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Abstract

Seismic surveys are often affected by environmental obstacles or restrictions that prevent regular sampling in seismic
acquisition. To address missing data, various methods, including deep learning techniques, have been developed to
extract features from complex information, albeit with the limitation of requiring external seismic databases. While
previous works have primarily focused on trace reconstruction, missing shot-gathers directly impact the seismic
processing flow and represent a major challenge in seismic data regularization. In this paper, we propose DIPsgr, a
seismic shot-gather reconstruction method that uses only the incomplete seismic acquisition measurements to estimate
their missing information employing unsupervised deep learning. Numerical experiments on three databases
demonstrate that DIPsgr recovers the complete set of traces in each shot-gather, with preserved information and seismic
events.

Keywords: Seismic data regularization; deep learning; unsupervised learning; shot-gather reconstruction; deep image
prior; seismic processing; subsampled survey; convolutional network; seismic acquisition; data interpolation.

Resumen

Los levantamientos sismicos usualmente se ven afectados por obstaculos o restricciones ambientales que impiden el
muestreo regular en la adquisicion sismica. Por lo tanto, se han desarrollado diversos métodos para reconstruir estos
datos faltantes, incluidos los métodos de aprendizaje profundo, los cuales permiten extraer caracteristicas de
informacion compleja, con la limitante de bases de datos sismicos externos. Aungue otros trabajos se han enfocado
principalmente en la reconstruccién de trazas, los disparos que no se pueden adquirir impactan directamente el flujo
del procesamiento sismico y representa un reto mayor en la regularizacion de datos sismicos. En este trabajo
proponemos DIPsgr, un método de reconstruccion de disparos sismicos que usa solamente las medidas de las
adquisiciones sismicas incompletas para estimar la informacion faltante usando aprendizaje profundo no supervisado.
Los experimentos numéricos con tres bases de datos muestran que DIPsgr recupera el conjunto completo de trazas en
cada shot-gather, donde la informacidn y los eventos sismicos se conservan correctamente.
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1. Introduction

Seismic data is used for imaging and to study the
geological characteristics of the Earth through the
propagation of waves generated by sources and
measuring the signal response of the wavefield using
receivers (i.e., geophones or hydrophones) [1]. The data
collected in a seismic survey plays an essential role in the
oil and gas industry and provides information to discover
exploratory prospects. [1], [2]. Specifically, the seismic
survey consists of arranging a set of sources that generate
waves that propagate through the subsurface and whose
energy is reflected and/or transmitted according to the
physical properties of the rock layers. Then, the reflected
energy that reaches the surface is captured by a set of
receivers or geophones [2]. The coordinates of the
sources and receivers with regular and dense separation
make up the designed geometry (i.e., pre-plot). However,
during the acquisition, the geometry may present
variations due to operational, economic, or
environmental factors, affecting the quality of the seismic
design [1], [2], [3]. Precisely, the modifications in the
original design led to a loss of some points of the regular
grid. The resulting design from this process is known as
a post-plot. The missing seismic data can be a set of
receivers or even a complete shot-gather. Therefore,
seismic data regularization (such as interpolation or
reconstruction) is still a required and necessary step in
seismic processing [4].

The state-of-the-art approaches in seismic data
regularization have mainly focused on receiver
reconstruction [5], [6], [7], [8]. Several techniques have
been developed, such as methodologies based on filters
on the wavefield operator, using transformation domains
(Fourier) and algorithms based on sparsity priors [5], [6],
[9], [10], [11]. Currently, in deep learning (DL), a variety
of methods have been applied for the reconstruction of
seismic data using different architectures for the
computational learning model [12], [13], [14], [15]. DL
has shown to be a useful tool for extracting features from
the data and performing better interpolation compared to
conventional methods [16]. A disadvantage of these DL-
based reconstruction methods is the huge volumes of data
required in the training process. This drawback arises
because access to huge seismic data volumes is still
limited. Therefore, a recent research area has proposed
the application of new techniques that address this
problem using only the data acquired for model training.

