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RESUMEN

Se desarrollan modelos de red neuronal artificial para predecir la duracién del movimiento fuerte del
terreno de eventos de subduccién en suelos firme y blando. Para entrenar la red neuronal artificial se
emplea una base de datos con un total de 3153 registros sismicos con dos componentes horizontales
para eventos de interplaca e intraslab. El método de componente principal es usado para realizar una
reduccién dimensional de los pardmetros de entrada para desarrollar los modelos de red neuronal
artificial. Los valores predichos de la duracién del movimiento fuerte del terreno por la red neuronal
entrenada son comparados con aquellos estimados con expresiones empiricas. En general, la duracién
del movimiento fuerte del terreno predicha con la red neuronal artificial sigue la misma tendencia
que la calculada con las ecuaciones empiricas, aunque en algunos casos, ésta presenta cambios repen-
tinos en su comportamiento. Por esta razdn, es recomendado llevar a cabo varias verificaciones de los
modelos entrenados de la red neuronal artificial antes de usarlos para mds aplicaciones ingenieriles,
por ejemplo, la simulacién de registros sintéticos o la evaluacién de indices sismicos de dafo.

PaLABRAS CLAVE: Red neuronal artificial, duracién del movimiento fuerte del terreno, eventos de
subduccidn, expresiones empiricas y México.
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ABSTRACT

Artificial neural network models are developed to predict strong ground motion duration of sub-
duction events for soft and firm soils. To train the artificial neural network a database with a total
of 3153 seismic records with two horizontal components for interplate and inslab earthquakes is
employed. The principal component method is used to carry out a dimensionality reduction of the
input parameters to develop the artificial neural network models. The predicted values of the strong
ground motion duration trained by the artificial neural network models are compared with those
estimated with empirical expressions. In general, the strong ground motion duration predicted with
the artificial neural networks follows the same tendency of that calculated with the empirical equa-
tions, although in some cases, the strong ground motion duration predicted by using the artificial
neural network models presents sudden changes in its behavior. For this reason, it is recommended
to carry out several verifications of the trained artificial neural network models before using them for
further engineering applications, for example the simulation of synthetic records or the evaluation
of seismic damage indices.

Key worbs: Artificial neural network, strong ground motion duration, subduction events, empirical
expressions and Mexico.

INTRODUCTION

An artificial neural network (ANN) is an effective tool that has been used to solve a great variety of
engineering problems due to its flexibility to cope highly nonlinear problems. It is worth mentioning
that ANN models as any other prediction technique have advantages and disadvantages (Pande and
Shin, 2004). Some advantages of using ANN models include the storage information of the ANN
with multidimensional inputs, the prediction of multiple outputs with a single ANN model, the
ability to work with incomplete knowledge and machine learning. Perhaps two of the major draw-
backs of ANN models are the loss of transparency and the unexpected behavior of the ANN model

that may produce erroneous results.

The employ of ANNS in seismic engineering is vast, for example, Garcia ez a/. (2007), used ANNs to
estimate peak ground accelerations (PGA) for Mexican subduction earthquakes. Hong ez a/. (2012),
employed 39 California earthquakes to predict pseudospectral accelerations (SA) and PGA. More
recently, Pozos-Estrada ez al. (2014) developed ANNs models to predict PGA and SA for Mexi-
can inslab and interplate earthquakes. They showed that the predicted PGA and SA values by the
trained ANN models, in general, follow a similar trend to those predicted by ground motion predic-
tion equations (GMPEs). ANNs have also been used to estimate strong ground motion duration
(SGMD) of earthquakes. Alcdntara ez al. (2014), developed ANNs to predict SGMD by using
information compiled from the Mexican states of Puebla and Oaxaca. The prediction of SGMD has
also been applied to other tectonic regions, for example Arjun and Kumar (2011), used ANN models
to estimate the SGMD by using Japanese earthquake records, and more recently, Yaghmaei-Sabegh
(2018), used a general regression neural network to estimate earthquake ground-motion duration
recorded at the Iranian plateau.

The study of SGMD to estimate the structural damage has also been carried out by several research-
ers (Housner et al. 1952; Salmon ez al., 1992; Bommer and Martinez, 1999; Strasser and Bommer
2009; and Lindt and Goh, 2004). The general agreement among these studies is that the structural
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damage not only depend on the maximum intensity or frequency content of the ground motion, but
also on the SGMD. For the estimation of the seismic-induced structural response, the amplitude and
frequency content of the ground motions are of paramount importance; however, if the cumulative
structural damage or structural degradation of systems with hysteretic behavior is of interest, SGMD
should be integrated as design parameter (Reinoso and Ordaz, 2001). More recently, Bhargavi and
Raghukanth (2019), carried out a statistical analysis of several ground motion parameters, including
SGMD, to rate damage potential of ground motion records.

