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RESUMEN

Las soluciones de la ecuacién de adveccion-dispersion son usadas frecuentemente para describir
el transporte de solutos a través de medios porosos, considerando adsorcién en equilibrio, de
tipo lineal y reversible. Para indicar algunas sugerencias acerca de este tema, se hizo una revision
de las soluciones analiticas disponibles. Hay soluciones para problemas con condiciones de
frontera, de primer y tercer-tipo en la entrada, asi como de primer y segundo-tipo a la salida. Se
analiza el comportamiento de las soluciones equivalentes, para sistemas finitos y semi-infinitos,
observando que las soluciones de los sistemas semi-infinitos se aproximan a las
correspondientes de los sistemas finitos conforme la condicién de frontera de salida en el
infinito se aproxima a la ubicaciéon de medicion del sistema finito. Solamente se presentan las
soluciones analiticas con condiciones de frontera de segundo-tipo a la salida, ya que son iguales
a las correspondientes soluciones analiticas con frontera de primer-tipo a la salida, para ambos
tipos de condiciones de frontera de entrada usadas. Un analisis paramétrico, basado en el
numero de Peclet, muestra que todas las soluciones convergen cuando el nimero de Peclet es
mayor que veinte. Los sistemas investigados deben tener un nimero de Peclet mayor que cinco
para usar con confianza las soluciones de la ecuaciéon de adveccion-dispersion para describir el
transporte de soluto en medios porosos.

PALABRAS CLAVE: Ecuacién de adveccion-difusion, soluciones analiticas, transporte de solutos
reactivos, medios porosos.

ABSTRACT

The solutions of advection-dispersion equation are frequently used to describe solute transport
through porous media when considering lineal and reversible equilibrium adsorption. To notice
some warnings about this item, a review of analytical solutions available was done. There are
solutions for boundary value problems with first and third-type inlet boundary conditions as
well as first and second-type outlet boundary condition. The behavior of equivalent solutions
for finite and semi-infinite systems are analyzed, observing that semi-infinite system solutions
approximates to the corresponding finite ones as the “infinite” outlet boundary condition
approach to the finite measurement location. Because the analytical solutions with a first-type
outlet boundary condition are equal to the corresponding analytical solutions with a second-type
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one, for both inlet boundary condition type used, only the latter is presented. A parametric
analysis based on Peclet number shows that all solutions converge for Peclet number greater
than twenty. Systems under research must have Peclet number greater than five to use
confidently the solutions of advection-dispersion equation to describe reactive solute transport
through porous media.

KEYWORDS: Advection-diffusion equation, analytical solutions, reactive solute transport, porous media.

INTRODUCTION

From the perspective in continuous media mechanics, the advection-dispersion equation (ADE)
is the fundamental element to develop a mathematical model that describes the reactive solute
transport throughout porous media (Allen ez a/., 1988; Cao ¢t al., 2020; Fried, 1975; Parker and
van Genuchten, 1984; Sorbie ¢7 al., 1987; van Genuchten and Parker, 1984). ADE results from
total solute mass balance equation, which is obtained by adding the solute mass balance equation
on both phases, fluid and solid, and assuming that reaction of solute between both phases is
instantaneous, such that local equilibrium is valid, and then it is possible to simplify the
expression corresponding to the retardation factor. The implicit physical phenomena are the
advection due to drag from the fluid velocity field, which transports the solution, and the
hydrodynamic dispersion that accounts for both the mechanical dispersion and the molecular
diffusion (Bear, 1988; Bear and Bachmat, 1990). Boundary value problems (BVPs) can be
obtained from the ADE, by addition of constraints named boundary conditions specified either
on the solute concentration value itself (first-type), on its derivative (second-type) or even on
both (third-type); also the boundary conditions are labeled inlet at the injection point and outlet
at the withdrawal point, respectively. To describe the complex interrelated phenomena, existing
in the reactive solute transport through porous media, non-linear equations are often needed,
then an analytical solution is very difficult or even impossible to obtain. However, by
establishing some simplifications, it is possible to get analytical solutions, as portrayed in this
work.

