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Resumen

Se desarroll6 un método que combina una
red neuronal artificial y un algoritmo genético
(ANN+GA) con el fin de pronosticar el indice
de tiempo de perturbacion de tormenta (Dst).
A partir de esta técnica, la ANN fue optimizada
por GA para actualizar los pesos de la ANN y
para pronosticar el indice Dst a corto plazo de
1 a 6 horas de antelaciéon usando los valores
de la serie temporal del indice Dst y del indice
de electrojet auroral (AE). La base de datos
utilizada contiene 233,760 datos de indices
geomagnéticos por hora desde 00 UT del 01
de enero de 1990 hasta las 23 UT del 31 de
agosto de 2016. Se analizaron diferentes
topologias de ANN y se selecciond la arquitectura
optima. Se encontré que el método propuesto
ANN+GA puede ser adecuadamente entrenado
para pronosticar Dst (t+1 a t+6) con una
precision aceptable (con errores cuadratico
medio RMSE<10nT y coeficientes de correlacidon
R>0.9), y que los indices geomagnéticos
utilizados tienen efectos influyentes en la buena
capacidad de entrenamiento y prediccidn de la
red elegida. Los resultados muestran una buena
aproximacion entre las variaciones medidas y
modeladas de Dst tanto en la fase principal como
en la fase de recuperacion de una tormenta
geomagnética.

Palabras clave: Indice Dst, Prondstico,
Tormenta geomagnética, Serie temporal, Red
neuronal artificial, Algoritmo genético.
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Abstract

A method that combines an artificial neural
network and a genetic algorithm (ANN+GA) was
developed in order to forecast the disturbance
storm time (Dst) index. This technique involves
optimizing the ANN by GA to update the ANN
weights and to forecast the short-term Dst
index from 1 to 6 hours in advance by using
the time series values of the Dst and auroral
electrojet (AE) indices. The database used
contains 233,760 hourly geomagnetic indices
data from 00 UT on 01 January 1990 to 23 UT
on 31 August 2016. Different topologies of ANN
were analyzed and the optimum architecture
was selected. It emerged that the proposed
ANN+GA method can be properly trained for
forecasting Dst (t+1 to t+6) with good accuracy
(with root mean square errors RMSE<10nT and
correlation coefficients R>0.9), and that the
utilized geomagnetic indices significantly affect
the good training and predicting capabilities
of the chosen network. The results show a
good agreement between the measured and
modeled Dst variations in both the main and
recovery phases of a geomagnetic storm.

Key words: Dst index, Forecast, Geomagnetic
storm, Time series, Artificial neural network,
Genetic algorithm.
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Introduction

Geomagnetic storms are perturbations on the
Earth’s magnetic field caused by the southward
component of the interplanetary magnetic field
(IMF). They can last from a few hours to several
days (Gonzalez et al., 1999). This magnetic
field orientation allows magnetic reconnection
(Akasofu, 1981) and energy transfer from
the solar wind to the Earth’s magnetosphere
causing a depression of the Earth’s magnetic
field horizontal (H) component due to the
diamagnetic effect generated by the azimuthal
circulation of particles in the ring current
(Gonzalez et al., 1994; Echer et al., 2008).
Thus, a geomagnetic storm can be defined by
ground-based low-latitude geomagnetic field
horizontal component variations (Gonzalez
et al., 1994). Based on this definition,
the disturbance storm time index (Dst) is
established as the average of the disturbance
variation of the H-component, divided by the
average of the cosines of the dipole latitudes
at the observatories for normalization to the
dipole equator (Sugiura & Kamei, 1991). Dst
index serves as a good measure of the overall
strength of near-Earth electric currents,
especially the ring current (Sugiura, 1964) and
it is obtained from four selected geomagnetic
observatories operating in the equatorial region
(Sugiura & Kamei, 1991).