The main objective of this study is to develop ANN models to estimate SGMD of interplate and
inslab ground motion records of Mexican earthquakes from a broad network of stations. Ground
motion records from 1985 up to 2017 are employed. Multilayer perceptron ANN models with back-
propagation training were considered. The input parameters considered in the development of the
ANN models include the moment magnitude (Mw), closest distance to the fault (R_), focal depth
(H), the vibration period of the soil (T), the seismic moment (M), as well as the strike (¢ ), dip
(6) and rake (A ) angles. The principal component method is used to carry out a dimensionality
reduction of the input parameters to evaluate the ability of ANN models with different number of
input parameters to predict the SGMD. The predicted SGMD values by the trained ANN models

are compared with those estimated with empirical equations for comparison purposes.

StRoNG GRrROUND MoTION DATABASE AND SGMD CALCULATION

The strong ground motion database employed integrates information from different networks. A
total of 3153 strong ground motion records, each one with two horizontal components from 71
earthquakes were used to develop the ANN models. Table 1 and 2 summarize the interplate and in-
slab seismic events considered, respectively. The database for interplate includes 50 events with Mw
from 5.0 to 8.1, while de database for intermediate-depth normal-faulting inslab events considers 21
with Mw within 5.1 and 7.1. It is noted that the seismic event occurred on September 7, 2017 was
not included in the inslab database since it did not cause important damage in Mexico City (Pozos-
Estrada ez al., 2019) and because the peak ground acceleration registered in Mexico City at lake-bed
was below 4 Gal, which was the threshold recommended by Reinoso and Ordaz (2001) as selection
criterion of records to calculate SGMD. However, the inslab event occurred on September 19, 2017,
which was, together with the interplate event occurred on September 19, 1985, one of the deadliest
for Mexico City (Singh ez al., 2018, Franke ez al., 2019) was included. A map showing the epicenters
and recording stations considered is presented in Figure 1. Also in Figure 1, the geotechnical zones
(i.e., firm, transition and lakebed) according to the Mexico City design code (2017) are presented.
It is worth mentioning that the Mexico City design code (2017) includes rock in the firm soil zone.
Figure 2 presents the distribution of Mw, H and M| with respect to R_. for the seismic events used.

For the analyses, only two type of soils were considered (soft and firm soil). The transition zone was
included in the classification of soft soil on the basis that the dominant period of the soil at such zone
is greater than 0.5 s, which is the limiting value used in the Mexican design code to separate firm
soil from the rest, and that no evidence that duration is affected by amplification effects on strong
ground motion (Singh and Ordaz, 1993). It is worth mentioning that the soft soil of Mexico City
consists of lacustrine deposits with saturated clays and sand lenses, the transition soil is composed by
alluvial deposits and the firm soil consists of basaltic and andesitic lava, ashes and epiclastic deposits
(Marsal and Mazari, 1959; Flores-Estrella ez 4., 2007). The firm soil of Mexico City can be classified
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as class B according to NEHRP Recommended provisions for seismic regulations for new buildings
and other structures (2004).

