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Abstract

The Surface Free Energy (SFE) of a material is defined as the energy needed to create a new surface unit under
vacuum conditions. This property is directly related to the resistance to fracture and recovery of material and the
ability to create strong adhesion with other materials. This value can be used as a complementary parameter for the
selection and optimal combination of materials for asphalt mixtures, as well as in the micromechanical modeling of
fracture and recovery processes of said mixtures. This document describes the results of the implementation of the
use of machine learning and Random Forest prediction techniques for the estimation of surface free energy based on
data from previous studies. The experimental samples were twenty-three asphalt binders used in a Strategic Highway
Research Program (SHRP). A decrease of 54% and 82% in the mean absolute error (MAE) and the mean square
error (MSE), respectively was found for the new model built. While the model fits better with a 12% improvement,
according to the adjusted determination coefficient, the accuracy and the score of the model also increases notably in
2% and 55%, respectively.

Keywords: asphalt cement; surface free energy; asphalt mixtures; machine learning; random forest; strategic
highway research plan.

Resumen

La energia libre de superficie de un material se define como la energia necesaria para crear una nueva unidad de
superficie en condiciones de vacio. Esta propiedad estd directamente relacionada con la resistencia a la fractura y
recuperacion de un material y con la capacidad de crear una fuerte adhesién con otros materiales. Este valor puede
ser utilizado como pardmetro complementario para la seleccion y combinacion éptima de materiales para mezclas
asfalticas, asi como en el modelado micromecénico de procesos de fractura y recuperacién de dichas mezclas. Este
documento describe los resultados de la implementacion del uso del aprendizaje automaético y las técnicas de
prediccion de bosque aleatorio para la estimacion de la energia libre superficial basada en datos de estudios
anteriores. Las muestras experimentales fueron veintitrés ligantes de asfalto usados en un Programa de Investigacion
Estratégica de Carreteras (SHRP). Podemos destacar una disminucion de 54% y 82% en el error medio absoluto
(MAE) vy el error cuadratico medio (MSE), respectivamente. Si bien el modelo encaja mejor con una mejora del
12%, segun el coeficiente de determinacion ajustado, la precision y la puntuaciéon del modelo también aumentan
notablemente en un 2% y 55% respectivamente.
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1. Introduction

Asphalt mixtures used in pavement structures, are
porous materials that result from the combination of
multiple aggregates (among many of these you can have
crushed rock in various sizes and with a density of
different proportions) and asphalt cement. The strength
and durability of an asphalt mix depend to a large extent
on the quality of the adhesion between the cement and
the aggregates. In this way, the adhesion between these
two or more materials usually turns out to be a function
of their mineralogical and chemical composition, the
morphology of the aggregates (shape and textures), and
in addition to the conditions in which they are mixed is
prepared. Often what happens is that the asphalt
mixtures are deficient and therefore their performance
in the works for which they were made is also deficient.
This could be due to inadequate conditions in the
preparation of the mixtures by not ensuring
compatibility of the compounds. In addition, very high
or very low temperatures, or outside the preparation
standards, could also affect the integrity of the mixtures
as well as their performance on the work.

From a physical point of view, adhesion in a mixture of
liquid and solid materials (such as asphalt) is defined in
terms of the physical surface properties of the materials
that allow the liquid to wet or coat the solid component.
This phenomenon is known as wettability [1] [2] [3] [4]
it is defined as the resistance of a liquid droplet to stay
in balance when in contact with a solid body. The
ability of liquids to coat solid bodies, and solids to be
coated by liquids, is directly related to the surface
tension or Surface Free Energy (SFE) of the materials
(i.e., the energy required to generate a new unit of area
of the material). Adhesion between two materials is
only possible if the SFE of the solid body is superior to
the ESL of the liquid. SFE is a fundamental property of
materials, and its quantification is done through the
application of advanced characterization techniques,
such as the Wilhelmy Plate Method (WPM) [5] [6], the
Sessile Drop Method [7] [8] [9] [10] [11], the Universal
Adsorption Method (UAM) [12], among others.