Another index that can register the
geomagnetic activity occurring during a storm
is the auroral electrojet index. This index
measures the global electrojet activity in the
auroral zone (Davis & Sugiura, 1966) and is
also derived from geomagnetic variations in
the H-component observed from selected
observatories throughout the auroral zone
in the northern hemisphere (Pallocchia et
al., 2008). The auroral electrojet index is
represented by four indices: AU, AL, AE and
AO. The AU and AL indices (Davis & Sugiura,
1966), are used to express the strongest
current intensity of the eastward and westward
auroral electrojets, respectively (Pallocchia et
al., 2008). The AE index defined as AE=AU-AL
(Davis & Sugiura, 1966) provides an estimate
of the overall horizontal current strength,
and to some extent, a rough measure of the
ionospheric energy losses (Ahn et al., 1983),
while the AO index defined as AO=(AU+AL)/2
(Davis & Sugiura, 1966) provides a measure of
the equivalent zonal current (Menvielle et al.,
2011).

The mentioned indices have long records
that allow statistical studies of the causes
of geomagnetic activity and their related
phenomena. In other studies, the relationship
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between the Dst and AE indices shows that there
is a correlation (with a correlation coefficient
of 0.87) for these indices during the recovery
phase of the geomagnetic storms (Akasofu,
1981; Saba et al., 1997). Thus, correlations
between the geomagnetic indices and possible
drivers provide the basis for its prediction. In
this way, different computational tools have
been used for this purpose during the past
decades, such as artificial neural networks
(ANN). Several examples of the application of
ANN to forecast the Dst index can be reviewed
in (Kugblenu et al., 1999; Lundstedt, 2005;
Sharifi et al., 2006; and references therein).
Revallo et al., (2014) proposed one of the most
recent works on this subject. They present a
method for forecasting Dst index 1-hour ahead
using an ANN combined with an analytical
model of the solar wind-magnetosphere
interaction.

In this work, Dst index 1 to 6 hours ahead
were forecasted by an ANN using the time
series of the past values of Dst itself and AE
index as input parameters. This ANN was
optimized with genetic algorithms (GA) to
update the ANN weights. A genetic algorithm
is an optimization technique based on the
evolutionary ideas of natural selection and
genetics (Holland, 1975). The algorithm
repeatedly modifies a population of individual
solutions into a search space by relying on bio-
inspired operators such as mutation, crossover,
and selection (Davis, 1991). Due to facts, GA
may offer significant benefits over the more
typical search of optimization algorithms, and
it can be used to optimize the update weights
process of an ANN with better results than
the traditional back-propagation algorithm
(Lazzuis, 2016). With this, we propose an
improved method to forecast the Dst variation
based on measurements at ground level. As
far as we know, no application yet exists for
forecasting Dst index using a hybrid ANN+GA
method, as is presented here.

Neural networks and genetic algorithms

In this study, we utilize of a multilayer feed-
forward neural network. This ANN consists
of one input layer with N inputs, one hidden
layer with g units and one output layer with
n outputs. The output of this model can be
expressed as (Lazzus, 2016):

q N
g (gres) ),
=1 i=1
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where W . are the weights between unit j and
unit n of the input and hidden layers, W, are
the weights between the hidden layer and the
output, and B, and B, represent the biases of
the hidden and output layer, respectively. The
activation functions f (x) and f(x) are linear or
nonlinear. We used one hidden layer with fj(x)
as a tangent hyperbolic nonlinear activation
function and f (x) as a linear function in the
output layer. For a given set of D inputs, we
define the root mean square error (RMSE) by:

RMSE = Ed=1(yf;— “ o

where y@ denotes the actually given output
and y<@c the neural network output. This
network was trained to minimize RMSE,
replacing the gradient descent error by genetic
algorithms (GA), and considering that GA
have been applied in the optimization of ANN
obtaining better results than the commonly
used back-propagation algorithm (Lazzus,
2016). Note that, traditional optimization
techniques such as back-propagation learning
algorithm (BPLA) can determine the number
of network parameters too, such as network
connection weights, but BPLA is neither able
to control the parameter optimizations in the
absence of gradient information nor to reduce
the problems of trapping of local minima during
the convergence process. In contrast, GA is
able to solve these problems.

GA was developed by Holland (1975), and
based on the natural selection in biological
systems. This algorithm uses genetic
information to find new search directions into
an error surface aided by operators that reflect
the nature of the evolutionary process, such as
reproduction, crossover, and mutation (Lazzus,
2016).