Table 1. Interplate events used in training the ANN models

Event No. of Date (dd/ M Lat. Long H Institution™
No. Rec. mm/yy) w °N % (km)
1 9 19/09/85 8.1 18.081 102.94 15 CFE-GIEC, IT**, IG**
2 22 21/09/85 7.6 18.021 101.48 15 CFE-GIEC, IT**, IG**
3 8 29/10/85 5.4 17.583 102.64  20.3 CFE-GIEC, IT**, IG**
4 19 30/04/86 7.0 18.024 103.06 20 CFE-GIEC, IT**, IG**
5 8 05/05/86 5.5 17.765 102.80  19.9 CEE, IT*, IG**
6 60 08/02/88 5.8 17.494 101.16 19.2 CFE, CIRES, FICA, IT**, IG**
7 114 25/04/89 6.9 16.603  99.4 19 CEFE, CIRES, FICA, IT**, IG**
8 112 31/05/90 5.9 17.106 100.89 16 CENAPRED, CIRES, FICA, GIEC, IT**, IG**
9 50 01/04/91 5.4 16.044  98.39 25.6 CENAPRED, CIRES, FICA, II**, IG**
10 22 31/03/92 5.1 17.233 101.30 11 CENAPRED, CFE, FICA, II**, IG**
11 74 15/05/93 5.5 16.47 98.72 15 CIRES, IT**, IG**
12 200 24/10/93 6.6 16.54 98.98 5 CENAPRED, RIIS, GIEC, CIRES, IT**, IG**
13 6 13/11/93 5.4 15.63 99.02 15 CIRES, II**, IG**
14 240 10/12/94 6.3 18.02 101.56 20 CENAPRED, RIIS, GIEC, CIRES, IT**, IG**
15 149 14/09/95 7.3 16.31 98.88 22 CENAPRED, CIRES, RIIS, II**, IG**
16 138 09/10/95 7.3 18.74 104.67 5 CENAPRED, CIRES, GIEC, RIIS, IT*, IG**
17 55 12/10/95 5.5 19.04 103.70 11 CENAPRED, CIRES, IG**
18 62 25/02/96 6.9 15.83 98.25 5 CENAPRED, CIRES, IT**, IG**
19 186 15/07/96 6.5 17.45 101.16 20 CENAPRED, CIRES, GIEC, RIIS, II**, IG**
20 196 11/01/97 6.9 17.9 103.04 16 CPRED, CIRES, GIEC, RIIS, IT**, IG**
21 18 21/01/97 5.4 16.44 98.15 18 CENAPRED, CIRES, IT**, IG**
22 32 19/07/97 6.3 15.86 98.35 5 CENAPRED, CIRES, IT**, IG**
23 18 16/12/97 5.9 15.7 99.04 16 CIRES, IT*, IG**
24 22 22/12/197 5.0 17.14 101.24 5 CENAPRED, CIRES, IT**, IG**
25 82 03/02/98 6.2 15.69 96.37 33 CENAPRED, CIRES, IT**, IG**
26 12 05/07/98 5.0 16.83 100.12 5 CENAPRED, II**, IG**
27 246 30/09/99 7.5 15.95 97.03 16 CENAPRED, CIRES, IT**, IG**, RIIS
28 149 09/08/00 6.1 17.99 102.66 16 CIRES, IT**, IG**
29 48 08/10/01 5.4 16.94 100.14 10 I, 1IG**
30 68 18/04/02 5.4 16.77 101.12 22 CIRES, II*, IG**
31 32 22/01/03 7.5 18.6 104.22 9 I, 1G**
32 67 01/01/04 5.6 17.34 101.42 6 CIRES, II**, IG**
33* 186 13/04/07 6.3 17.09 100.44 41 CIRES, IT**, IG**
34 46 06/11/07 5.6 17.08 100.14 9 I, 1G**
35 74 27104/09 5.7 169 99.58 7 CIRES, IL, IG
36 48 09/02/10 5.8 15.9 96.86 37 I1, IG
37 124 30/06/10 6.0 16.22 98.03 8 CIRES, 11, IG
38 176 20/03/12 7.4 16.251 98.521 16 CIRES, II, UAP, IG
39 162 02/04/12 6.0 16.27 98.47 10 CIRES, II, UAP, IG
40 17 11/04/12 6.4 17.9 103.06 16 CIRES, IL, IG
41 48 22/09/12 5.4 16.23 98.30 10 CIRES, II
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42 36 22/04/13 5.8 17.87 102.19 10 II
43 60 21/08/13 6.0 16.79 99.56 16 II
44 193 18/04/14 7.2 17.18 101.19 10 CIRES, II
45 190 08/05/14 6.4 17.11 100.87 17 CIRES, IT
46 50 10/05/14 6.1 17.16 100.95 12 CIRES, II
47 46 11/10/14 5.6 1597 95.61 10 II
48 58 23/11/15 5.8 16.86 98.94 10 II
49 78 08/05/16 6.0 16.25 97.98 35 II
50 38 27/06/16 5.7 16.2 97.93 20 I1

Notes: *II: Institute of Engineering from UNAM (http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Consultas/
Filtro.aspx); IG: Institute of Geophysics from UNAM (http://www2.ssn.unam.mx:8080/catalogo/); CENAPRED:
National Center for Disaster Prevention (http://geografica.cenapred.unam.mx:8080/reporteSismosGobMX/
BuscarAcelerograma); CIRES: Instrumentation and Seismic Record Center (http://www.cires.org.mx/racm_historico_
es.php); RIIS: Interuniversity Network of Seismic Instrumentation; FICA: ICA Foundation; GIEC: Experimental
Engineering and Control Management; UAP: Autonomous University of Puebla. ** Some of the records used were
compiled by Garcfa (2005) and Garcia et al. (2006). *Interplate event according to Franco ez 4l., (2007).

Table 2. Inslab events used in training the ANN models.