Studies of solute transport are frequently done by analyzing the solute concentration on effluent
samples collected at an observation point. The breakthrough curve is a plot of the effluent
concentration versus time (often both dimensionless). Matching the breakthrough curve to a
mathematical model available it is possible to obtain the corresponding fitting parameters, such
as longitudinal dispersion and retardation factor.

An important part of mathematical models is the appropriate selection of boundary and initial
conditions. This topic has been subject of many papers since the initial works in geohydrology,
particularly in the case of uniform flow in homogeneous porous media (Gershon and Nir, 1969;
Kreft and Zuber, 1978; van Genutchen and Alves, 1982; van Genuchten and Parker, 1984;
Parker and van Genuchten, 1986).

Previous studies that evaluated the suitability of prescribed boundary conditions to predict
measured solute concentrations in controlled column experiments have addressed the case of
saturated flow in artificial and nonreactive media (James and Rubin, 1972; Parker, 1984,
Novakowski, 1992b). Outlet effects can be accounted for in the numerical solution to estimate
the amount of dispersion that occurs only in the media (James and Rubin, 1972). It has been
shown that when local equilibrium between pore regions is not attained, the analytical solution
with finite boundaries fails to describe measured concentrations (Parker, 1984). However, for
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slow pore water velocities, the ADE should provide a good description to experimental data
(Schwartz ez al., 1999).

The concepts of volume-averaged and flux-averaged concentration were introduced aiming to
reproduce real conditions in solute sampling methods (Brigham, 1974; Kreft and Zuber, 1978).
Depending on the sampling method it can be necessary to distinguish between volume-averaged
and flux-averaged concentrations, which are defined by the mass of solute per elementary
volume of the porous media at a given time, and as the mass of solute crossing a unit area per
element of time; respectively. In both cases the concentration is defined macroscopically
(Novakowsky, 1992a).

BVPs with first-type inlet boundary condition, concentration value prescribed, has been solved
for both semi-infinite and finite systems (Danckwerts, 1953; Ogata and Banks, 1961, Lapidus
and Amundson, 1952; Cleary and Adrian, 1973). BVPs with third-type inlet boundary condition,
flow value prescribed, has been solved for also both semi-infinite and finite systems (Brenner,
1962; Coats and Smith, 1964; Lindstrom ef a/, 1967). Regarding to outlet boundary condition
there are BVPs with first-type, zero concentration value prescribed, only for semi-infinite system
(Ogata and Banks, 1961; Coats and Smith, 1964). BVPs with second-type outlet boundary
condition, zero gradient concentration prescribed, has been solved for semi-infinite system
(Lapidus and Amundson, 1952; Lindstrom e# al., 1967). However, the corresponding solution
to BVP with second-type outlet boundary condition is the same as the solution to BVP with
first-type outlet boundary condition, provided that inlet boundary condition is the same type.
That is, BVP-1,1 has the same solution as BVP-1,2; as well as BVP-3,1 has the same solution as
BVP-3,2 (see Table 1 for notation). For finite system, the only outlet boundary condition used
is second-type (Brenner, 1962; Cleary and Adrian, 1973).

Defining appropriate boundary conditions between porous and non-porous media is not a
simple subject (Parker and van Genutchen, 1986). Several efforts have been performed to
determine the real type of boundary conditions that apply in solute transport experiments
through porous columns (van Genutchen and Parker, 1984; Novakowski, 1992a,b; Schwartz ez
al., 1999). Results indicate that to certain extent third-type inlet boundary condition can better
describe laboratory data than first-type inlet boundary condition can. Some apparently
innocuous first-type boundary condition result in solutions that are mathematically correct but
physically incorrect, since they yield improper mass balance and pulse behavior (Coronado ez a/.,
2004). This might be the reason why models based on some first-type inlet boundary conditions
have failed in matching experimental data.

