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Abstract 

 

The main objective of this research is based on finding out some assertive and robust Photoplethysmogram’s PPG & 

Electrocardiogram’s ECG blood pressure-related parameters by the implementation of a novel method with 

innovations in signal processing and analysis. The biomedical ECG and PPG signals are recorded using a mobile 

monitor CardioQVark. To increase the cuffless blood pressure measurement accuracy, a technique that involves not 

only the ECG and PPG joint parameters extraction but also some individual PPG’s morphology features, is proposed 
in this work. Firstly, the biomedical ECG and PPG signals are time–frequency filtered.  Secondly, some novel 

parameters from the morphology of photoplethysmogram signal, which may be correlated with blood pressure, are 

considered in addition to the pulse transit time. Additionally, a neural network is built to determine the relationship 

between the estimated and reference blood pressure. Finally, the correlation coefficient and regression line are obtained 

to evaluate the feasibility.  

 

Keywords: blood pressure; Electrocardiogram; mobile monitor; Photoplethysmogram; PPG morphology; PTT. 

 

Resumen 
 

El objetivo de esta investigación consiste en identificar aquellos parámetros provenientes de las señales del 

electrocardiograma ECG y fotopletismograma PPG que permitan hacer una evaluación de la presión sanguínea 

utilizando un dispositivo móvil. El método propuesto incluye innovaciones en el procesamiento y análisis de las 

señales. Con el objetivo de aumentar la precisión de la medición de la presión sanguínea, en este trabajo, se propone 
la utilización de parámetros provenientes de la señal del PPG en conjunto con el PTT obtenido de las señales del ECG 

y PPG analizadas en conjunto. Adicionalmente, se propone el diseño e implementación de una red neural para 

determinar la relación existente entre la presión sanguínea estimada por el método y la de referencia, lo cual permite 

evaluar la viabilidad del método propuesto. 
 

Palabras clave: presión sanguínea; electrocardiograma; monitor móvil; fotopletismografia; PTT. 

 

1. Introduction 

 

Hypertension is a major risk indicator for coronary heart 

diseases, which according to the world health 

organization corresponds to the primary global risk of 

mortality [1]. Blood pressure (BP) measurement, 

including systolic blood pressure (SBP) and diastolic 

blood pressure (DBP), is an important vital sign of health 

care and represents a fundamental biomedical signal for 

managing the risks associated with hypertension. 

 

Today, the most common practice for blood pressure 

measurement is the oscillometric technique due to its 

primitiveness and availability.  

https://doi.org/10.18273/revuin.v20n4-2021004
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One of the problems demonstrated with this practice is 

the so-called ‘white coat effect’, that represents an 

increase in the blood pressure of the patient in the 

presence of a physician. While the oscillometric 

technique can be used at home and in this case, it 

promises to show a more accurate measurement where it 

requires the use of a cuff that limits the self-recording of 
BP.  

 

In addition, literature has shown that most cardiovascular 

parameters (heart rate, blood pressure, artery resistance) 

are linked and may be correlated with the feature in 

photoplethysmogram signal, which reveals the changes 

of blood volume during a cardiac cycle [2]. 

 

Considering these observations, researchers have been 

developing techniques based on electrocardiogram 

(ECG) and photoplethysmogram (PPG) signals for blood 
pressure measurement in which various methods are used 

to extract different features as the PTT and other 

morphological features as the ones presented in [3].  

 

Although the current methods exhibit high fidelity in 

terms of BP estimation, they require high sensor 

synchronization as they are based on pulse wave velocity 

(PWV).  Furthermore, they lack applicability in different 

scenarios. 

 

Consequently, in this paper, we propose a method based 

on continuous wavelet transform for signal processing. 
Moreover, to assess BP we consider some parameters 

from the morphology of the PPG signal besides the PTT. 

At the last stage, a feed-forward neural network is 

designed and implemented to construct the regression 

line and correlation coefficient between the reference and 

estimated BP, thus evaluating feasibility. 

 

2. Materials and methods 

 

2.1. Devices and experimental procedure 

 
The data collection involves the recording of the ECG 

and PPG signals from the mobile cardio monitor 

CardioQvark [4] for three minutes (Figure 1).  

 

This device obtains the biomedical signals at a sample 

rate of 1000 Hz. Additionally, the SBP and DBP are 

measured from a conventional sphygmomanometer 

(Figure 2), and its information is retrieved with the ECG 

and PPG signals.   

 

An average of twenty recordings is measured from each 

of the eleven patients. The patient’s age range is within 
thirty to seventy years (30 to 70) and the overall health 

condition varies among them. 

 

 
  

Figure 1. Patient holding the cardioQVark. Source: [3]. 