Event No. l\g)e':f l?:::; /;‘::)i/ M, I;aNt L:)\;]g' (kljn) Institution*
¥ 10 05/08/93 5.1 17.08 98.53 32 CENAPRED, IT**, IG**
2F 16 23/02/94 5.4 17.82 97.30 5 I**, IG**, CENAPRED
BE 166 23/05/94 5.6 18.03 100.57 23 CENAPRED, CIRES, RIIS, IT**, IG**
4¥ 130 10/12/94 6.4 18.02 101.56 20 CIRES, II**, IG**
5% 124 11/01/97 6.9 17.9 103.00 16 CIRES, IT**, IG**
6* 4 03/04/97 5.1 17.98 98.33 30 I, IG**
144 22/05/97 6.0 18.41 101.81 59 CENAPRED, CIRES, RIIS, IT**, IG**
8 38 20/04/98 5.1 18.37 101.21 66 CENAPRED, CIRES, RIIS, IT**, IG**
9 254 15/06/99 6.5 18.18 97.51 69 CENAPRED, CIRES, RIIS, IT**, IG**
10 172 21/06/99 5.8 17.99 101.72 54 CENAPRED, CIRES, IT**, IG**
11 202 13/04/07 6.3 17.37 100.14 42 CIRES, IT**, IG**
12 88 12/02/08 6.5 16.35 94.51 87 CIRES, II**, IG**
13 52 22/05/09 5.7 18.13 98.44 45 I**, IG**
14 40 21/07/00 5.4 18.09 98.97 48 I**, 1IG**
15 80 07/04/11 6.7 17.2 94.34 167  CIRES, I
16 210 11/12/11 6.5 17.89 99.84 58 CIRES, II, UAP
18 156 15/11/12 6.1 18.17 100.52 40 CIRES, II, UAP
19 50 29/07/14 6.4 17.7 95.63 117  CIRES, II
20 148 19/09/17 7.1 18.4 98.72 57 CIRES, II, UAP
21 68 23/09/17 6.1 16.48 94.90 75 CIRES

Notes: *II: Institute of Engineering from UNAM (http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Consultas/
Filtro.aspx); IG: Institute of Geophysics from UNAM (http://www2.ssn.unam.mx:8080/catalogo/); CENAPRED:
National Center for Disaster Prevention (http://geografica.cenapred.unam.mx:8080/reporteSismosGobMX/
BuscarAcelerograma); CIRES: Instrumentation and Seismic Record Center (http://www.cires.org.mx/racm_historico_
es.php ); RIIS: Interuniversity Network of Seismic Instrumentation; FICA: ICA Foundation; GIEC: Experimental
Engineering and Control Management; UAP: Autonomous University of Puebla. **Some of the records used were
compiled by Garcia (2005) and Garcia et al., (20006). *Cortical events Lowry ez al., (2001).
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Figure 1. Location of events and recording stations employed.

The total number of records from interplate and inslab events were organized into three groups. The
first group corresponds to seismic records registered at soft soil of Mexico City (SS-MC), the second
group corresponds to seismic records registered at firm soil of Mexico City (FS-MC), and the third
group includes the rest of records registered outside Mexico City at firm soil (i.e., rock) (FS-M).
For the development of the ANN models and the empirical equations, a database with all horizon-
tal components of motion without combining them was considered. Figure 3 presents a plot with
the percentage of seismic records from interplate and inslab earthquakes used in each group as well
as the type of soil. It is observed from Figure 3 that the distribution of records per group is similar
between the interplate and inslab earthquakes, and that the records for sites with soft soil in Mexico
City have the greatest percentage.

DATA PROCESSING

A program was developed in MATLAB (2019), to build a database of seismic records for each type of
earthquake. The information considered for each record included the name of the file, station name,
station coordinates, magnitude of the event, epicentral coordinates, date and hour of the seismic
event, orientation of each sensor channel, peak ground acceleration and maximum seudoaccelera-
tion for each component for the soil period, strong ground motion duration and the acceleration
values for each component. Bad quality records were discarded. A baseline correction of all the time
histories of the records was carried out. Further, for events registered at firm soil (including rock)
with Mw >6.5, a high-pass filter with a cut-off frequency of 0.05 Hz was used, for the rest events, a
high-pass corner frequency 0.1 Hz was employed. This processing criterion was guided by the work
of Garcia er al. (2005) and Garcia (2006). For events registered at soft soil, a band-pass filter with
corner frequencies from 0.1 to 10 Hz was employed (Jaimes ez al., 2015).