This paper remarks some warnings about using solutions of ADE to describe reactive solute
transport through porous media. In the next section, the ADE is introduced and a discussion
about various solutions available in both semi-infinite and finite systems is given. The next
section shows some results based on breakthrough curves for every analytical solution available.
A parametric analysis with the Peclet number is done to observe the range of values where a
good approximation between solutions is obtained. Conclusions and suggestions are provided
in the final section.

THEORY

The governing equation to describe reactive solute transport with linear and reversible
equilibrium adsorption through homogeneous porous media, during saturated flow, is the called
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ADE:
2
R@c_Da c oc
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where ¢ is the solute concentration on fluid phase, D is the longitudinal dispersion coefficient,

©)

v is the average pore velocity, R is the retardation factor describing solute sorption, f is time

. L . oo .
and x is longitudinal distance. It must be noted that, R = 1+£a—, where it is assumed that
c
the solute concentration on solid phase, o, depends only on the solute concentration on fluid

phase; p is the bulk density, and @ is the porosity of porous media.
Solutions

In order to obtain analytical solutions of ADE (1), some simplifying assumptions are needed to
decrease the complexity of the problem. Neglecting molecular diffusion, the solute transport is
basically hydrodynamic. The injection of solute into the inlet boundary is such that solute
velocities are proportional to velocities of the particular flow paths causing concentration to be
weighted by the combined flow rates of all flow paths. On these conditions it is agreed that the
correct inlet boundary condition for flux injections of solution with a prescribed concentration
¢, is (Danckwerts, 1953; van Genuchten and Parker, 1984; Parker and van Genuchten, 1984;

Barry and Sposito, 1988; Novakowski, 1992a,b; Schwartz ez al., 1999):

lim [vc -D %} =vc, 2)

x—0* ox

which is a third-type specified flux boundary condition that is required by mass conservation
across the inlet boundary condition.

However a first-type specified concentration boundary condition has also been used frequently:
¢(0,1)=¢, 3)

This condition implies a usually not possible in practice situation, the concentration itself needs
to be specified at the porous media surface. Moreover the solutions obtained with this condition
not satisfied mass conservation.

For a semi-infinite system, the outlet boundary condition specify the behavior of the
concentration as infinity is closer. It is plausible that change in concentration with respect to
distance are negligible as distance goes to infinity, thus the outlet boundary condition is (van
Genutchen and Parker, 1984; Schwartz ef al., 1999):

lim oc (x, t)
x—>00 Oox

=0 )

Furthermore first-type specified zero concentration outlet boundary condition can be as (Ogata
and Banks, 1961):

c(oo, t) =0 ©)
To use a first-type specified zero concentration outlet boundary condition might be easier than

a second-type zero gradient outlet boundary condition, both analytically and numerically.
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For a finite system, one requirement that always must be satisfied is continuity of the solute
velocity across the outlet boundary condition (van Genutchen and Parker, 1984):

lim {vc -D @} =vc, (6)
ox

x—>L

where L indicates evaluation just inside the limit of the porous media been observed, and
c,=¢, (l‘ ) is the concentration evaluated in the outlet, that is, the effluent concentration. As

the inlet boundary condition (2) this outlet boundary condition (6) assumes that diffusion-
dispersion phenomena outside the system are negligible.

Assuming that the solute concentration should be continuous across the outlet boundary:

c(L.t)=c,(t) ™
Therefore, the outlet boundary condition (6) results in:
dc(L,t) ~
ox

which is a second-type zero-gradient outlet boundary condition, almost always used (Brenner,
1962; Cleary and Adrian; 1973).

8)

To complete the different BVPs to be analyzed here, the initial condition that describe a porous
media system free of solute is used:

c (x, O) =0 )
Table 1 summarizes the various BVPs, which could be defined with the above boundary and
initial conditions.