GA generates a population of individuals,
whose characteristics are encoded in a fixed-
length bit string by emulating the biological
genotype (Davis, 1991). As a parallel to
nature, genetic material is swapped between
the individuals and mutated to produce
offspring, with corresponding changes in
their phenotypic performance (Lazzus, 2016).
The crossover operator is an analog of the
recombination of genetic material as observed
in reproduction. Crossover involves splitting
the genomic bit-strings of two parents at a
given number of locations and then splicing
together complementary sections of each
parents’ bit-string to form the genotype of

the new individual. Crossover occurs with
a random probability, and the mutation
operator simulates natural mutation of DNA.
This simply involves flipping bits in the string
in a stochastic manner. The mutation should
be fairly infrequent and should be applied
following crossover (Davis, 1991).

The main differences between GA and
other optimization algorithms are: i) only
the objective function and the corresponding
fitness levels influence the directions of
search; ii) it uses probabilistic transition rules,
not deterministic ones; and iii) it works in an
encoding environment of the parameter set
rather than the parameter set itself (Lazzus,
2016).

Database and training

Data sets of geomagnetic Dst index and AE
index were taken from the World Data Center
for Geomagnetism of Kyoto (WDC, 2016), and
used to train the network. Figure 1 shows the
time series used. These series contain 233,760
hourly data indices from 00 UT on 01 January
1990 to 23 UT on 31 August 2016.

A cross-validation method was used to
calculate the predictive capabilities of the
proposed method. The training set contains
175,320 hourly data points from 00 UT on 01
January 1990 to 23 UT on 31 December 2009,
while the prediction set contains 58,440 hourly
data points from 00 UT on 01 January 2010
to 23 UT on 31 August 2016. According to the
largest decay values of Dst index, the storms fall
into low (Dst>-20nT), medium (-20nT>Dst>-
50nT), high (-50nT>Dst>-100nT), and extreme
(Dst<-100nT) categories (Jankovicova et al.,
2002). Table 1 shows the storm ranges for
the database used. Here, geomagnetic indices
cover a wide range of values, from -422nT to
95nT for the Dst index and from 3nT to 3195nT
for the AE index. Figure 2 shows the hourly
data points categorized as geomagnetic events
(extreme storms) that contain the training and
prediction sets. In this Figure, both sets show
a great number of extreme storms with levels
of Dst<-100nT.

The main problem of the time series study
consists on predicting the next value of the
series up to a specific time by using the known
past values of the series itself (Palit & Popovic,
2005). In our case, the goal of the proposed
method is to use the past values of the time
series of geomagnetic indices (t-7,,...,t-1,t),
with 7,=0,1,..,K, to predict the geomagnetic
index Dst(t+ 7,), with 7,=1,2,...,T.
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Figure 1. Time series of Dst and AE indices used in this study.

Table 1. Data ranges and geomagnetic storm levels present in the database used.

Data ranges

Training set

Prediction set

No. data points 233,760 58,440
ADst (nT) -422 to 66 -374 to 95
AAE (nT) 5to 3,195 3to 2,227

Geomagnetic storm levels (Ja

nkovicova et al., 2002)

Dst>-20nT 117,338 47,007
-20nT>Dst>-50nT 46,329 9,774
-50nT>Dst>-100nT 9,765 1,519
Dst<-100nT 1,888 140
The inputs are normalized using the The steps to calculate the optimum weights
following equation: and biases using GA are as follows (Lazzus,
2016):
min 2 L . .
x =X -X — (3) 1) The initial weights in the ANN are
CIXT - X randomly generated (initial population).
' Then, M-chromosomes are also randomly
generated to represent this population,

where X, is the input data /, and X" and X ™
are the smallest and largest data values,
respectively. Next, the inputs (N) are processed
for the ANN neurons as in Eqg. (1), and
subsequently, GA is used to obtain optimum
weights W and biases B for the ANN.
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with each chromosome representing all the
initial weights and biases in the ANN, which
are optimized by GA. Let M be the size of
population, i.e. M groups of weights and biases
are initialized and encoded into chromosomes
as Z_(k)={w,,w Bj,Bn}, with m=1,..., M, and

ij! " njt
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-400

they are randomly distributed in the solution
space.

2) The chromosome fitness is evaluated by
the performance of the ANN during the training.
In this case, fitness function F is defined as
Fo(Z,,(K)=1/(y=y(K)=")?.