The main motivation to characterize the adhesion in
asphalt mixtures is the growing need for better material
selection techniques (i.e., the combination of aggregates
and asphalt cement) based on fundamental properties of
the materials, which guarantee more resistant and
durable mixtures. It has been shown that by studying
adhesion in aggregate-asphalt cement systems, is
possible to identify combinations of materials that

produce high adhesion systems and high resistance to
moisture damage. This type of damage in asphalt
mixtures is defined as the decrease in adhesion between
the asphalt cement and the aggregate or the reduction of
the cohesion within the asphalt cement [13]. By
determining the SFE of the materials and applying the
basic theory of surface physics, it is possible to identify
combinations of aggregates and asphalt cement with
high adhesion in the dry state and with low
susceptibility to moisture damage. From the
thermodynamic point of view, the SFE of a material is
defined as the work required to create a new unit of area
in said material, under vacuum conditions [12].

In previous studies [14], SFE for twenty-three asphalt
binders of the Strategic Highway Research Program
(SHRP) have been calculated and determined using the
contact angle technique (sessile drop). Gray correlation
analyses were carried out to determine which chemical
components and chemical elements of asphalt binders
are most related to surface free energy (SFE)
measurements of asphalt binders. The measurement of
the contact angle was carried out using a Drop Shape
Analysis 10, manufactured by Kriss Co., with three
different liquids: distilled water, glycerol, and
formamide. The Owens Wendt theory was applied to
determine the surface free energy. The experimental
procedure, as well as the determination of the surface
free energies for these twenty-three asphalt samples, can
be consulted in the manuscript [14].

The asphalt identification codes, the contents of four
fractions, the wax content, and the elemental analysis of
these asphalt samples are given in Table 2. Furthermore,
from the analyses performed in [15], a simple and
multiple regression analysis was carried out to correlate
and obtain parametric mathematical relationships
between the free energy of the surface and the chemical
compositions of the asphalt binders, including group
type analysis (saturated, naphthenic, polar aromatics and
asphaltenes), wax content and elemental content, based
on published data on chemical composition [14].

The present manuscript explores a different line of
action for determining relationships between SFE and
the chemical characteristics of asphalt samples. In this
case, the main objective of our study is to implement a
non-parametric methodology with the use of machine
learning tools for the estimation and prediction of SFE
in terms of the dependent variables measured in
previous studies.
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The use of machine learning for these purposes is aimed
at improving the quality of predictions and estimates.
This is possible thanks to the advantages of having deep
and automatic learning methods with algorithms that try
to learn from the data, and the more data available to
learn and richer and more complete the algorithm will
work better.

2. Data and methods

The effect of eleven input variables was investigated in
this research study, namely: Component Analysis, (% of
Saturates Aromatics Resins Asphaltenes), Wax content,
and Analysis of elements (carbon content (C%),
hydrogen content (H%), oxygen content (O%), nitrogen
content (N%), sulfur content (S%), nickel (Ni, ppm) as
well as vanadium (V, ppm) over the dependent variable
SFE.

Data used in this study for the asphalt identification
codes, four fractions’ contents, wax content, elemental
analysis of these asphalt samples are given in Table 1

[14].

{.:.'J}REVISTA uis
I INGENIERIAS 181

2.1. Data exploration and statistical analysis

Generally, when trying to statistically study the
behavior of a variable alone, a process of analysis of the
distribution of this variable is required. This analysis
provides information from the systematic exploration of
the properties of each variable under study. Probability
density diagrams can visually (as a first step) to study
the general behavior of the variable under study. One
way to obtain this empirical estimate of density (which
is certainly a nonparametric methodology) is by using
histograms of individual counts or relative frequencies.
Often, this preliminary step can reveal what type of
distribution the variable follows and thus characterize
the central properties of the entire possible range of
variable values. This will determine if the distribution is
completely symmetric and if the central measures
represent a good estimator, which is particularly useful
because many times, some known probability density
functions are applicable to be modeled by the data set.
In this case, we present scatter plots for each input
variable with the output variable.