SGMD CALCULATED FROM THE PROCESSED DATA

The study of the SGMD has been carried out by several researchers in the past (Trifunac and Brady
et al., 1975; Trifunac and Westermo ez al., 1982). In this study the SGMD was calculated based on
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Figure 3. Distribution of percentage of seismic records at soft and firm soils.

the accumulation of energy along time of the strong ground motion records. Arias intensity (Arias,
1970) has been widely used to relate the SGMD with the acceleration time history energy, although
it has also been used to study the damage patterns and principal direction of seismic excitations
(Arias, 1996; Hong and Goda, 2007; and Hong ez al., 2009). In this study the SGMD is assessed
based on the Arias intensity, defined as

I, =—fa2 (¢)dt, 1)

where a(z) is the acceleration time history, #, is the total duration of the strong ground motion and g
is the acceleration due to gravity. Several procedures have been reported in the literature to determine
the SGMD (Bommer and Martinez, 1999), based on lower and upper bounds of duration related
to /,. According to Reinoso and Ordaz (2001), SGMD for Mexican earthquakes can be obtained
based on the duration of the strong ground motion between 2.5 and 97.5% of 7, which is useful for
engineering problems. These limits are adopted in the present study, since the records employed in
the databases also include most of those used in Reinoso and Ordaz (2001).

ARTIFICIAL NEURAL NETWORK MODELING AND TRAINING

The ANN architecture with multiple hidden layers and neurons used in this study is shown in Figure
4, where three main layers can be identified: input, hidden and output layer. The flow of informa-
tion starts from the input layer, this information is weighted to optimize the mapping between the
input and the hidden layer(s), and finally transferred it into output value(s). The information trans-
ferred from the hidden layer(s) to the output layer is affected by biases that modified the output of
the neuron. If an ANN model with a single output neuron and two hidden layers is considered, the
mathematical expressions that relate the output neuron in the output layer with the neurons in input
and hidden layers are given by,
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wherey,  is the value of the output neuron, O, is the outcome obtained when the information

given in the input layer has passed through the first hidden layer, O, , . is the outcome obtained
when the information from the first hidden layer has passed through the second hidden layer, m
is the total number of neurons in the hidden layers, 7 is the total number of neurons in the input
layer, £,(), f,() and () are activation functions between the input and the first hidden layer, the
first and the second hidden layer and between the second hidden layer and the output layer, respec-
tively; [w ]l.]., [w ]j and [w,], , are the weights that map the information between the input and the
first hidden layer, between the first and second hidden layer and between the second hidden layer
and output layer, respectively; (¢ 1)]_, (¢,),and (¢ ), are the biases associated with the hidden and

output layers and x, is the i~th neuron in the input layer.

The optimization of the weights and biases of the ANN model is carried out during the training
process. Although a variety of algorithms is available in the literature (Swingler, 1996; Principe and
Euliano, 1999; and Haykin, 1999), the back-propagation algorithm (Rumelhart ez /., 1986) is one
of the most popular. The back-propagation algorithm employs a predefined error function, which
is minimized to evaluate the weights and biases. The back-propagation algorithm is adopted in the
present study to train the ANN models. Aside from the back-propagation algorithm, in the last
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decade the constant improvement of Machine Learning techniques has allowed the development of
deep learning that employs the deep neural network. The use of deep neural networks has gained
much attention due to their ability to solve complex problems. The use of deep neural networks is
outside of the scope of the present study.

EsTIMATION OF STRONG GROUND MOoTION DURATION USING ANN

APPLICATION OF PRINCIPAL COMPONENT ANALYSIS TO IDENTIFY THE INPUTS OF THE ANNS MODELS

Dimensionality reduction methods have been widely used to reduce the number of input parameters
to develop ANN models (Yuce er al., 2014). One of the classical dimensionality reduction methods
is the principal component analysis (PCA), which transforms a set of observations of correlated
variables into a set of principal components, which are linearly uncorrelated. Based on the identified
principal components, the amount of total variance contributed by each component is assed to select
a reduced number of principal components which cumulative variance is within predefined accept-
able values. Once a reduced number of principal components is selected, the relative importance of
each input parameter to a particular component is evaluated by using correlation coefficients that
relate the reduced set of principal components and input parameters. The reduced number of input
parameters is selected based on predefined thresholds of correlation coefficients.

To illustrate the use of PCA in the dimensionality reduction of the input neurons for the develop-
ment of the ANN models, we use the data for inslab events for firm soil for places outside Mexico. To
proceed with the calculation of the principal components, the correlation coefficient matrix between
the input variables is given in Table 3.

The correlation coefficient matrix is then decomposed by using the singular value decomposition
to calculate the amount of total variance contributed by each principal component. Table 4 sum-
marizes the percentage of variance associated with each principal component and its corresponding
eigenvalue.

It is noted that there are different criteria to select the reduced number of principal components. Ac-
cording to Lovric (2011), the reduced number of principal components can be selected when they
account for a cumulative variance within 70 to 90%. A simpler criterion, which is adopted in this
study, is to select those principal components whose eigenvalues are greater than one. Based on the
afore-mentioned criterion, from Table 4, the reduced number of principal components is equal to 4.

