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Abstract

The main objective of this research is based on finding out some assertive and robust Photoplethysmogram’s PPG &
Electrocardiogram’s ECG blood pressure-related parameters by the implementation of a novel method with
innovations in signal processing and analysis. The biomedical ECG and PPG signals are recorded using a mobile
monitor CardioQVark. To increase the cuffless blood pressure measurement accuracy, a technique that involves not
only the ECG and PPG joint parameters extraction but also some individual PPG’s morphology features, is proposed
in this work. Firstly, the biomedical ECG and PPG signals are time—frequency filtered. Secondly, some novel
parameters from the morphology of photoplethysmogram signal, which may be correlated with blood pressure, are
considered in addition to the pulse transit time. Additionally, a neural network is built to determine the relationship
between the estimated and reference blood pressure. Finally, the correlation coefficient and regression line are obtained
to evaluate the feasibility.

Keywords: blood pressure; Electrocardiogram; mobile monitor; Photoplethysmogram; PPG morphology; PTT.
Resumen

El objetivo de esta investigacion consiste en identificar aquellos pardmetros provenientes de las sefiales del
electrocardiograma ECG y fotopletismograma PPG que permitan hacer una evaluacion de la presion sanguinea
utilizando un dispositivo mévil. EI método propuesto incluye innovaciones en el procesamiento y analisis de las
sefiales. Con el objetivo de aumentar la precision de la medicion de la presion sanguinea, en este trabajo, se propone
la utilizacion de parametros provenientes de la sefial del PPG en conjunto con el PTT obtenido de las sefiales del ECG
y PPG analizadas en conjunto. Adicionalmente, se propone el disefio e implementaciéon de una red neural para
determinar la relacidn existente entre la presion sanguinea estimada por el método y la de referencia, lo cual permite
evaluar la viabilidad del método propuesto.

Palabras clave: presidn sanguinea; electrocardiograma; monitor movil; fotopletismografia; PTT.

1. Introduction

Hypertension is a major risk indicator for coronary heart
diseases, which according to the world health
organization corresponds to the primary global risk of
mortality [1]. Blood pressure (BP) measurement,
including systolic blood pressure (SBP) and diastolic

blood pressure (DBP), is an important vital sign of health
care and represents a fundamental biomedical signal for
managing the risks associated with hypertension.

Today, the most common practice for blood pressure
measurement is the oscillometric technique due to its
primitiveness and availability.
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One of the problems demonstrated with this practice is
the so-called ‘white coat effect’, that represents an
increase in the blood pressure of the patient in the
presence of a physician. While the oscillometric
technique can be used at home and in this case, it
promises to show a more accurate measurement where it
requires the use of a cuff that limits the self-recording of
BP.

In addition, literature has shown that most cardiovascular
parameters (heart rate, blood pressure, artery resistance)
are linked and may be correlated with the feature in
photoplethysmogram signal, which reveals the changes
of blood volume during a cardiac cycle [2].

Considering these observations, researchers have been
developing techniques based on electrocardiogram
(ECG) and photoplethysmogram (PPG) signals for blood
pressure measurement in which various methods are used
to extract different features as the PTT and other
morphological features as the ones presented in [3].

Although the current methods exhibit high fidelity in
terms of BP estimation, they require high sensor
synchronization as they are based on pulse wave velocity
(PWV). Furthermore, they lack applicability in different
scenarios.

Consequently, in this paper, we propose a method based
on continuous wavelet transform for signal processing.
Moreover, to assess BP we consider some parameters
from the morphology of the PPG signal besides the PTT.
At the last stage, a feed-forward neural network is
designed and implemented to construct the regression
line and correlation coefficient between the reference and
estimated BP, thus evaluating feasibility.

2. Materials and methods
2.1. Devices and experimental procedure

The data collection involves the recording of the ECG
and PPG signals from the mobile cardio monitor
CardioQvark [4] for three minutes (Figure 1).

This device obtains the biomedical signals at a sample
rate of 1000 Hz. Additionally, the SBP and DBP are
measured from a conventional sphygmomanometer
(Figure 2), and its information is retrieved with the ECG
and PPG signals.

An average of twenty recordings is measured from each
of the eleven patients. The patient’s age range is within
thirty to seventy years (30 to 70) and the overall health
condition varies among them.
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Figure 2. Reference BP measurement. Source: authors.
2.2. Signal processing

Previous signal processing methods required a process to
get rid of the unwanted information coming from motion
artifacts and power lines, which might compromise the
quality of the signals.