3) Fitness function value of each individual
in the population is evaluated and the best
individual chromosomes are selected for
mating. The selection is repeated until the
number of individuals in the mating pool is
the same as the number of individuals in
the population (Che et al., 2011). Here, the
probability that parental individuals have been
selected is given as p, =F /3M =, F_(Yang et
al., 2016).

4) Two individuals Z (k) and Z(k) are
selected from the mating pool to generate
two child individulas Z (k+1) and Z (k+1) by
two-point crossover, using L as the length of
chromosome and a random integer value in
interval [1, L] (Yang et al., 2016). We used
a two-point crossover operator to prevent
unreasonable children, two chromosomes break
from two points, and thus new chromosomes
are generated from the crossover of the first
part of parents (Che et al., 2011). Thus, two
crossover points are selected, the binary string
from beginning of chromosome to the first
crossover point is copied from one parent, the
part from the first to the second crossover point
is copied from the second parent and the rest is
copied from the first parent (Meng et al., 2007).

-300
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= =
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5) A mutation operator is applied to maintain
diversity within the population. Since the initial
weights of the ANN could take any values
between 0 and 1, the mutation is conducted
by switching random genes. The approximate
optimal solutions can be found quickly in order
to set up the mutation rate as a parameter to
control mutation probability (Eiben etal., 1999).
Here, the mutation strategy for Z (k+1) is
given as Z (k) if r>r, ,or Z (k)x[Z (k)+Z (k)]
if r<r_,, where ris a random number in interval
[0,1], and r,, is the mutation factor. Also,
Z (k) and Z (k) are randomly selected from the
population and computed as the different gene
[Z,(k)+Z,(K)]. Then, Z (k)x[Z(k)+Z(K)] is
compared with Z_(k) by item. When r>r_ the
item in Z (k) remains unchanged, otherwise
the item in Z (k) mutates to corresponding
item in Z (K)x[Z(k)+Z(k)]. Thus, a new
individual Z_(k+1) emerges after comparison
(Yang et al., 2016).

6) Finally, root mean square error (RMSE)
is calculated for all the individuals’ value.
When RMSE is less than the preset value, it is
considered that the population has converged
to the set including the global optimal solution
in the ANN+GA (Lazzus, 2016).

Figure 3 shows a block diagram of the
ANN+GA method developed for this study. In
GA, the number of individuals, the crossover
operator, the crossover probability, the
mutation operator, and the mutation probability,
summarize the main parameters to synchronize
for their application in a given problem (Lazzus,
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Input data of ANN.
Training and testing dataset

|

Create a set of initial
weight randomly

k=k+1 |

Select the individuals

)

Crossover
and mutation

Optimum weight values are
obtained and they are used
for ANN architectures testing

Stop
ANN+GA

Figure 3. Flow diagram for training of our ANN using GA. Note that training and prediction sets are loaded at the
same time by the ANN+GA program, but it must be made clear that only data from the training set were used
during the training phase and only prediction data were used in the prediction phase.
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Table 2. Parameters used in the hybrid ANN+GA.

Section Parameter Value

ANN NN-type feed-forward
Number of hidden layers 1
Maximum learning epoch 2000
Transfer function (hidden) Tansig
Transfer function (output) Linear
Normalization range [-1, 1]
Weight range [-10, 10]
Bias range [-5, 5]
Minimum error le-4

GA Population 10
Crossover operator two point
Crossover rate 0.8
Mutation operator binary
Mutation rate 0.2
Fitness function RMSE

VoLuME 57 NuMBER 4
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2016). For this task, an exhaustive trial-and-
error procedure was applied for tuning the
GA parameters employed in the ANN. Table 2
shows the selected parameters of ANN+GA.
Importantly, these values were obtained from
a sub set of examples.

From the above methodology, several
network architectures were tested to select
the most accurate scheme. The most basic
architecture normally used for this type of
application involves a neural network consisting
of three layers (Lazzus, 2013). The number
of hidden neurons needs to be sufficient to
ensure that the information contained in the
data was adequately represented. No specific
approach to determine the number of neurons
in the hidden layer (NHL) exists, but many
posible alternative combinations do. Here,
the optimum NHL was determined by adding
neurons systematically (as a cascade approach)
and by evaluating the RMSE during the training
process (Lazzus, 2016). Thus, we trained 10
different networks for each architecture, from
1 to 30 hidden neurons, totaling 300 NNs
(or replications) for each problem (Dst(t+1),
Dst(t+2),..., Dst(t+6)). In addition, ANN+GA
was trained for 2000 epochs (100 generations)
for each problem.