Table 3. Correlation coefficient matrix for input variables for inslab events for firm soil for places outside Mexico.

R, M, T H M, 9 5 »
R. 1 0.220 0.347 0.242 0.124 0.215 -0.028  -0.101
M, 0.220 1 0.087 0.397 0.659 0.123 0.384 -0.002
T 0.347 0.087 1 0.119 0.033 0.099 -0.056  -0.015
H 0.242 0.397 0.119 1 0.046 0.457 0.200 -0.284
M, 0.124 0.659 0.033 0.046 1 0.160 0.124 -0.210
¢ 0.215 0.123 0.099 0.457 0.160 1 0308 -0.053
8 -0.028 0.384 -0.056 0.200 0.124 -0.308 1 0.326

\ 0101 -0.002  -0.015 0284 0210  -0.053 0.326 1
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Table 4. Percentage of variance associated with each principal component and its corresponding eigenvalue.

Principal 1 2 3 4 5 6 - 8
component

Eigenvalue 2.24 1.64 1.19 1.03 0.87 0.63 0.29 0.11
Variance (%) 27.99 20.46 14.84 12.90 10.89 7.82 3.66 1.41
Caimulagie 27.99 48.46 63.30 76.20 87.10 94.92 98.59 100

variance (%)

By using the first 4 principal components, the correlation coefficients that relate the reduced set of
principal components and input parameters is presented in Table 5.

It is observed in Table 5 that there are considerable variation in the correlation coefficients. To
identify the reduced input parameters, we use two thresholds of correlation coefficients (Moore ez
al., 2013), the first one equals 0.7 and the second one equals 0.55. It is noted that strong relation
between variables is associated with correlation coefficients greater than 0.7, while moderate relation
is associated with correlation coefficients greater than 0.55. Table 6 presents the reduced number of
input parameters when the correlation thresholds are adopted. Also in Table 6, the reduced number
of input parameters for the rest of the database are summarized. It is observed from Table 6 that the
number of input parameters with strong correlation for interplate events ranges from 2 to 3, while
for inslab it varies from 2 to 6. For the input parameters with strong correlation, the greater number
of input parameters are related to the SS-MC case. If moderate correlation is considered, the number
of input parameters is within 6 to 7 and 5 to 7 for interplate and inslab events, respectively. Based on
the PCA results, ANN models are developed by using the identified input parameters based on the
type of relation (i.e., strong and moderate relation). Furthermore, for the sake of comparison, ANN
models by using the complete set of input parameters, referred to as ‘all inputs’, was included. One
more ANN model with predefined input parameters is considered, this model includes Mw, natural
logarithmic of R, H and T as input neurons and is referred to as ‘original case’. This last ANN model
is considered as much of the information available in applications of engineering include those
parameters. It should be pointed out that all the ANN models employ the natural logarithmic of R .
instead of the R_.. The output layer of the ANN models consists of a single neuron that represents
the natural logarithmic of the SGMD for a considered earthquake and soil type.

The activation functions as well as the setups used during the training process are presented in Table
7. Some authors have suggested rules to identify the number of hidden neurons and their relation

Table 5. Correlation coefficients that relate the reduced set of principal components and input parameters.

Input parameter 1 2 3 4

R. 0.531 -0.261 0.466 -0.255
M, 0.784 0.476 -0.114 -0.069
T 0.321 -0.254 0.638 -0.414
H 0.688 -0.153 0.046 0.582
M, 0.635 0.289 -0.437 -0.424
¢ 0.495 -0.511 -0.017 0.420
3 0.193 0.823 0.242 0.225
A -0.284 0.483 0.546 0.211
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Table 6. Reduced number of input parameters after applying the PCA method.

Earthquake Type Of relation
Case

Type Strong Moderate

SS-MC M, R, 3 M, R, T, M, 5,2
Interplate ES-MC M, M, M, R, H, M, 3, ¢

FS-M M, A M, R, H, T, M, o, A
SS-MC M, R, H, M, 5,2 M, R, T, M, 6,1 ¢

Inslab FS-MC M, 6 M, R, H, M8 %A ¢
FS-M M, 6 M, H,T,M, o

with the hidden layers (Masters, 1993; Swingler, 1996; Berry and Linoff, 1997), yet no closed-form
expression is available to indicate the total number of hidden layers and neurons, a trial and error
scheme is adopted to determine the structure of the ANN model (Shahin ez al., 2004).

During the trial and error process, ANN models with one and two hidden layers with 3 and up to 50
hidden neurons in each hidden layer were considered. The former was carried out to avoid potential

overfitting of the ANN model.