Firstly, once the data is collected, it is organized in tables
where the patient’s ID, blood pressure measurements,
ECG, and PPG recordings are gathered and imported into
the Matlab workspace (Figure 3).

Secondly, from the raw ECG signal, an algorithm is used
to identify the QRS complexes and further establish the
patient’s heart rate (HR).

To accomplish this, the first algebraic derivative of the
raw ECG signal is obtained to accentuate the R wave
slope [5].
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Figure 3. Signal preprocessing. Source: authors.

Secondly, an amplitude threshold is set based on the first
derivative maximum and mean values. Then, the peaks
exceeding the limits are considered as R peaks. Using a
threshold enables the adjustment of signal changing
conditions automatically since thresholds float over the
noise.

The common cardiac cycle rate range is from 60 to 120
beats per minute [6], thus, once the first R peak is
identified, it is expected that a minimum amount of time
should elapse before the subsequent R peak arises.
Therefore, a sliding window in the time domain is
implemented besides the amplitude threshold.

Consequently, the peak candidate that exceeds the
magnitude threshold and the time dead zone are denoted
as R peaks. The following workflow shows the algorithm
for the QRS identification process (Figure 4).

Figure 5 shows an example of the R peak detection. In
the upper box, the ECG first derivate, below the dead
zone interval with the R peak detected.

Although regarding algorithm’s accuracy, in some cases,
the R peak is not exactly identified, the imprecision does
not exceed a ten samples difference. This work does not
aim to deeply study the QRS complex but just to use the
R peak to obtain an R-R interval which will give enough
information to segment the signal in cycles.
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Figure 4. QRS complex identification process. Source:
authors.
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Figure 5. QRS complex identification example. Source: authors.

2.3. Signal processing ECG & PPG Time-Frequency
analysis

Wavelet analysis is arising as a powerful tool for the
processing of non-stationary signals [7]. They describe
the temporal characteristics of a signal by its spectral
components in the frequency domain.

The wavelet transform (WT) is a signal decomposition
onto a set of basic functions. For the design of the WT
procedure, there are two important functions, which need
to be described: the scaling function and the primary
wavelet function.

The scaling function dilates or narrows the signal and is
related to the levels of decomposition of the signal. For
instance, in the first decomposition level, a scale of two
is applied and the signal sampling frequency is divided in
two. Then in the second decomposition level, the signal
sampling frequency is scaled by a factor of four [8].

Figure 6 shows the time-frequency representation of the
ECG signal after applying the wavelet transform. It can
be observed that the fluctuating features, which contain
the important ECG information, lie in the frequency
range between 8 to 32 Hz. Therefore, the components
exhibited at lower frequencies are considered as the
artifacts related to patient’s movement and the ones
exposed at higher frequencies are noise from power lines.

The WT is also applied to the raw PPG signal and the
results are presented in Figure 7. Applying the same
interpretation as the one for ECG signal, the main PPG
information is found between the frequency range 2 to 10
Hz. Lower and higher-frequencies features are taken as
noise.

In this work, we contemplate that as the patient’s heart
rate (HR) changes, so does the ECG beat-to-beat interval.
For that reason, we use an adaptive frequency range to
extract the signal information, in which the boundaries
are set in terms of the HR retrieved from the R-R interval
that we got in the preprocessing step [9].
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Figure 7. PPG scalogram. Source: authors.

After the time—frequency representation of the
biomedical ECG and PPG signals and the identification
of the spectral range where the meaningful information
stays, the reconstruction process starts. In this step, the
inverse continuous wavelet transform (ICWT) is used to
assemble selected signal components back into the
original with no loss of information. In Figure 8, the
reconstructed and raw ECG signals are presented. For the
assembly of the signal, the baseline drift is corrected by
removing the frequency components, which coincide
with motion artifacts or low-frequency noises.

Additionally, artifacts coming from power lines, or high-
frequency noises were identified and discarded to get a
filtered and baseline corrected signal.

In the case of the PPG signal, after the time—frequency
representation and analysis, the reconstruction signal is
done using the ICWT and the reconstruction frequency
range is established in such a way that the identified
baseline wander components and captured high
frequencies noises are extracted (Figure 9).
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Figure 8. ECG signal after WT and Raw ECG. Source: authors.
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Figure 9. PPG signal after WT and Raw PPG. Source: authors.

2.4, Signal analysis

After processing the biomedical signals, the
corresponding single cycle waveform model needs to be
selected for the intent of feature extraction.