Results and discussion

Once the training process was successfully
completed and the optimal architecture was
determined, the prediction set containing data
not used in the training set was evaluated.
Table 3 summarizes the best results obtained
during the training and prediction processes
for forecasting the Dst index from 1 to 6 hours
in advance.

The results show that the ANN+GA method
can forecast the Dst from 1 to 6 hours ahead
with a good accuracy by according to the
results obtained via RMSE, and RMSE_ ..

Note that the period from 01 January 1990
to 31 December 2009 (training set) present a
greater occurrence of geomagnetic storms with
levels of -50nT> Dst >-100nT (high) and Dst
<-100nT (extreme), while for the period used
in the prediction set (from 01 January 2010
to 31 August 2016), the occurrence of these
types geomagnetic storms are less frequent.
Because of this, the prediction RMSE were
smaller than the training RMSE.

As in Table 3, and considering the results
obtained during the training and prediction
steps (RMSE,, and RMSE,, respectively),
deviation increases with the time-ahead. From
these results, we observe that our network can
forecast only up to 4 hours in advance quite
precisely, by considering correlation coefficient
R greater than 0.9. Note that similar results
were obtained by Stepanova & Pérez (2000).
For us these results are only related to the
processing capabilities of neural networks,
and have no relation with the dynamics of the
magnetosphere. To clarify, in order to predict
each case (from 1 to 6 hours ahead), we
trained a new network.

In particular, we focus our analysis on the
forecast of Dst(t+1), since for this case we
have obtained the best results and can compare
them with other available methods. Thus, for
this case the best input vector obtained to
solve Dst(t+1) was:

Dst(t+1)=[Dst(t—4), AE(t—4),
Dst(t-3), AE(t=3),
Dst(t—2), AE(t=2),
Dst(t—1), AE(t-1),
Dst(t—0), AE(t—0)] )
To clarify, for all cases the best input vector

was derived from the weights matrices of the
network, by using the methodology described

Table 3. Summary of statistical results obtained in the forecast of Dst (t+1 to t+6).

Anead Input NHL lrening set | Bredictio st
t+1 t-4 3 4.63 0.983 3.38 0.980
t+2 t-6 9 7.71 0.952 6.12 0.946
t+3 t-6 12 9.72 0.923 8.63 0.918
t+4 t-8 18 10.31 0.914 10.12 0.901
t+5 t-8 24 12.54 0.889 11.67 0.879
t+6 t-9 27 14.23 0.841 13.72 0.832
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above. For Dst(t+1), these input parameters,
we obtained the optimum architecture of 10-
3-1, with 10 input neurons corresponding
to 5 input parameters for Dst index (t-4,
t-3,...,t-0) and 5 other input parameters for
AE index, 3 others neurons in the hidden layer,
and one output neuron for Dst(t+1), as shown
in Table 3. Note that considering the structure
of this ANN, its length of chromosome was
L=10x3+3%x1+3+1=37. Also, for this forecast,
in Figure 4 appears a comparison between real
(solid line) and calculated values (dots) of
Dst(t+1) obtained with the proposed ANN+GA
method. Fig. 4a shows the comparison during
the training step between predicted and real
values of Dst(t+1), from 00 UT on 01 January
1990 to 23 UT on 31 December 2009. Here,
R was 0.983, while the slope of the curve (m)
is 0.967 (expected to be 1.0). Fig. 4b shows
the comparison in the prediction step between
predicted and real values of Dst(t+1), from 00
UT on 01 January 2010 to 23 UT on 31 August
2016). In this case, R was 0.979 while m was
0.965.