Currently, in the state-of-the-art, a DL methodology
without external training data called deep image prior
(DIP) has been proposed [17], also called DL from
observed data, which only requires the data under
observation or acquired and a convolutional neural
network to extract all the necessary features for the task
to be performed, such as reconstruction, denoising, or
super-resolution. This helps to reduce the computational
cost of training and, in turn, the large data sets required
to generalize a model based on DL. DIP has been used in
seismic applications for seismic data regularization,
specifically, for the reconstruction of traces (i.e.
receivers/geophones) with a convolutional neural
network (CNN) [7], [8].

However, in more realistic applications, shot-gathers are
also missing, and the current application of DIP is unable
to extract features to recover a complete set of traces or
shot-gathers, which is a more challenging task to solve.
The problem could be adapted by taking the common-
receiver gathers (receiver slice), where a shot-gather is
represented by a trace, in which case, DIP does not
consider the structures or characteristics of the seismic
data along the receivers and shots dimensions.

This paper aims to reconstruct shot-gathers from
incomplete measurements under the DL approach only
from the observed data, focused directly on the current
problems in seismic processing related to seismic data
regularization. The proposed method DIPsgr was
evaluated using field and synthetic seismic data acquired
in split-spread and inline offset acquisition geometries.

2. DIPsgr: Deep
Reconstruction Method

Image prior-based

Let X € RMXNxL denote the data collection from a dense
and regular seismic acquisition with M time samples, N
receivers, and L number of shot-gathers. We can
mathematically model the subsampled data from an
irregular or incomplete seismic acquisition as follows

Y = Q(X), M

where Y € RMXNXL=S s the acquired data with S missing
shot-gathers. The subsampling functional operator Q(+)
extracts the acquired shot-gathers using the positions
from the designed geometry.
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Then, the reconstruction task consists of estimating X
from Y. In unsupervised learning, the reconstruction
problem can be modeled using a deep neural network Mg
with trainable parameters 6 con strained by the loss
function

L(6) = E(QMp(2)) =), )

where E(-) is a fidelity term and Z € RM*¥xL js a random
noise realization with uniform distribution. The choice of
random noise as input relies on that the implicit structure
of the network My is considered as a prior in the process
before learning the set of parameters  [17], and, then, the
learning procedure vyields My:Z—X. Hence, in this
approach, deep prior refers to the capability of My to
estimate signals using only the measurements, avoiding
huge labeled training data from external data sources.

The trainable parameters 6 can be optimized by
minimizing Equation (2). The optimization problem is
formulated as

0* = argmin {L(6)}, (3)
6

where 6* are the optimal parameters of the deep neural
network.

Finally, using the optimal parameters, the full and dense
seismic data can be estimated as

X* = Mg (2), (4)

where the neural network Mg« works as a parametric
function.

To guarantee the convergence of the optimization
problem in Equation (3), the mean square error (MSE) is
used as the fidelity term in Equation (2) and is denoted as

R L-S-1N-1M-1 R (5)
MSE(Y;7) = Z Vi = Yiju)?

MN(L =5)

where ¥ = Q (M, (2)), during the unsupervised training.

Additionally, we have incorporated a constraint on the
seismic signal in the frequency-wavenumber (FK)
domain into the cost function. The FK domain is
commonly used in seismic processing for analyzing
spatial and temporal frequency content [18], [19]. Then,
the objective is to find the optimal weights 6+ of a
solution in which the spatial and frequency attributes of
Q(My(2)) and Y are close. Thus, the proposed cost
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function is guided in both the spatial temporal (TX) and
FK domains as follows:

L(6) = MSE(Y; ?) + A ©)
“MSE(FK(Y);F K(?),

where FK represents the two-dimensional (2D) fast
Fourier transform for every single measured shot-gather
and A is a compensation constant controlling the loss
function in both domains. Despite the cost function
constraining the output only to fit the measured data Y,
the missing shot-gathers are suitably reconstructed in the
optimization process since they share the same inner
structure captured by the network through & during the
optimization.