To obtain the PPG’s waveform single cycle which best
describes the whole signal, the R-R interval is used to
reshape the signal in terms of one period. In other words,
the signal, which initially was described in a vector, is
organized in a matrix in which one row represents the
data for one signal period.

The number of rows depends on the length of the signal
and the R — R interval magnitude.

Secondly, a matrix with the correlation coefficients
between the cycles is obtained to be able to evaluate
which cycles are strongly correlated.

Finally, the group of signals that are highly associated is
gathered in the signal group models (Figure 10). As a
result of the process, the single-cycle PPG waveform
presented in Figure 11 is obtained.



@REVISTA uIs
14 INGENIERIAS

Algorithm for the joint analysis of ECG and PPG signals

In contemplation of the synchronization requirement  localized cycles corresponding to the ECG signal are
between the PPG and ECG biomedical signals are  extracted, and the corresponding model is obtained
presented. After identifying the cycles which best  (Figure 12).

describe the PPG signal or group models, the same time
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Figure 12. ECG Single cycle model. Source: authors.
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2.5. ECG & PPG Feature extraction

Pulse transit time (PTT) is the measurement of the
traveling time of blood between two points inside the
body and is known to be linearly related to pulse wave
velocity (PWV), and is therefore, a function of BP
[10,11]. PTT is commonly defined as the time difference
between the R-peak in the ECG signal and the next peak
of the corresponding PPG cycle [12,13].

Even though PTT as defined above has the potential for
continuous and cuffless monitoring of arterial BP
because of its linear relation with BP [14,15], most of the
current PTT-BP models could provide only one BP
parameter.

The following describes an effort to enhance BP
estimations. Three different proposals for PTT definition
are presented and explained as follows:

a) Peak—to—peak PTT: the peak-to-peak PTT proposed in
this research is the time difference between the R-peak of
the ECG and the first peek of the PPG. Both signal
models are obtained after WT (Figure 13).

b) Peak-to—footpoint PTT: The Peak-to—footpoint PTT
is the time delay between the R peak of the ECG model
and the foot point of the PPG model (Figure 14).

c¢) Peak-to—Maximum slope point PTT: is determined as
the time interval between the R peak of ECG and the peak
of the first derivative of PPG in the same cardiac cycle
(Figure 15).

y
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At this step, the first derivative of the PPG model is
obtained, and the identification of local maxima gives the
position of the peak. The time location of this point is
transferred to the PPG signal to obtain the amplitude in
the model therefore use it to determine the point for PTT.

BP estimation methods based on PTT have several
challenges to be accepted as a feasible method for
cuffless monitoring. In terms of implementation, they
require the synchronization of two different sensor data
(ECG and PPG) coming at different sampling rates in
real-time. Additionally, it has been studied [16] that PTT
is strongly related to SBP but does not exhibit the same
performance while talking about DBP. This is perhaps
one reason to decrease the accuracy of predicted BP
depending only on the PTT.

On the other hand, information within the PPG waveform
is hardly taken into consideration for the measurement of
BP. In [17] research discovered that the second peak
presented in photoplethysmography (Figure 16) signal
would influence the position and the amplitude of the
main peak of the original PPG signal and consequently
influence the PTT. Consequently, by introducing the
information of the PPG second peak in the estimation of
BP, the correlation coefficient between the measured and
the predicted BP might increase [18, 19].

ECG
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Figure 13. Peak —to — peak PTT. Source: authors.
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Figure 15. Peak — to — Maximum slope point PTT. Source: authors.

In consideration, the proper identification of the dicrotic
notch and the PPG second peak is included in the
development of the algorithm for ECG & PPG analysis.

PPG first derivative is used to locate inflection points
within the PPG signal. The dicrotic notch is identified as
the point where the PPG first derivative crosses the zero
value from the negative to the positive region (Figure 15).

Additionally, the diastolic peak is established as the
subsequent point in which the PPG first derivative
crosses the zero value from the negative to the positive
region.

Finally, once the dicrotic and secondary peak points are
spatially and time located, we proceed to establish the
PPG’s morphology features for the BP estimation.
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a) Ra: this is the amplitude ratio between the first and
second peaks about the footpoint in one cycle of the PPG
signal (Figure 17).

b) Tsd: represents the period from the first peak to the
dicrotic notch.

c) Tfd: identifies the period between the PPG foot point
and the dicrotic notch (Figure 18).

d) T1: represents the period from the PPG foot point to
the PPG maximum slope point in the same cardiac cycle.
It is graphically obtained by constructing a line that best
represents the PPG wave before the systolic point and
crosses the maximum slope point, the intersection point

D. Carolina Martinez-Reyes

between this line and the PPG foot point amplitude line
is obtained. Therefore, T1 is defined as the time interval
between this intersection point and the foot point time
(Figure 19).