To distinguish the predictive capabilities of
ANN+GA between different storm levels, an
exhaustive analysis according to storm type for

m——rT———7——7— 77—
|:|_
o -100%
=
&
S
< -200)
-
&
S o}
A0t

)

B | S N U B
-300  -400  -300  -200 -100
DS'.T(H 13, real

100

Dst(t+1), as well as. A comparison between our
results and the ones obtained via persistence
method was made. Note that the persistence
method is usually used in forecast applications.
Thus, Table 4 shows the correlation coefficients
obtained with the proposed ANN+GA method
according to geomagnetic storm levels for
Dst(t+1) versus the results obtained using the
persistence method for the same datasets. The
results show that the ANN+GA method is a very
powerful tool for making forecasts of different
geomagnetic storm types. Notably, in the
forecast of extreme storms (Dst<-100nT), our
results were highly accurate with correlation
coefficients R of 0.945 for the training process
and R of 0.937 for the prediction step.

As test case to evaluate the predictive
accuracy of our ANN+GA method in the forecast
of Dst index, we used the extreme geomagnetic
event of March 2015. The St. Patrick’s Day
storm on 17 March is categorized as G4-NOAA
level that corresponds to an extreme storm
(Dst<-100nT). This geomagnetic storm serves
ou proposed for two main reasons: i) it was the
first strongest geomagnetic storm of solar cycle
24, and ii) space weather agencies around the
world failed to predict it (Jacobsen & Andalsvik,

100

-100F

-200 F

Do (e+ 1), prediction

=300

400} i

Y ||| || PSP N P M -
-500  -400  -300 -Z00  -100 0 1aa
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Figure 4. Comparison between real and calculated values of Dst(t+1) using ANN+GA: (a) training set and (b)
prediction set.
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Table 4. Statistical results obtained with the proposed ANN+GA and the persistence method
according to geomagnetic storm levels for Dst(t+1).

Storm levels Training set Prediction set
(Jankovicova et al., 2002) Roers  Rinvica Roers  Riwnica
Dst>-20nT 0.932 0.938 0.937 0.949
-20nT>Dst>-50nT 0.840 0.878 0.838 0.870
-50nT>Dst>-100nT 0.802 0.864 0.807 0.842
Dst<-100nT 0.905 0.945 0.863 0.937

Dyy [0T]

16 17 1 19 20

-500 T ST A PR B |:

March 2015

Figure 5. Recorded values of the magnetic field, the solar wind plasma, and the geomagnetic indices during the
St. Patrick’s Day geomagnetic storm (OMNI, 2016). From top to bottom panels: magnetic field magnitude (B), Bz
of the field in GSE, proton temperature (T), proton density (D), flow speed (V), AE index, and Dst index.
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Figure 6. Forecasting of the St. Patrick’s Day geomagnetic storm using the proposed ANN+GA method from 1
to 6 hours in advance.

2016). Figure 5 shows the recorded values of
the solar wind plasma, the magnetic field, and
the geomagnetic indices during the St. Patrick’s
Day storm from 16-20 March 2015 (OMNI,
2016). The indices contained in this Figure are
typically used for monitoring the behavior of
a geomagnetic storm. Importantly, the source
of this storm must be traced back to a coronal
mass ejection (CME) event that occurred on 15
March 2015 at ~2:10 UT and was caused by
a partial halo CME with a propagation speed
of ~668 [km/s] (Wu et al., 2016). Later, an
interplanetary (IP) shock arrived to Earth
(at ~04:45 UT) causing the sudden storm
commencement (Nava et al., 2016; Wu et al.,
2016), as indicated by the solid vertical line in
Fig. 5. Next, Dst values decreased right after
the IMF turned southward (Dst=~80nT) and
intensified during passage through the region
between the IP shock and its driver (Wu et
al., 2016), as indicated by the dashed vertical
line in Fig. 5. Afterwards, it recovered slightly
after the IMF turned northward. A few hours

248 VoLuME 57 NuMBER 4

later, the IMF turned southward again due
to the strongly negative Bz associated with
a magnetic cloud (MC) and caused a second
storm intensification, reaching a Dst peak of
-223 nT on March 17 (Nava et al., 2016; Wu et
al., 2016), as the dotted vertical line in Figure
5 reveals.