 

 
 

Figure 2. Reference BP measurement. Source: authors. 

 

2.2. Signal processing 

 

Previous signal processing methods required a process to 

get rid of the unwanted information coming from motion 

artifacts and power lines, which might compromise the 

quality of the signals. 

 
Firstly, once the data is collected, it is organized in tables 

where the patient’s ID, blood pressure measurements, 

ECG, and PPG recordings are gathered and imported into 

the Matlab workspace (Figure 3). 

 

Secondly, from the raw ECG signal, an algorithm is used 

to identify the QRS complexes and further establish the 

patient’s heart rate (HR).  

 

To accomplish this, the first algebraic derivative of the 

raw ECG signal is obtained to accentuate the R wave 

slope [5]. 
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Secondly, an amplitude threshold is set based on the first 

derivative maximum and mean values. Then, the peaks 

exceeding the limits are considered as R peaks.  Using a 

threshold enables the adjustment of signal changing 

conditions automatically since thresholds float over the 

noise. 

 

The common cardiac cycle rate range is from 60 to 120 

beats per minute [6], thus, once the first R peak is 

identified, it is expected that a minimum amount of time 

should elapse before the subsequent R peak arises. 
Therefore, a sliding window in the time domain is 

implemented besides the amplitude threshold.  

 

Consequently, the peak candidate that exceeds the 

magnitude threshold and the time dead zone are denoted 

as R peaks. The following workflow shows the algorithm 

for the QRS identification process (Figure 4). 

 

Figure 5 shows an example of the R peak detection. In 

the upper box, the ECG first derivate, below the dead 

zone interval with the R peak detected.   

 
Although regarding algorithm’s accuracy, in some cases, 

the R peak is not exactly identified, the imprecision does 

not exceed a ten samples difference.  This work does not 

aim to deeply study the QRS complex but just to use the 

R peak to obtain an R-R interval which will give enough 

information to segment the signal in cycles. 

 

 
Figure 4. QRS complex identification process. Source: 

authors. 

 

 

 

 

 

 

 
Figure 3. Signal preprocessing. Source: authors. 
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2.3. Signal processing ECG & PPG Time-Frequency 

analysis 

 

Wavelet analysis is arising as a powerful tool for the 

processing of non-stationary signals [7]. They describe 

the temporal characteristics of a signal by its spectral 
components in the frequency domain.  

 

The wavelet transform (WT) is a signal decomposition 

onto a set of basic functions. For the design of the WT 

procedure, there are two important functions, which need 

to be described: the scaling function and the primary 

wavelet function.  

 

The scaling function dilates or narrows the signal and is 

related to the levels of decomposition of the signal. For 

instance, in the first decomposition level, a scale of two 

is applied and the signal sampling frequency is divided in 
two. Then in the second decomposition level, the signal 

sampling frequency is scaled by a factor of four [8].  

 

Figure 6 shows the time-frequency representation of the 

ECG signal after applying the wavelet transform. It can 

be observed that the fluctuating features, which contain 

the important ECG information, lie in the frequency 

range between 8 to 32 Hz. Therefore, the components 

exhibited at lower frequencies are considered as the 
artifacts related to patient’s movement and the ones 

exposed at higher frequencies are noise from power lines. 

 

The WT is also applied to the raw PPG signal and the 

results are presented in Figure 7. Applying the same 

interpretation as the one for ECG signal, the main PPG 

information is found between the frequency range 2 to 10 

Hz. Lower and higher-frequencies features are taken as 

noise. 

 

In this work, we contemplate that as the patient’s heart 

rate (HR) changes, so does the ECG beat-to-beat interval. 
For that reason, we use an adaptive frequency range to 

extract the signal information, in which the boundaries 

are set in terms of the HR retrieved from the R–R interval 

that we got in the preprocessing step [9]. 

 

 
Figure 5. QRS complex identification example. Source: authors. 

 



                           49 
 

 

Algorithm for the joint analysis of ECG and PPG signals 

After the time–frequency representation of the 

biomedical ECG and PPG signals and the identification 

of the spectral range where the meaningful information 

stays, the reconstruction process starts. In this step, the 

inverse continuous wavelet transform (ICWT) is used to 

assemble selected signal components back into the 

original with no loss of information. In Figure 8, the 

reconstructed and raw ECG signals are presented. For the 

assembly of the signal, the baseline drift is corrected by 

removing the frequency components, which coincide 
with motion artifacts or low-frequency noises.  

Additionally, artifacts coming from power lines, or high-

frequency noises were identified and discarded to get a 

filtered and baseline corrected signal.  