Summarizing, six-time span indices and one amplitude
index are gathered in a data set to build the group of ECG
and PPG BP-related parameters. For each patient, a
dataset is created. Within each of them, columns
represent the seven features separately and row the
recorded trials.

Time

PPG First Derivate

Amplitude

Amphbude

i) il 1
Tirna

Figure 16. Second peak identification, a — PPG waveform model. b — PPG First derivative. C — PPG Second
derivative. Source: authors.
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Figure 17. Ra representation. Source: authors.
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2.6. Regression analysis

To evaluate the feasibility, the seven PPG and ECG
parameters extracted from the processed signal are
correlated with the reference SBP and DBP, both
components of BP were measured using a standard
sphygmomanometer located in patients’ upper arm.

For this, an artificial feed-forward neural network with
one hidden layer and two output neurons is designed and
implemented and the resultant regression line and
correlation coefficient between reference and estimated
BP are obtained for each patient [20].

3. Results

In Table 1, the patient’s health condition is shown in
terms of body mass index, measured blood pressure, and
estimated heart rate are collected.

The algorithm is tested against eleven patients and the
correlation coefficient between the ECG & PPG BP-
related parameters and the SBP and DBP is gathered in

Table 2.
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Table 1. Patient’s heart rate, blood pressure and BMI

Patient ID Heart rate | Systolic Blood Pressure | Diastolic Blood Pressure | BMI
[bpm] SBP [mmHg] DBP [mmHg] [Kg/m?]
P01 54 £ (4.10) 146 + (16) 76 £ (5.18) 22.9
P02 56+ (5.39) 123 £ (13) 75 + (5.6) 21.7
P03 58 + (7.29) 131 + (11.209) 84 + (7.075) 28.4
P04 64 + (8.49) 126 + (11.647) 79 £ (8.709) 34.3
P05 78+ (9.14) 112 +(11.087) 72 +(11.538) 27.8
P06 67 +(4.47) 121 +(14.423) 68 + (4.745) 30.7
P07 71+ (7.36) 135 + (10.524) 85 + (10.277) 32.1
P08 78 £ (9.66) 119 + (11.856) 86 + (7.269) 26.4
P09 88 + (6.83) 123 + (12.043) 86 + (7.869) 25.6
P10 86 + (8.35) 141 + (9.961) 92 + (5.371) 30.8
P11 98 + (13.6) 134 + (13.485) 90 + (8.765) 27.7

Source: authors.

Table 2. Correlation coefficient between reference and
estimated blood pressure

Correlation Coefficient R
Patient ID | Training | General
P01 0,99758 | 0,95383
P02 0,99563 | 0,96674
P03 0,99168 | 0,9583
P04 0,99655 | 0,97548
P05 0,99322 | 0,95556
P06 0,98298 [ 0,95701
P07 0,99099 [ 0,95449
P08 0,98426 | 0,96341
P09 0,99782 | 0,80218
P10 0,99772 | 0,94722
P11 0,997 0,97556

Source: authors.

Figure 20 shows the linear regression for reference and
estimated blood pressure for one patient.

Training: R=0.99655

140
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Figure 20. Linear regression reference and estimated BP
Source: authors.

4, Conclusions

The method presented in this work has explored the
capability of wavelet analysis as an innovative method
for biomedical signal processing. Furthermore, to
accomplish the idea of using only PTT for blood pressure
estimation, some novel parameters from the PPG’s
morphology were included in the assessment. The results
show a strong correlation between the estimated and
reference blood pressure. This opens opportunities for the
cuffless estimation of blood pressure.

Although the presented pilot study offers a potential
method for cuffless BP measurement, it should be further
validated with a larger sample set with the corresponding
standard requirement, for example, the IEEE 1708-2004
standard for wearable cuffless BP measuring devices.
Moreover, there are still some challenges regarding
implementation.

The achieved results provide evidence of advanced
estimation of SBP while compared with its respective
DBP. It indicates that new parameters directly linked to
DBP should be considered to improve the estimation
accuracy.

Eventually, BP monitoring in an unobtrusive mobile—
based way in which decent accuracy is achieved allows
for improved hypertension control, therefore reducing
the global burden generated by cardiovascular diseases.
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