Table 1. SHRP core asphalts and surface free energy results

Asph.Cod [ SFE(MJ/m?) | X1 | Xo | Xa | Xa | Xs | X6 | Xz | X | Xo | X10 | X11 | Xa2
AAB-1 15.38 8.6 [33.4]38.3/17.3]/3.85[82.3| 10.6 |0.80|0.54| 4.7 | 56 | 220
AAB-2 16.09 10.836.5|35.7|16.7|5.05|85.7|10.59|1.06 |0.54| 5.4 | 36 | 163
AAD-1 16.51 8.6 [25.1]41.3/20.5[/1.94[81.6| 10.8 |0.90|0.77| 6.9 | 145]| 310
AAD-2 16.79 10.0|26.7[40.1]21.3|1.41|81.9| 10.3 |[1.17| 0.9 | 8.3 |135]| 266
AAF-1 16.26 9.6 |37.7/38.3/13.3/4.19/84.5]| 10.4 |1.10|055]| 3.4 | 35 | 87
AAF-2 14.81 11.934.6(38.7[13.0[4.20|84.8| 10.2 |{0.82]0.28| 4.6 | 22 | 102
AAG-1 25.79 8.5 [325|51.2| 50 [1.13|85.6| 105 |1.10| 1.1 |13 ]| 95| 37
AAG-2 27.09 6.6 [35.3]/51.0] 5.0 (1.11/87.0] 105 |1.93|1.15] 29|11 | 33
AAH 14.48 13.5|28.641.4{15.9(4.41|86.3| 10.1 [1.00] 0.8 | 28 | 43 | 84
AAK-1 17.02 5.1[30.0/41.8/20.1]1.17[83.7| 10.2 |0.80| 0.7 | 6.4 | 1421480
AAK-2 18.09 7.5130.6/39.4/19.2|1.14[83.2| 10.3 |1.14| 0.7 | 6.9 |117]1165
AAL 16.27 12.1130.3|37.3{18.9(1.23|83.4| 10.1 [1.00]| 0.6 | 5.5 | 98 | 244
AAM-1 24.11 1.9 141.9/50.3| 4.0 |4.21/86.8| 11.2 |0.50[0.55| 1.2 | 36 | 58
AAN 17.05 10.3140.1|33.9|15.7|2.74|84.5| 10.2 |0.80| 0.7 | 4.3 | 65 | 157
AAP 20.44 13.2136.4|36.9|12.6|4.77|85.9| 10.9 |0.80| 0.6 | 1.7 | 68 | 128
AAS-2 16.27 6.4 [46.4/30.0/17.1]/2.85[/83.1| 9.8 |0.96]0.44|6.76| 37 | 133
AAS-3 17.27 3.8 139.9/37.7]17.3]3.53|81.7| 10.1 |0.83]0.48|6.21| 40 | 137
AAT 15.86 7.7 132.3]425(17.3]2.55[83.9] 10.1 |0.70]| 0.6 | 5.1 | 80 | 201
AAV 17.94 10.9|38.9|39.5| 9.7 |3.13|86.4| 105 [1.10{ 0.8 | 2.4 | 41 | 92
AAW 15.52 9.3 37.1/35.7[17.9]/4.20(84.5| 10.1 |0.90| 0.7 | 45 | 80 | 334
ABC 13.77 7.1 144.0/23.2]125.6/2.90/83.2] 9.9 |040| 03|64 | 25| 37
ABD 25.95 10.4|28.4|52.7| 7.0 |0.81]86.8] 10.7 |[1.20]| 1.2 | 1.6 |123| 62
ABM-1 24.93 9.0 |29.6/52.4| 7.1 |1.10[86.3] 10.3 |1.22]1.09]/1.28]|111| 63

In head we denote X;=Saturates, X;=Aromatics, Xs=Resins, Xs=Asphaltenes, Xs=Wax, Xs=%C X7=%H, Xs=%0O,
Xg=%N, X10=%S, X11=Ni(ppm) and X1,=V(ppm).