2.1. Reconstruction Algorithm

Algorithm 1 summarizes the DIPsgr method and shows
the solution of Equation (3), where the objective is that
the output of Q (Me(2)) is the most similar to the acquired
data Y. The inputs of the algorithm are:

= Y: Acquired seismic data (incomplete shot-

gathers).

= Q: Subsampling operator that extracts
shotgathers wusing the known acquisition
geometry.

= Epochs: Number of iterations for training.

Regarding the inputs of the algorithm, we remark that
DIPsgr is based only on the acquired data in unsupervised
learning.

Then, Algorithm 1 starts by generating a random noise Z
with uniform distribution, followed by the random
initialization of @. In steps 4-9 the network is trained in
an unsupervised fashion using the Adam optimizer. Once
the optimal parameters of the network are found in step
10, using the Equation (4), it is possible to reconstruct the
best estimation of the seismic data set X* using as input
the noise from step 1. The architecture of the employed
network My is described in section 2.2.

2.2. Neural Network Architecture

Figure 1 shows the scheme of the proposed architecture
for reconstructing the shot-gathers. It consists of a 3D U-
Net network, specifically an autoencoder type network
with skip connections. The green arrows represent each
convolutional layer with 3x3x3 filters, followed by a
batch normalization and a sigmoid activation function.
The red arrows represent the down sampling process,
consisting of a convolutional layer with (3x3x3) filters
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and a (2x2x2) stride to perform dimension reduction. The
magenta arrows represent the up-sampling function that
increases the spatial size using a bilinear interpolation.
The gray arrows represent the skip connections at each
level of the architecture. Finally, the yellow arrow
represents the output layer as a convolutional layer with
a (1x1x1) filter, followed by batch normalization and a
sigmoid activation function. Each blue box represents
activated feature maps across the architecture, and the
number above defines the number of filters applied in the
previous convolutional layer. Finally, the proposed
network uses an input size of MxNxL equal to
128x128x16, with a total of 3,156,835 trainable
parameters.

Algorithm 1 DIPsgrfor shot-gather reconstruction
Input: Y: acquired seismic data; Q: subsampling
operator; Epochs.
11 Generate Z using an uniform distribution.
2:  Initialize 8 randomly
3. fori=1to Epochs do
4 Generate My(2Z)
5. Extract acquired shot-gathers Q(My(Z))
6
7
8
9

Compute loss L () using Equation (6)
Update 6 using Adam optimizer
end for
Get the optimal parameters 6
100 X"~ Mp(2) > Estimate seismic data
Output: Reconstructed data X*

L. Rodriguez—L6pez, K, Ledn—Lo6pez, P. Goyes-Pefafiel, L. Galvis, H. Arguello

3. Simulations and Results

This section presents the results obtained from the
simulations for the reconstruction of shot-gathers at three
different scenarios. We compare the performance of
DIPsgr against three state-of-the-art reconstruction
methods. The first one is a method for receiver
reconstruction on 2D and 3D seismic data based on
Internal Learning (IL) [20] using a CNN with 16
convolutional blocks (adapted here by adding more
blocks to solve our reconstruction problem). The second
one is the deep-seismic prior-based reconstruction
(DSPRecon) algorithm, which is based on DIP [8]. The
DSPRecon method was originally designed for trace
reconstruction, nonetheless, for a fair comparison with
the DIPsgr method, we transpose the seismic cube to
work in the common-receiver-gather domain and recover
the shot-gathers for every single receiver line, i.e.,
recovering the seismic shot-gathers for every single
receiver array. The third method is the consensus
equilibrium (CE) approach [21] that incorporates several
regularizes in the optimization problem for recovering
missing shot-gathers. Given that the CE approach
outperforms the sparsity-based methods (see [21]), this
paper disregards that comparison.

Figure 2. Statistical summary of 10 realizations to
analyze the input noise Z generated from uniform,
normal, and bernoulli distributions. The circles are
outliers.