It is noted that different metrics as the mean square error (MSE) or the mean absolute error (MAE)
are available to evaluate the performance of the ANN models, each metric has advantages and dis-
advantages depending of the problem at hand. According to Twomey and Smith (1995), there is no
consensus as to which measure should be reported, and thus, comparisons among techniques and
results of different researchers are practically impossible. In this study we adopted the MSE to evalu-
ate the performance of the ANN models.

To evaluate the impact of the number of hidden neurons and layers on the trained ANN models
by using both: the samples used for training and those not employed for training, the average MSE
based on 300 trials (Pozos-Estrada ez al., 2014), is presented in Figure 5. It is observed in Figure
5 that, in general, when the data used for training is employed, the average MSE decreases as the
number of hidden neurons increases. It is also observed from Figure 5 that the average MSE when
the samples used for testing are employed is greater than that observed when the samples used for
training are considered. This can be explained by noting that the trained ANN models are tested
with input parameters that are different than those used during the training process. This trend is

Table 7. Activation functions and training setups.

Layer Activation function
Input to hidden layer
Tan-Sigmoid
Hidden to hidden layer
Linear
Hidden to output layer
Training and testing f(x)= e‘r — e_x
e +e
Training data 80% of the complete database (randomly selected)
Testing data 20% of the complete database not selected for training
Error function Mean square error (MSE)
Minimization algorithm Levenberg-Marquardt (Marquardt (1963)), Press et al. (1992))
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observed for the ANN models with different number of input neurons (i.e., all inputs, strong rela-
tion, moderate relation and original case) with one and two hidden layers, irrespective of the type of
earthquake or soil considered. It is also observed from Figure 5 that the lowest average MSE associ-
ated with the testing stage is obtained for ANN models with 3 to 50 hidden neurons, and that the
best ANN models for interplate and inslab are associated with 1HL and 2HL, respectively. Based on
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Figure 5. Average MSE for the developed ANN models by using the samples employed for training (in blue) and testing
(in gray). Interplate events with one hidden layer: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside
Mexico City firm soil. Interplate events with two hidden layers: (d) Mexico City soft soil, (¢) Mexico City firm soil, (f)
Outside Mexico City firm soil. Inslab events with one hidden layer: (g) Mexico City soft soil, (h) Mexico City firm soil,
(i) Outside Mexico City firm soil. Inslab events with two hidden layers: (j) Mexico City soft soil, (k) Mexico City firm
soil, (i) Outside Mexico City firm soil.
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these observations, the parameters of the optimum ANN models (those associated with the mini-
mum average MSE) are summarized in Table 8. It is observed in Table 8 that the number of hidden
layers for the cases with different number of input neurons (i.e., all inputs, strong relation, moderate
relation and original case) for interplate events ranges from 3 to 30, while that for inslab ranges from
3 to 50. This observation indicates that the selection of the inputs neurons is of paramount impor-
tance. Based on the identified optimum models with different number of input neurons, a further
selection was carried out to employ a single ANN model (i.e., a single ANN model among all inputs,
strong relation, moderate relation and original case) to predict the SGMD for SS-MC, FS-MC and
FS-M. The criterion used to identify a single ANN model was based on selecting the ANN model
which exhibits the best prediction behavior under several case scenarios. The ANN models selected
to predict the SGMD for SS-MC, FS-MC and FS-M are indicated in Table 8 in italics. The obtained
weights and biases for the selected trained ANN models for interplate and inslab, summarized in
Table 8, are presented in Appendix A.

COMPARISON BETWEEN THE OBSERVED AND THE PReDICTED SGMD BY UsinG TRAINED ANN

Figure 6 presents a comparison between the observed and the predicted SGMD by using the trained
ANN models with the datasets used for training and testing to those obtained from the actual records.
It is observed from Figure 6 that there is good agreement between the observed and predicted values
in most of the cases, with a correlation coefficient, p, ranging from 0.50 to 0.92 when the dataset
used for testing is considered, and from 0.74 to 0.96 when the dataset used for training is employed.
It is also observed from Figure 6 that the highest p values are associated the ANN models for inslab.

Table 8. Summary of the minimum MSE of ANN models for interplate and inslab events.