Source: [14] [15].
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Since the data studied here are non-Gaussian, the
Spearman rank correlation coefficient can be used to
obtain a statistical metric concerning the strength of
association of each input variable with the output. The
Spearman rank correlation coefficient can characterize
general monotonic relationships and is in the range of -1
to 1, where the negative sign indicates that it is
inversely proportional and the positive sign indicates a
proportional relationship, while the magnitude denotes
what is very strong in this relationship. In addition, we
evaluate if this relationship is statistically significant
with the p-values and verify the importance at the 0.01
level.

2.2. Multivariate analysis methods

When the variable studied is properly interrelated (or
intends to be related) with another set of variables,
which we call predictors, the multivariate factorial
analysis is convenient to establish and expose the
underlying structure in a data matrix that precisely
measures this degree of relationship. The first is to
determine all the relationships between each pair of
these variables without making a priori distinction of
which is the dependent or independent variable, or in
other words, which is the predictor variable, and which
is predicting. Using this information, we can calculate a
set of dimensions, known as FACTORS, that seek to
explain these interrelationships. Therefore, it is a data
reduction technique, the information contained in the
data matrix can be expressed, without much distortion,
in a smaller number of dimensions represented by said
FACTORS.

To evaluate the significant differences between the sites
for all the water quality variables, the data were
analyzed through the analysis of variance. The
multivariate analysis of the water quality data sets was
done through hierarchical group analysis (HCA) and
principal components analysis (PCA) [16]. The
objective of clustering is to divide the objects into
homogeneous groups so that the similarities within the
group are large compared to the similarities between
groups. The Principal Components, on the other hand,
are extracted to represent the patterns that encode the
highest variance in the data set and not to maximize the
separation between groups of samples directly. The
statistical package used in this case is R version 3.4.4
(2018-03-15) [17] [18] [19]. The software was used for
both the HCA and the PCA.

2.3. Classification using random forests

In many practical applications, the inputs may show a
complicated functional relationship to determine the
output. The classification and regression tree method

D. Sierra-Porta

(CART, for its acronym in English of its Classification
and Regression Tree) is a method conceptually simple,
although powerful nonlinear, which often provides
reasonable results [20] [21]. CART works by
successively dividing the space of the input entity into
smaller and smaller subregions.

This procedure can be visualized as a tree that is divided
into successively smaller branches, each of which
represents a subregion of the ranges of the input
variables. The tree grows until it is not possible to
divide it further or a certain criterion has been fulfilled.
A natural extension of CART is the methodology of its
random forests (RF), which is simply a collection of
many trees [22]. The training procedure is the same as
in CART with the difference that a subset of candidate
variables chosen at random can be used to select the
optimal variable for each division; the practice has
shown that the RF algorithm works extremely well in
many different applications [20] [21] [22]. In addition,
RF has the desirable ability to promote the most
important input variables to predict the output variable
as part of its inherent learning strategy [21]. We
emphasize that the importance of the variable is not
evaluated independently for each variable; instead, it is
evaluated jointly for the subset of characteristics used in
the RF, making use of the concepts of relevance
(strength of association of variable and response),
redundancy (strength of association between variables)
and complementarity (force of joint association of
variables with the answer). Effectively, this means that
highly correlated variables (which show high
correlations between/among the variables) are penalized
and, therefore, redundant variables are not assigned
great importance even though they can be highly
correlated with the response.

3. Results and discussion

The results of the Principal Component Analysis
revealed that the first two independent variables that
result from the decomposition study add up to 64.8% of
the variability in the influence of composition
parameters in all samples. The analysis of the
correlation between the four fractions contents, wax
content, elemental analysis of these asphalt samples,
and their contributions to these variables (Figure 1)
shows that Wax and Aromatics content is positively
correlated with dimensions 2 and negatively correlated
with dimensions 1; Carbon and Hydrogen contents are
positively correlated with dimensions 1 and 2.
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Figure 1. Projection of asphalt binder samples and independent variables on factorial variables determined for
principal component analysis.

On the other hand, Resin, Oxygen, and Nitrogen are
positively correlated with dimensions 1 and negatively
correlated with dimensions 2; and finally, Sulfurs,
Aspens, and Vanadium content are negatively correlated
with dimensions 1 and 2.