For a semi-infinite system, the first BVP listed on Table 1, called BVP-1,1, have the inlet
boundary condition (3), the outlet boundary condition (5) and the initial condition (9); which
analytical solution for ADE (1) is adapted from Ogata and Banks (1961):

c(x,t) 1 Rx 1 (vxj (Rx+vtj
—— e rfc erfc (10)
¢ [Z\IDR j 2N DRt
The second BVP on Table 1, called BVP-1,2, has the same inlet boundary condition (3) and
initial condition (9) as the first one, but the outlet boundary condition is now (4). Its analytical

solution, adapted from Lapidus and Amundson (1952), is the same as the solution for ADE (1)
, adapted from Ogata and Banks (1961). For this reason, only one will be presented.

The BVP-3,1 is defined using the inlet boundary condition (2), the outlet boundary condition
(5) and the initial condition (9). Its analytical solution is taken from Coats and Smith (1964):

c(x0) 1 (Rx sz /vt L(RX_W)ZJ
—_— erfc exp| ————
¢, 2</DR 4DRt
—l 1+K+v—t ex (vx)erf Rt vi

2 D DR P 2+ DRt
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The BVP-3,2 is like the previous one, but using the outlet boundary condition (4). The analytical
solution is given by Lindstrom e a/. (1967) and is the same as the analytical solution adapted
from Coats and Smith (1964). For this reason, only one will be presented.

Expressions for the effluent concentration c, (l‘ ) are obtained by evaluation of each solution

inx=1L.
Table 1. Summary of BVPs analyzed.
Notation Type of System  Type of Inlet Boundary Condition Type of Outlet Boundary Reference to the
Condition Analytical Solution

BVP-1,1 Semi-Infinite First-type First-type Ogata and Banks, 1961.
Equation (3) Equation (5)

BVP-1,2 Semi-Infinite First-type Second-type Lapidus and Amundson,
Equation (3) Equation (4) 1952.

BVP-3,1 Semi-Infinite Third-type First-type Coats and Smith, 1964.
Equation (2) Equation (5)

BVP-3,2 Semi-Infinite Third-type Second-type Lindstrom ez al., 1967.
Equation (2) Equation (4)

FBVP-1,2 Finite First-type Second-type Cleary and Adrian, 1973.
Equation (3) Equation (8)

FBVP-3,2 Finite Third-type Second-type Brenner, 1962.
Equation (2) Equation (8)

For a finite system, similar problems can be defined. Thus the problem with the inlet boundary
condition (2), the outlet boundary condition (8), and the initial condition (9); is the FBVP-3,2
which have the analytical solution adapted from Brenner (1962):

VLA, (U,kxj vL . (ZEkx]
A, cos +——sin 5 )
2D L 4D L v vt 4A4 Dt

c (x, t) e
—=1- exXp| — ———— (12)
Cy kzzll 2 vl 2 vl ) vL 2 2D 4DR LZR
A+ — | +——I| A&+ —=
4D 4D 4
where 4, are the positive roots of:
A, vL
tan (24, ) = — 2D (13)

> ( vL jz
A= —
4D
The FBVP-1,2 is like the previous one, but using the inlet boundary condition (3); and have the
analytical solution adapted from Cleary and Adrian (1973):

.[amxj w o Vit oDt
2a, sin 7 p

c(x,t) 2D 4DR

. 2D 4DR I*R

“*\2p) "2p

(14
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where @, are the positive roots of:

vL

-~ (15)

a, cot(a, )=

Expressions for the effluent concentration ¢, (t) are obtained by evaluation of each
solution in x=1L.

In order to compare the solutions for the semi-infinite system with the solutions for the finite
system, the position of the outlet boundary condition is denoted by x,,. and the observation

or measuring position by L.

RESULTS AND DISCUSSION

Dimensionless variables are used to solute concentration, ¢, = c/co, and time, f, = tv/L;

as well as some useful parameters like the Peclet number, Pe=vL/ D, and dispersivity,
a=D/v.