Figure 6 shows the forecast of the Dst index
during the St. Patrick’s Day storm by using
our proposed method. As observed, this storm
evolves from an abrupt variation of the Dst
index toward negative values until reaching
a minimum value (the main phase of the
storm), and starts its recovery until reaching
again a Dst value close to zero (the recovery
phase of the storm). Note that this complete
behavior was correctly and quite accurately
forecasted by ANN+GA for both phases, where
for all forecasted cases of Dst (t+1 to t+6),
our method obtains RMSE<10nT and R=0.9
both for the main phase and the recovery
phase of that geomagnetic storm (see, Figure



GEOFisICA INTERNACIONAL

0,98 ; .
0.96
0.941
092t
09t
088}
086
0.841

0821

T T
— ANN+GA
———EBPNN
""""" Fersistence

0.3 L !
1

(t-‘r'ra)

Figure 7. Correlation coeficients (R) obtained by ANN+GA method versus persistence and BPNN methods in the
forecast of Dst index from 1 to 6 hours in advance.

6). It should be made clear that data from this
storm did not form part of the training set and
were completely unknown to the network. This
Figure thus also provides a general view of
the accuracy and capabilities of the proposed
method to forecast the complete behavior of
any geomagnetic storm.

On the other hand, various models have
been developed to forecast Dst index (e.g, in
Kugblenu et al., 1999; Lundstedt, 2005; Sharifi
et al., 2006; and references therein). However,
comparative studies on ANN and the traditional
regression approaches for forecasting the Dst
index have also been conducted, and it has
been shown that ANN methodology offers
a promising alternative to the traditional
approach (Lundstedt, 2005; Stepanova et al.,
2005). In this way, a comparison can be made
between the proposed ANN+GA method and
related methods available in the literatura.
For example, Wu & Lundstedt (1996) obtained
a RMSE=16nT in the prediction of Dst(t+1)
using 97 selected storms. Similarly, Stepanova
& Pérez (2000) obtained R from 0.95 to 0.72
for a selected set of geomagnetic storms taken
from 1983. Later on, Stepanova et al. (2005)
predicted Dst(t+1) with R from 0.7 to 0.8. Also,
Temerin & Li (2006) obtained RMSE=6.65nT
and R=0.914 in the forecast of Dst(t+1)

during the years 1995-2002. JankoviCova et al.
(2002) present a R=0.95 for years 1998-1999.
Most recently, Revallo et al. (2014) obtained
R of 0.77 in the forecast of Dst(t+1) using
storms between 1998 to 2005. Meanwhile, our
proposed ANN+GA method shows a general
accuracy of >97% with RMSE=3.4nT and
R=0.98 in the forecast of Dst(t+1). It must
be mentioned that our results were obtained
from different methodologies and databases,
and all these results cannot be compared
directly with one another. However, from the
partial statistical analysis of these different
methods, we conclude that our proposed
method generates reasonably accurate results.
In addition, a comparison was made between
the ANN+GA method, and a neural network
with standard back-propagation (BPNN) with
similar architecture and database. Thus, for
example, this BPNN shows a RMSE of 5.95,
and a R of 0.962 in the forecast of Dst(t+1)
with architecture 10-3-1. Figure 7 shows the
correlation coeficients obtained by ANN+GA
method versus persistence and BPNN methods
in the forecast of Dst ((t+1) to (t+6)). This
Figure proves that the ANN+GA method can
forecast the Dst index more accurately than
persistence and BPNN methods. Thus, all
these results provide a tremendous increase in
the accuracy of the forecast of Dst index, and
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show that both the ANN application and the
appropriate selection of the independent input
vector were crucial. The innovative aspect
introduced in this study pertains to use of a
hybrid neural model plus genetic algorithm
with only two input variables (Dst and AE)
and a limited number of neurons in the hidden
layer for forecasting the Dst index.

Conclusions

Based on the results presented in this study,
the following main conclusions obtain: i) The
proposed ANN+GA method can be properly
trained for forecasting the Dst index quite
accurately (RMSE<10nT and R=0.9); ii) The
geomagnetic indices (Dst and AE) used have
influential effects on the good training and
predicting capabilities of the selected network;
iii) The ANN+GA method can forecast the Dst
index more accurately than persistence and
BPNN methods; iv) The low deviations found
with the proposed method indicate that it can
predict the future values of Dst index more
accurately than others ANN approach proposed
in the literature.
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