The analysis of the projection of the different groups of
samples (Figure 2) on the dimensions of independent
variables shows that there are three very well-identified
groups. The first group identified as cluster 2 for the
asphalt types AAK-1, AAK-2, AAD-1, AAD-2, and
AAL, with very high values of Wax and Aromatics
content; a second group identified as cluster 5 for the
asphalt types ADB, ABM-1, AAG-1, and AGG-2
correlating with Carbon, Hydrogen, Resin, Oxygen, and
Nitrogen content. Finally, a third group was identified
as cluster 3 for the asphalt types of AAT, AAB-1, AAB-
2, AAW, AAN, AAH, AAF-1, AAF-2, AAP, and AAV,
associated with the main presence of Asphaltene,
Sulfur, Vanadium, and Nickel contents.

The correlation coefficient (see Table 2) between the
dependent variable (SFE) and the independent variables
shows that the most important variables are X3, X4, X6,
X9, and X10 with correlation coefficients 0.826013, -
0.848026, 0.615821, 0.745924, and -0.673967
respectively. The corresponding p-value for each
variable shows that at a level of significance of 1%

these variables have the most contribution to the value
of the SFE.

In the reference [15], the authors developed a single
regression and multiple regression analysis were applied
to correlate the relationships between chemical
composition and surface free energy of asphalt binders.
Several regressions were constructed by the authors to
examine the behavior by groups of separate variables,
however, one of the most important estimates that could
be made is precisely that which provides the
relationship between the SFE and all the measured
variables. This found relationship takes the
mathematical form:

Ywei = —47,4678 — 0,3279X1 + 0,1779X>

+0,0688X3 — 0,0543X4 — 1,0217Xs + 0,3789Xs N
+2,8364X7 + 3,8659Xs — 0,7983X9 — 0,5736X10
+0,0256X11 — 0,0018X12

Our approach is different, and in this case, we find a
model built through machine learning tools using
Random Forest estimators. In this strategy, several
decision trees have been used to find the best model that
fits the SFE data in terms of the twelve variables
measured. For the evaluation of the method and the
good approximation of the solution have been found
several parameters and metrics that allow measuring the
efficiency of the model (see Table 2 and 3).
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Table 2. Correlation coefficients for variables and importance of variable for the random Forest model

Variable | Corre. Coef.| p-value | N | Importance RF
X1 -0.231 0.288 |23 0.010
X2 -0.128 0.559 |23 0.004
X3 0.826 1.206x10°%| 23 0.213
X4 -0.848 3.229x1077| 23 0.285
Xs -0.458 0.0279 |23 0.095
Xe 0.615 0.001 |23 0.037
X7 0.527 0.009 |23 0.028
Xs 0.516 0.011 |23 0.029
Xo 0.745 4.388x1075 (23 0.041
X10 -0.673 0.421x1073 | 23 0.144
Xu 0.125 0.568 |23 0.010
Xi2 -0.196 0.369 |23 0.098

We denote X;=Saturates, X;=Aromatics, Xs=Resins, Xs=Asphaltenes, Xs=Wax, Xs=%C X7=%H, Xs=%0, Xs=%N,
X10=%S, X11=Ni(ppm) and X1.=V(ppm).

The calculations are made in the computer from a code
designed for the implementation of Random Forest in
this situation. After examining several alternatives, the
model is found and saved on the hard disk so that it can
be used later in future applications for data of the same
species. In particular, the used metrics in this study are

the Mean Absolute Error (MAE), Mean Square Error
(MSE), Multiple R 2, R 2 coefficient, Adjusted R 2,

Accuracy and Prediction score.

