% can be  3.3. Analysis of metaheuristic parameters

expected if accelerometers with a +5% noise in their

measurements are employed. To identify the most relevant parameters in the
performance of the Firefly Algorithm a 2 experimental

The algorithm shows excellent performance in detecting ~ design is proposed according to [34]. The parameters n

the position of damage given that noise in the mode  =[25 40], MaxGeneration= [2500 5000], y= [0.21 1],

shapes turns them into scalar multiples of the original ~ with the dependent variable f(x), value of the objective

unaffected ones, allowing the algorithm to identify  function, as defined in (6).

location very accurately. For the magnitude of the

damage, the results are shown in Table 1, where red  From Table 3, we can conclude that the most relevant

boxes indicate an incorrect result and green ones acorrect  factors in the performance of the Firefly Algorithm are n

result, it can be observed for one of the ten data sets, how  and MaxGeneration, since they have a P value lower than

accuracy in the prediction on the magnitude of the  0.05 and, based on this, it is inferred that they are

damage decades for increasing values of noise. statistically significant.

(53]

A more detailed analysis of the magnitude of damage 12
detection is shown in Table 2. For noise values of 16%,
the algorithm shows good estimations of the damage 100

magnitude being those near the actual value in the input III IIJI I I

data. ’_ I 1 I III
For this reason, an accuracy analysis of the algorithm to I {
identify the location of the damage under the effect of the 50

noise in the input data is executed in the same fashion as

the previously shown, but considering only the location
of the damage to computing the accuracy value.

%Accuracy

From this test, it can be observed in Figure 6 that the 0
algorithm presents high accuracy in the detection of 0 5 10 15 20 25
damage location under the presence of noise in the input %Noise

data. Thus, the algorithm can be considered as a tool for
locating the damage and estimating the percentage of
damage of the affected elements.

Figure 6. Accuracy of the model against noise
considering only the damage location.
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Table 3. Parameter effect analysis

Effect | Coef. | Se T value | P value

Constant 0.141 | 0.007 | 19.89 0

n -0.06 | -0.03 | 0.007 | -4.24 0

Y -0.009 | -0.004 | 0.007 | -0.64 0.526
MaxGeneration -0.031 | -0.015 | 0.007 | -2.19 0.032
ny 0.002 | 0.001 | 0.007 | 0.19 0.848
n MaxGeneration 0.011 | 0.005 | 0.007 | 0.84 0.404
vy MaxGeneration -0.027 | -0.013 | 0.007 | -1.9 0.062
n MaxGeneration y | 0.02 0.01 0.007 | 1.42 0.159

In Figure 7 the standardized effects of each of the factors
and their respective interactions are presented. Each of
the effects of the 3 parameters considered and their
interactions are in descending order. The dashed red line
indicates a critical value with 95% confidence, where the
values farthest to the right of the latter will be relevant.

It is observed that the effects of the parameters n and
MaxGeneration are the most significant and,
additionally, the parameter n is the most relevant of all.

4, Conclusions

In the present work, a methodology was developed that
addresses the problem of the detection of damage in
structures as an optimization problem. ANSYS finite
element software was wused for the dynamic
characterization of the structures. For the solution of the
optimization problem, the Firefly Algorithm was chosen
as the tool to determine the damage condition in the
models.

C
BC
£,
& ABC Term Factor
'._.
AC A n
B B v
AB C MaxGen
0 1 2 3 4

Effect
Figure 7. Pareto plot of the standardized effects.

The methodology was based on the fact that damage
affects the stiffness of the system, which results in a
change in its dynamic response. A database was
constructed offline with natural frequencies and mode
shapes precalculated for different types of damage. The

algorithm evaluates the dynamic response of the test
model and compares it with the database to determine the
magnitude and location of the damage. Extension to use
other damage indicators [35] is also feasible.

The results show that, for various damage configurations
and a moderate noise percentage (cases R1, R2, R3), the
algorithm is able to detect the affected elements or
regions and quantify the damage percentage. When there
is a severe noise condition (case R4) it is necessary to
consider a higher number of mode shapes (6 or 8) to
obtain a reliable response from the algorithm. This
behavior is due to the fact that, when working with a few
vibration modes, the algorithm does not have enough
information on the nodal displacements to determine the
location and magnitude of the damage. We can conclude
that the number of shape modes to be extracted should be
8 or higher.

A more exhaustive analysis of the effect of noise for this
condition is performed by running tests where the natural
frequency, shape modes, and both are affected. From
these analyses, it is concluded that the noise in the shape
modes has a greater negative effect on the accuracy of the
results. For tests with noise affecting both natural
frequency and shape modes it is observed that the
algorithm presents an acceptable accuracy, as low as 68%
within a range of 7% of noise, this considering the
estimation of location and magnitude of the damage.
When considering the accuracy of only the location of
damage, much better performance is obtained, getting for
13% noise an accuracy of 84%. Hence, the algorithm can
be considered as a tool for damage location and
estimation of its magnitude.

From the metaheuristic parameters analysis, it is
concluded that the most relevant parameter is n, size of
the population, the total number of fireflies. Then,
computational resources must be focused on increasing
this value to obtain better performance of the algorithm.
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