Figure 1 shows the breakthrough curves corresponding to the analytical solutions for the
different initial and boundary value problems described above. The Peclet number was
chosen equal to 1 to increase the differences among the solutions because, as can be seen
in Figure 2, for a Peclet number equal to 20, some breakthrough curves become practically
indistinguishable. It can be observed that analytical solutions approach each other as
Peclet number grows, such that differences between them are practically negligible for a
Peclet number greater than twenty. Note that only four curves are shown because two
solutions are identical to another two, specifically BVP-1,1 has the same solution as BVP-
1,2; as well as BVP-3,1 has the same solution as BVP-3,2.

1 : : ; ; ._

0.9F i

0.8F .

0.7F i

0.6F .
=

= 05 .
o

0.4} 4

0.3- —%-BVP-3,2
0.2} —-BVP-1,2 |-
—o— FBVP-3,2

0.1 —=—FBVP-1,2 | |

Ok; . ; | : =

0 0.5 1 1.5 2 2.5

tp [1]

Figure 1. Breakthrough curves for semi-infinite systems (BVP) and finite systems (FBVP). The Peclet number
equals 1.
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Figure 2. Breakthrough curves for semi-infinite systems (BVP) and finite systems (FBVP). The Peclet number equals 20.

The Peclet number is used to do a parametric analysis for each problem in Table 1. Figure 3 shows the
breakthrough curves for the FBVP-3,2 depending on the Peclet number. For a finite system, the position

of the outlet boundary condition is the same as the measurement position, X, = L.

1
0.9F
0.8+
0.7
0.6r
=
= osf
L) —¥%- Pe=1
0.4 —o— Pe=2
0.3 —— Pe=5
—=— Pe=10
0.2 ——Pe=20 | A
—8- Pe=50
0.1 —&— Pe=100 | ]
0 1 |

2
tp [1]

Figure 3. Breakthrough cutves for the FBVP-3,2 depending on the Peclet number.

Figure 4 shows the breakthrough curves for the BVP-3,2 depending on the Peclet number. In
this case, the position of the outlet boundary condition goes to infinity.

1 T
0.9
0.8+
0.7t
0.6
pary
= 05F
O —¥— Pe=1
0.4 —o-Pe=2 |
0.3 —6— Pe=5 J
' —=— Pe=10
0.2 ——Pe=20 |
—8- Pe=50
0.1 —&— Pe=100 | |
0 1 1 4

2
tp [1]

Figure 4. Breakthrough cutves for the BVP-3,2 depending on the Peclet number.

236



J. Ramirez-Sabag and D. A. Lipez-Falcon, How to use solutions of advection-dispersion equation to describe reactive solute transport through porous media

In Figure 5, observe how, as the position of the outlet boundary condition goes from the
measurement position to infinity, the breakthrough curves go from the analytical solution for
the finite system to the analytical solution for the semi-infinite system.

T T T T

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15

—A— FBVP-3,2

—%— Xopc=1.5L

—— Xopc=2 L

—o— Xopc=2.5 L

—=— Xopc=3 L
—— Xopc=3.5L

Oooé —&— BVP-3,2

0 1 1 1 1

0 0.5 1 1.5 2
tp [1]

cp (1]

e R S R A

IS TN TN NN TN Y Y Y Y Y Y T S S |

Figure 5. Breakthrough cutves for the FBVP-3,2 and the BVP-3,2; and transition between them as the position of
the outlet boundary condition goes from the measurement position to infinity. The Peclet number equals 1.

Figure 6 shows the breakthrough curves for the FBVP-1,2 depending on the Peclet number.
For a finite system, the position of the outlet boundary condition is the same as the
measurement position, x,, . =L.

1F
0.9}
0.8+
0.7F
0.6
=)
= ost
9 —¥- Pe=1
0.4 —6-Pe=2 |
0.3 —— Pe=5 1
’ —s— Pe=10
0.2 —— Pe=20 |-
—8- Pe=50
0.1 —&— Pe=100 | |
0 L L

2
tp [1]

Figure 6. Breakthrough curves for the FBVP-1,2 as function of the Peclet number.