=> Copy and add

=> 3x3x3 Conv + Bn + Sigmoid

= 3x3x3 Conv_stride(2x2x2) + Bn + Sigmoid
=> 1x1x1 Conv + Bn + Sigmoid

= Upsampling(2x2x2) + Conv + Bn + Sigmoid

I R I R

9% 128
i-i-

128

Figure 1. 3D U-Net architecture with random noise Z as the input for shot-gather reconstruction.
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Figure 2. Statistical summary of 10 realizations to

analyze the input noise Z generated from uniform,

normal, and bernoulli distributions. The circles are
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3.1. Seismic Datasets

We use three datasets, both field and synthetic, to test the
DIPsgr method. We normalized all datasets between 0
and 1, as the output layer of the neural network employs
the sigmoid activation function.

The synthetic datasets were simulated with DEVITO [22]
using the acoustic Marmousi velocity model [23]. The
acquisition geometry comprises 16 shot-gathers and 128
receivers; the energy source is a Ricker wavelet with a
frequency of 10 Hz, and the trace length is 3000 ms.
According to the position of the shot-gathers in the
survey, we simulate the two following seismic
acquisition geometries:

Dataset I: Split-spread acquisition with the shot in the
middle of the receiver line. This dataset compromises L
= 16 shot-gathers with M = 128 time samples and N =
128 receivers.

Dataset I1: Inline offset acquisition where the source is
located at twice the receiver interval distance offset from
the last hydrophone. This dataset compromises L = 16
shot-gathers with M = 128 time samples and N = 128
receivers.

Dataset I1l: The field dataset is the well-known AVO
Mobile Viking Graben [24], [25] survey from a marine
acquisition. The original acquisition geometry comprises
249 shot-gathers and 120 receivers, the trace length is
6000 ms. The experiments were performed using the first
16 shot-gathers and resizing it to 128x128 due to
computational resources.
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3.2. Metrics

To evaluate the quality of the reconstructed data with
theDIPsgrmethod, we used the metrics Peak Signal-to-
Noise Ratio (PSNR), and structural similarity index
measure (SSIM) recommended by [21], [26]. PSNR is
used to quantify the quality in terms of signal amplitude,
and with SSIM, we account for the analysis of the
structural features related to the shape of the waveforms
i.e., hyperbolic and linear events recorded in the shot-
gathers.

10 10
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Figure 3. Shot-gather 8 in FK domain. Ground truth (a,
¢, e) and (b, d, f) interpolated with DIPsgr. The first,
second, and third rows are datasets I, 11, and 11l,
respectively.
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Table 1. Performance comparison ofDIPsgr (proposed)and IL [20], DSPRecon [8], and CE [21] methods
using the average PSNR and SSIM metrics

Experiment | Shot PEINIR ((¢(2) ol
DIPsgr | DSPRecon IL CE DIPsgr | DSPRecon IL CE

4 38.93 26.27 1620 | 1506 | 0.990 0.760 0420 | 0.661
5 . 6 38.41 22.92 1781 | 1542 | 0.992 0.635 0.756 | 0.660
S;;ilzittlc 8 37.77 2055 1737 | 12.97 | 0991 0.509 0541 | 0.618
splitspread | L1 38.93 19.06 16.75 | 10.73 | 0.991 0.414 0526 | 0.557
13 37.68 2043 1592 | 12.36 | 0.990 0.473 0.369 | 0.607
Average | 38.34 21.85 16.81 | 13.31 | 0.991 0.558 0522 | 0.620
4 4278 21.23 1556 | 17.28 | 0.995 0.623 0.616 | 0.841
_ 6 44.62 18.12 1863 | 11.13 | 0.99 0.473 0.774 | 0.707
%@tﬁfﬁétté 8 44.87 1727 | 1619 | 1521 | 0.997 0.353 | 0574 | 0815
i ey | 11 44.16 16.48 16.75 | 13.01 | 0.995 0.283 0.750 | 0.824
13 43.41 17.08 17.13 | 1566 | 0.995 0.308 0.663 | 0.841
Average | 43.97 18.03 16.85 | 14.46 | 0.996 0.408 0.676 | 0.806
4 35.19 2578 1465 | 22.34 | 0973 0.730 0277 | 0552
Dataset I11: 6 35.60 2254 1492 | 1592 | 0.974 0.596 0.462 | 0.560
AVO Mobil 8 36.69 21.09 1443 | 21.88 | 0.979 0.499 0.307 | 0.562
Viking 11 36.86 18.66 1524 | 17.81 | 0978 0.390 0536 | 0.545
Graben 13 33.98 20.12 1462 | 22.89 | 0971 0.443 0.365 | 0.580
Average | 35.37 21.64 14.77 20.17 0.974 0.532 0.389 | 0.560