 

In the case of the PPG signal, after the time–frequency 

representation and analysis, the reconstruction signal is 

done using the ICWT and the reconstruction frequency 

range is established in such a way that the identified 

baseline wander components and captured high 

frequencies noises are extracted (Figure 9).  
 

 
 

Figure 6. ECG scalogram. Source: authors. 

 

 
 

Figure 7. PPG scalogram. Source: authors. 
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2.4.  Signal analysis  

 

After processing the biomedical signals, the 

corresponding single cycle waveform model needs to be 

selected for the intent of feature extraction. 
 

To obtain the PPG’s waveform single cycle which best 

describes the whole signal, the R-R interval is used to 

reshape the signal in terms of one period.  In other words, 

the signal, which initially was described in a vector, is 

organized in a matrix in which one row represents the 

data for one signal period.  

The number of rows depends on the length of the signal 

and the R – R interval magnitude.  

 

Secondly, a matrix with the correlation coefficients 

between the cycles is obtained to be able to evaluate 
which cycles are strongly correlated.  

 

Finally, the group of signals that are highly associated is 

gathered in the signal group models (Figure 10). As a 

result of the process, the single-cycle PPG waveform 

presented in Figure 11 is obtained. 

 

 
 

Figure 8. ECG signal after WT and Raw ECG. Source: authors. 
 

 
 

Figure 9. PPG signal after WT and Raw PPG. Source: authors. 
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In contemplation of the synchronization requirement 

between the PPG and ECG biomedical signals are 

presented. After identifying the cycles which best 

describe the PPG signal or group models, the same time 

localized cycles corresponding to the ECG signal are 

extracted, and the corresponding model is obtained 

(Figure 12). 

 

 
 

Figure 10. PPG signal group models. Source: authors. 
 

 
 

 

Figure 11. PPG Single cycle model. Source: authors. 
 

 
 

Figure 12. ECG Single cycle model. Source: authors. 

 
 
 



52   
 
 

D. Carolina Martínez-Reyes 

2.5. ECG & PPG Feature extraction 

 

Pulse transit time (PTT) is the measurement of the 

traveling time of blood between two points inside the 

body and is known to be linearly related to pulse wave 

velocity (PWV), and is therefore, a function of BP 

[10,11].  PTT is commonly defined as the time difference 
between the R-peak in the ECG signal and the next peak 

of the corresponding PPG cycle [12,13].   

 

Even though PTT as defined above has the potential for 

continuous   and    cuffless    monitoring   of   arterial   BP 

 because of its linear relation with BP [14,15], most of the 

current PTT-BP models could provide only one BP 

parameter. 

 

The following describes an effort to enhance BP 

estimations. Three different proposals for PTT definition 
are presented and explained as follows:  

a) Peak–to–peak PTT: the peak-to-peak PTT proposed in 

this research is the time difference between the R-peak of 

the ECG and the first peek of the PPG. Both signal 

models are obtained after WT (Figure 13). 

b) Peak–to–footpoint PTT: The Peak–to–footpoint PTT 

is the time delay between the R peak of the ECG model 

and the foot point of the PPG model (Figure 14).  

c) Peak–to–Maximum slope point PTT: is determined as 

the time interval between the R peak of ECG and the peak 

of the first derivative of PPG in the same cardiac cycle 

(Figure 15).  
 

At this step, the first derivative of the PPG model is 

obtained, and the identification of local maxima gives the 

position of the peak. The time location of this point is 

transferred to the PPG signal to obtain the amplitude in 

the model therefore use it to determine the point for PTT. 

 

BP estimation methods based on PTT have several 
challenges to be accepted as a feasible method for 

cuffless monitoring. In terms of implementation, they 

require the synchronization of two different sensor data 

(ECG and PPG) coming at different sampling rates in 

real-time. Additionally, it has been studied [16] that PTT 

is strongly related to SBP but does not exhibit the same 

performance while talking about DBP. This is perhaps 

one reason to decrease the accuracy of predicted BP 

depending only on the PTT. 

 

On the other hand, information within the PPG waveform 
is hardly taken into consideration for the measurement of 

BP. In [17] research discovered that the second peak 

presented in photoplethysmography (Figure 16) signal 

would influence the position and the amplitude of the 

main peak of the original PPG signal and consequently 

influence the PTT. Consequently, by introducing the 

information of the PPG second peak in the estimation of 

BP, the correlation coefficient between the measured and 

the predicted BP might increase [18, 19]. 

 
 

 
 

Figure 13. Peak – to – peak PTT. Source: authors. 
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In consideration, the proper identification of the dicrotic 

notch and the PPG second peak is included in the 

development of the algorithm for ECG & PPG analysis.   
PPG first derivative is used to locate inflection points 

within the PPG signal. The dicrotic notch is identified as 

the point where the PPG first derivative crosses the zero 

value from the negative to the positive region (Figure 15). 