Figure 7 shows the breakthrough curves for the same problem as above, but for a semi-infinite
system, it is a BVP-1,2. In this case, the position of the outlet boundary condition goes to
infinity,
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Figure 7. Breakthrough cutves for the BVP-1,2 as function of the Peclet number.

In Figure 8, observe how, as the position of the outlet boundary condition goes from the
measurement position to infinity, the breakthrough curves go from the analytical solution for
the finite system to the analytical solution for the semi-infinite system.

1F T T
0.9r =|
0.8 4
0.7f i
0.6 1
-
B 0.5F —A— FBVP-1,2 1
v 0.4l —¥- Xopc=1.5L | |
’ —6— Xppc=2 L
0.3r —— Xopc=2.5L | 1
0.2k —=— Xopc=3 L i
—— Xopc=3.5L
0.1f —£— BVP-1,2 b
0 1 1 1 L E
0 0.5 1 1.5 2

tp [1]

Figure 8. Breakthrough curves for the FBVP-1,2 and for the BVP-1,2; and transition between them as the position
of the outlet boundary condition goes from the measurement position to infinity. The Peclet number equals 1.

It is very important to estimate the Peclet number, for each experimental or field test, to have
confidence about using analytical solutions of ADE to describe solute transport through porous
media. Be aware of which solution may be more appropriate to describe data obtained from a
real breakthrough curve because, as is shown here, there may be significant differences between
them; and then get misleading parameters from the matching procedure.

CONCLUSIONS

Analytical solutions for different BVPs defined by de ADE with various combinations of inlet
and outlet boundary conditions, and the initial condition corresponding to a free of solute, both
finite and semi-infinite systems, had been analyzed systematically. All the available analytical
solutions are plotted together to observe their behavior for a Peclet number equal to one (Fig.
1) and for a Peclet number equal to twenty (Fig. 2). From this comparison, it is concluded that
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much thoughtfulness must be taken to choose the most suitable analytical solution to describe
the transport of reactive solute through porous media when the system to be studied has a Peclet
number smaller than five. However, when the system under research has a Peclet number
greater than twenty, the differences between all solutions available are practically negligible and
therefore any of them could be useful. It is important to remark that, even though, the analytical
solution for the BVP-1,1 is the same as the analytical solution for the BVP-1,2, as well as, the
analytical solution for the BVP-3,1 is the same as the analytical solution for the BVP-3,2 it is
generally easier to compute, to use, and to implement, the former than the latter. That is because
an outlet boundary condition type-1 prescribes the variable value directly instead of prescribing
its derivative as an outlet boundary condition type-2 does. Even more, when a numerically
solution is to be implemented, some advantage could be obtained if an outlet boundary
condition type-1 is used, instead of a type-2.

It is possible to observe the behavior of the solutions going from the solution for the finite
system to that for the semi-infinite system, moving the location of the outlet boundary condition
from the observation or measurement location, whete X, = L; to infinity, where it is enough
that x,,. >3L. Fig. 5 shows the transit from the FBVP-3,2 analytical solution to the BVP-3,2

analytical solution, while Fig. 8 shows the transit from the FBVP-1,2 analytical solution to the
BVP-1,2 analytical solution. From these observations it can be concluded that location of the
outlet boundary condition must be at least three times away from the observation or

measurement location, ze. X, > 3L, in order to obtain a good approximation (Figs. 3-8).

Based on the parametric analysis done, it is advisable that system studied has a Peclet number
at least of five, confirming suggestions by other authors (e.g. van Genutchen and Parker, 1984;
Parlange et al., 1985; Coronado and Ramirez-Sabag, 2005), in order to confidently use the
solutions mentioned above. Also could be observed in Fig. 2 that for Peclet number greater
than twenty, there are not significant difference between the revised solutions, therefore there
are not preference to use anyone of them.
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