3.3.  Network Configuration

The training process was fixed with 3000 epochs for all
experiments, using the Adam optimizer [27].
Additionally, for Dataset | and I1, we included a learning
rate starting at 0.01 with an exponential decay rate of 0.9
every 500 epochs. For the compensation constant A of
Equation (6), we found that the best choice is A = 0.5 by
tuning the parameter over 10 Monte Carlo realizations
with the field and synthetic datasets. Finally, for Dataset
Ill, the learning rate was fixed at 0.001 and the
compensation constant A = 0.001. On the other hand, to
choose the distribution for generating the random input
noise that yields better reconstruction results, a set of
experiments with 10 realizations was conducted
consisting of the reconstruction of 5 shot-gathers using
synthetic data and generating Z from uniform, normal,
and bernoulli distributions. Figure 2 shows the statistical
summary of the experiments in terms of PSNR from each
distribution. The boxplots show that generating Z with a
uniform distribution yields the best reconstruction scores
with random values between 0 and 1.

3.4. Numerical Results

Table 1 summarizes the performance of the DIPsgr
approach and the state-of-the-art methods, i.e., IL,
DSPRecon, and CE, recovering shot-gathers from the
three different datasets. The second column reports the
corresponding index of the reconstructed shot-gather

from the given geometry. In general, note that the
proposed method outperforms the other methods in terms
of PSNR and SSIM and provides a better estimation for
shot-gather reconstruction than the estimations achieved
with comparison methods, where each of the comparative
methods only requires the data acquired. Specifically, the
proposed method is superior to the compared methods in
up to 21.68 dB (PSNR) and 0.423 (SSIM) on average.
The average best performance of our approach is in the
Dataset Il Synthetic inline offset with 43.97 dB (PSNR),
which is related to the low complexity in the seismic
features for a marine acquisition with abundant linear
seismic events. On the other hand, in the same marine
acquisition but in a field survey tested with Dataset IlI,
the performance of our method is, on average, 35.37 dB
(PSNR), keeping a good result, although the field data
contains noise.

Moreover, we have conducted an assessment of the
efficacy of our methodology using the reconstruction of
shot-gather 8 in the frequency-wavenumber (FK)
domain to showcase the capacity of our algorithm for the
preservation of seismic characteristics in this domain,
with regard to both the dips of the spectrum and the
frequency range of the signal. Figure 3 illustrates the
results of the reconstruction in the FK domain of the
Datasets I, I1, and Il1, where it can be observed that the
reconstruction in this domain presents good quality. For
Dataset |, we observed a spectral shift that resulted from
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the algorithm’s ability to reconstruct the shot-gather
while applying filtering in the FK domain. This behavior
is anticipated since DIPsgr method includes the FK
domain as a regularization term, thereby facilitating
network convergence by producing smoother and more
continuous FK spectra. On the other hand, in Dataset 111
the signal complexity is preserved in the FK domain.