 

 

Additionally, the diastolic peak is established as the 

subsequent point in which the PPG first derivative 

crosses the zero value from the negative to the positive 
region. 

 

Finally, once the dicrotic and secondary peak points are 

spatially and time located, we proceed to establish the 

PPG’s morphology features for the BP estimation. 

 

 
 

 
 

Figure 14. Peak – to – foot point PTT. Source: authors. 

 

 
 

 

 
Figure 15. Peak – to – Maximum slope point PTT. Source: authors. 
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a) Ra: this is the amplitude ratio between the first and 

second peaks about the footpoint in one cycle of the PPG 

signal (Figure 17). 

b) Tsd: represents the period from the first peak to the 

dicrotic notch.  

c) Tfd: identifies the period between the PPG foot point 

and the dicrotic notch (Figure 18). 
d) T1: represents the period from the PPG foot point to 

the PPG maximum slope point in the same cardiac cycle. 

It is graphically obtained by constructing a line that best 

represents the PPG wave before the systolic point and 

crosses the maximum slope point, the intersection point 

between this line and the PPG foot point amplitude line 

is obtained. Therefore, T1 is defined as the time interval 

between this intersection point and the foot point time 

(Figure 19). 

 

Summarizing, six-time span indices and one amplitude 

index are gathered in a data set to build the group of ECG 
and PPG BP-related parameters. For each patient, a 

dataset is created. Within each of them, columns 

represent the seven features separately and row the 

recorded trials. 

 

 
 

Figure 16. Second peak identification, a – PPG waveform model. b – PPG First derivative. C – PPG Second 
derivative. Source: authors. 

 

 

 
Figure 17. Ra representation. Source: authors. 

 
 

 

First peak 

Y 

Second peak 

X 
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2.6. Regression analysis 

 

To evaluate the feasibility, the seven PPG and ECG 

parameters extracted from the processed signal are 

correlated with the reference SBP and DBP, both 

components of BP were measured using a standard 

sphygmomanometer located in patients’ upper arm. 

 

For this, an artificial feed-forward neural network with 

one hidden layer and two output neurons is designed and 

implemented and the resultant regression line and 

correlation coefficient between reference and estimated 
BP are obtained for each patient [20]. 

 

 

 

 

3. Results 

 

In Table 1, the patient’s health condition is shown in 

terms of body mass index, measured blood pressure, and 

estimated heart rate are collected. 

 

The algorithm is tested against eleven patients and the 

correlation coefficient between the ECG & PPG BP–

related parameters and the SBP and DBP is gathered in 

Table 2. 

 

 
 

 

 

 

 

 
 

Figure 18. Tsd and Tfd representation. Source: authors. 
 

 

 
 

Figure 19. T1 representation. Source: authors. 
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Table 2. Correlation coefficient between reference and 

estimated blood pressure 
 

Correlation Coefficient R 

Patient ID Training General 

P01 0,99758 0,95383 

P02 0,99563 0,96674 

P03 0,99168 0,9583 

P04 0,99655 0,97548 

P05 0,99322 0,95556 

P06 0,98298 0,95701 

P07 0,99099 0,95449 

P08 0,98426 0,96341 

P09 0,99782 0,80218 

P10 0,99772 0,94722 

P11 0,997 0,97556 
 

Source: authors. 
 

Figure 20 shows the linear regression for reference and 

estimated blood pressure for one patient. 
 

 
Figure 20. Linear regression reference and estimated BP 

Source: authors. 

4. Conclusions 

 
The method presented in this work has explored the 

capability of wavelet analysis as an innovative method 

for biomedical signal processing. Furthermore, to 

accomplish the idea of using only PTT for blood pressure 

estimation, some novel parameters from the PPG’s 

morphology were included in the assessment. The results 

show a strong correlation between the estimated and 

reference blood pressure. This opens opportunities for the 

cuffless estimation of blood pressure.  

 

Although the presented pilot study offers a potential 
method for cuffless BP measurement, it should be further 

validated with a larger sample set with the corresponding 

standard requirement, for example, the IEEE 1708-2004 

standard for wearable cuffless BP measuring devices. 

Moreover, there are still some challenges regarding 

implementation.  

 

The achieved results provide evidence of advanced 

estimation of SBP while compared with its respective 

DBP. It indicates that new parameters directly linked to 

DBP should be considered to improve the estimation 

accuracy.  
 

Eventually, BP monitoring in an unobtrusive mobile–

based way in which decent accuracy is achieved allows 

for improved hypertension control, therefore reducing 

the global burden generated by cardiovascular diseases. 
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