For this case recall

MAE_zIy —yI SE_z(yl y)2

ACCURACY = (1— ZM> x100,  (2)

1.x (yl - Ypred
S = E — P
core N

i
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Table 3. Multiple metrics used to evaluate the accuracy and good performance of the Random Forest model in
comparison with linear regression

Parameter | Wei regression | Random Forest | Improvement (%6)
Multiple R 0.972 0.995 2.45
R? 0.941 0.989 5.07
Adjusted R? 0.871 0.976 12.05
MAE 0.704 0.324 53.9
Accuracy 96.072 98.239 2.26
Score 47.826 73.913 54.55
Source: [15].
A summary of these parameters can be found in Table 0154 ‘
3. As can be seen from Table 2, the variables with the S e A
highest correlation assignment with SFE generally

retain proportionally greater importance in the model
developed by Random Forest. This is precisely true for
the variables X3, X4, and X1, however, for the variables
Xs and Xg, there is a loss of importance for these last
variables, which is compensated with a gain of
importance in the variables Xs, Xi1, and Xi2, which
acquire relevance in the machine learning model despite
the little initial correlation they had with the SFE
measure. This implies that the Wax, Nickel, and
Vanadium content are variables that should not be
neglected, and their weight is very useful to estimate the
dependent variable more adequately. This can be
confirmed in the principal component analysis
observing that most of the samples report high contents
of these variables (see Figures 1 and 2).

On the other hand, the analysis in Table 3 shows that
there is considerable improvement in all the metric
parameters to evaluate the performance of the model.
Significantly, we can emphasize a decrease of 54% and
82% in the mean absolute error (MAE) and the mean
square error (MSE), respectively. While the model fits
better with a 12% improvement, according to the
adjusted determination coefficient, the accuracy, and the
score of the model (2% and 55% respectively) also
increases notably (understood as the amount of data
whose error concerning the model is zero, see equation
2). All these factors and parameters determine a better
performance of the machine learning tools and, the
estimation using Random Forest, in the approximation
(in this case not parametric) for the calculation of the
surface free energy for asphalt samples.

Finally, a visual representation of the behavior of the
model that reported in previous studies can be seen in
Figure 3.

RN N\
ONYR

—0.051

Relative error

-0.10 1
0 5 10 15 20
Samples
(a)
® Random Forest °

® Regression Wei et. al.

26 1

244

221

204

18

Surface Free Energy (mj/m?) [model]

14 16 18 20 22 24 26
Surface Free Energy (mj/m?) [Exp.Data]

(b)

Figure 3. (a) A comparison of the relative error (fi — yi,
with fiis the model estimation and y; is experimental
data) between the original data and the two constructed
models (multiple linear regression and random forest).
(b) Scatter plot for adjusting the original data for the
two models studied.
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4. Conclusions

We presented methods for performing Random Forest
optimization for hyperparameter selection of general
machine learning algorithms for the estimation of
Surface Free Energy for twenty-three asphalts binders’
experimental samples used in an SHRP. We introduced
full Random Forest treatment algorithms to make a
comparison with previous results for this dataset getting
good effectiveness of our approaches. Considering the
metrics used in this study we can say that the model
determined by multiple linear regression estimates the
SFE variable with an error of 0.9518 mJ/m?, whereas
the model predicted by Random Forest only an error of
0.3936 mJ/m? (this is RMSE=(MSE)¥?), which
represents an 82% improvement over the work of Wei
et. al.

The model developed by Random Forest also rescue
importance to variables that had a lower weight and
correlation in the approach with multiple linear
regression, this is a great improvement of the use
methods based on machine learning tools. In addition to
this, a reported improvement of 52% in the degree of
accuracy of the model (score) is recoverable to make the
individual data errors as close to zero as possible.

While it is true that the size of the data and the sample is
small for the selection of machine learning techniques
for the resolution of this problem and the analysis of the
study variable in terms of the predictor variables, the
same argument also applies to their study using
multivariate analysis, so that for equal conditions of
data, the best method used for the analysis will always
be the one that provides the least errors in the estimation
of the study variable.

However, the purpose of this article is to establish
criteria that allow us to affirm that machine learning
can, and indeed improves, a better estimation of surface
energy for the study of asphalt aggregates normally used
in construction. With this first scenario, a future work
(which is carried out at this time for author and
collaboration), is to increase the database to include
other types of asphalt binders and aggregates with other
predictor contents, and perhaps more study variables.

Based on the results of this research, it can be affirmed
that the technique and methodology used will be able to
establish very accurate and adequate models for the
study of aggregates and asphalt binders used in highway
construction.
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