Figure 4 shows the reconstruction results obtained with
the different methods using Dataset |. Note that
reconstruction using theDIPsgrmethod (Figure 4b)
presents a good performance in the preservation of
seismic features, especially the feature located at 2-3 km
and 2-3 s, pointed out with the arrow. Figure 5 shows the
result with Dataset Il, where the shot-gather 8 was
reconstructed while adequately preserving the main
linear event related to the direct water wave. Also, it can
be noted that an internal linear event was highlighted and
pointed with an arrow about 2-3 km away. The
comparison methods reconstructions added artifacts
causing structural changes in the gather; these can be
seen in the normalized residual Figure 5(f—i). Figure 6
shows thatDIPsgradequately reconstructs the shotgather
8 from Dataset Ill, preserving the structural seismic
waveforms. Particularly, those linear events between 1—
2 kmand 1-3 s, while the reflections are maintained.

Time (s)
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4, Discussion

Computational cost: DIPsgr method was more efficient
in terms of quality and computational cost compared to
other DL-based methods with 3'156'835’, 1'424'643, and
368’523 trainable parameters. The computation time was
10 min, 164 min, and 80 s for DIPsgr, DSPRecon, and
IL, respectively. It is worth noting that all computational
experiments were conducted under the same conditions
using a GPU Nvidia T4 Tensor Core.

Model Uncertainty: The experimental results presented
in this study demonstrate the superior performance of the
DIPsgr method for reconstructing shot-gather data from
incomplete seismic acquisition compared to state-of-the-
art methods. However, it is important to acknowledge
that DIPsgr method is sensitive to the initialization of the
network weights 6. To investigate this sensitivity, a
model uncertainty analysis was conducted by randomly
initializing the weights and reconstructing five shot-
gathers with fixed Z values across 100 realizations. Table
2 summarizes the reconstruction results on the field
Dataset I11 using the DIPsgr method in terms of PSNR
and SSIM, with a standard deviation of 1.98 dB in the
PSNR. These results indicate that the reconstruction
performance has a small deviation from the average,
which may have implications for certain applications
where consistent results are necessary (e.g., AVO, FWI,

petrophysical parameter estimation).
e
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Figure 4. (a) Ground truth for the shot-gather 8 in Dataset I: Synthetic split-spread, and the interpolation
results with (b) DIPsgr (proposed), (c) IL, (d) DSPRecon, and () CE method. (f—i) Normalized difference for
each method, respectively.
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results with (b) DIPsgr, (c) IL, (d) DSPRecon, and (e) CE method. (f—i) Normalized difference for each
method, respectively.
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Figure 6. (a) Ground truth for the shot-gather 8 in Dataset I11: AVO Mobil Viking Graben, and the interpolation
results with (b) DIPsgr, (c) IL, (d) DSPRecon, and (e) CE method. (f—i) Normalized difference for each
method, respectively.

Moreover, the experiments presented in the Numerical
Results section involve randomly initialized trainable
parameters. Although our approach is inherently
dependent on the observed data in a given area, fine-
tuning is possible. For instance, one strategy is to train
the network initially using a set of synthetic data and then

use these trained parameters as initialization for
reconstructing field data. Since field data can be more
complex, utilizing synthetic data initialization may lead
to faster convergence compared to training from scratch.
Therefore, further research is needed to develop robust
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weight initialization methods to improve the overall
performance and reliability of DIPsgr.

Table 2. Sensitivity analysis in the reconstruction
neural network initialization of theDIPsgrmethod

PSNR (dB) | SSIM
Min 28.13 0.887
Average 34.21 0.964
Std. 1.98 0.018
Max 38.18 0.985

5. Conclusions

This paper introduces a novel approach based on deep
data priors for recovering missing shot-gathers in seismic
data. By leveraging incomplete seismic acquisition and a
3D convolutional neural network, the DIPsgr method
effectively captures important statistics and structural
features from the data to reconstruct the missing shot-
gathers. DIPsgr considers information in the temporal-
spatial and frequency-wavenumber domains to preserve
features in both domains, providing valuable insights for
downstream data processing. Comparative experiments
with state-of-the-art algorithms show that the DIPsgr
method achieves outstanding results in both land and
marine data. Notably, our approach differs from other
deep image prior-based methods that mainly focus on
trace reconstruction of 2D or 3D seismic data, as DIPsgr
method is specifically designed to reconstruct a complete
set of shot-gathers.
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