Interplate Inslab
Soil type Case

MSE ANN model MSE ANN model

All inputs 0.013 3N-1HL 0.032 I5N-2HL

Strong relation 0.024 SN-1HL 0.065 15N-2HL

SS-MC Moderate relation 0.013 30N-1HL 0.032 45N-2HL
N 0.014 SN-1HL 0.031 SON-2HL

Original case
0.014 3N-1HL* 0.031 30N-2HL*
0.028 3N-1HL 0.010 50N-2HL
All inputs

- - 0.032 15N-2HL*

FS-MC Strong relation 0.034 20N-1HL 0.011 5N-2HL

Moderate relation 0.020 3N-1HL 0.011 3N-2HL

Original case 0.036 SN-1HL* 0.015 3N-2HL

0.013 3N-1HL 0.010 SN-2HL

All inputs

- - 0.009 10N-2HL*

FS-M Strong relation 0.064 3N-1HL 0.054 30N-2HL
Moderate relation 0.014 3N-1HL 0.046 15N-2HL

Original case 0.017 20N-1HL* 0.016 30N-2HL

Notes: SS-MC = Soft soil Mexico City; FS-MC = Firm soil Mexico City; FS-M = Firm soil for places outside Mexico
City; N = Neurons; HN = Hidden neurons; * ANN models employed in Figure 9.

166



R. Flores-Mendoza, Use of Artificial Neural Networks to predict strong ground motion...

250 v
(@)  Training set ° °
o Testing set °e s
200} —Ideal fit o o Bge o0 ®o'e
@ °* ° & z %". ?:D‘o.“
a Jpona ML = §0
= 150 o nomeatle ¥
Q A
7] %
-8 : f e @ °
2 .0 9‘ @ °
;% 100 ° M %o ° os'.' o°
E ° ° oo o
a9 el
507 3N-1HL (All inputs)
p=0.77 (testing)
p = 0.80 (training)
0 L L L L
0 50 100 150 200 250
Observed SGMD (s)
120 ' ‘ v
(€) © Training set .
o Testing set ¢
1000 —1deal fit e e
—_ o ® Lo .‘-OQ o o
(2] . e
~ o o TG, °©
80 58 e0%e @ o
% q-'.% ‘Q‘Oo..
O ° 000 & '..?.:?0
75] L © o 8 ..
= 60 oo 93 v
§ ° .O‘. f‘. o®
‘é 40+ . Py °
=% 4 °
200 o WBE e 20N-1HL (Original case)|
K P Co ® p=0.92 (testing)
) p=0.94 (training)
O L L L L
0 20 40 60 80 100 120
Observed SGMD (s)
150 . :
(©)  Training set
o Testing set
—Ideal fit
2 e
A 100} o2
% 00 . ‘.
7 i rsadd
= 2 o °°
o °
.2
@ 50 I : ®o
~ “
3N-2HL (Original case)
p=0.92 (testing)
p = 0.94 (training)
0 L L
0 50 100 150
Observed SGMD (s)

200 v
(b)« Training set
o Testing set
—Ideal fit
@150 . oo
a . e .
=
(D ° ° { o2e® °
L2100 ¢ . wndee
3 APPANE
5 $o
= R o AT 0 e
lB ° o
A~ 50 00 % 1
. 3N-1HL (All inputs)
p=0.50 (testing)
p = 0.74 (training)
0 ‘ ‘ ‘
0 50 100 150 200
Observed SGMD (s)
250 ‘ ‘
(@ Training set
o Testing set ° °
. —Ideal fit ® °
A200 callt o 85 o
N o o
(@) o .88 0 %%
=150 . s e
(J ..:.o. ®
wn ° £ o® o0
2100 0y re
|5} B 5 0 o °©
= : 2
2 s,
» 3 ©
50¢ 15N-2HL (All inputs) |
p = 0.82 (testing)
p = 0.84 (training)
O i L L L
0 50 100 150 200 250
Observed SGMD (s)
120 ‘ 0
(e Training set
o Testing set o "
1007 —[deal fit L 2
@ - i oe
§ 80 oo de
% ..
= 60r ° > .:.(: e ©
2 0 s
Q o @ % 00°
?é 40 I :.O b, © g
A ®° we”
200 ° o 5N-2HL (All inputs)
oo ©° p = 0.87 (testing)
p = 0.96 (training)
0 L L L L L
0 20 40 60 80 100 120
Observed SGMD (s)

Figure 6. Comparison of the predicted SGMD with the trained ANN models and the observed values. Interplate events:
(a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City hard soil. Inslab events: (d) Mexico City
soft soil, (¢) Mexico City firm soil, (f) Outside Mexico City firm soil.
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Among all the ANN models developed, those that predict the SGMD for sites outside Mexico City
present the highest p values for interplate and inslab events. Further, the ANN model developed
for soft soil in Mexico City for interplate events is similar to the ANN model for inslab events. On
the other hand, the ANN model developed for hard soil in Mexico City for inslab events showed
better predicting results that the ANN model for interplate events.

ComPARISON OF THE PREDICTED SGMD UsING TRAINED ANN AND EMPIRICAL EQUATIONS

EmPIRICAL MODELS TO ESTIMATE SGMD FOR INTERPLATE AND INSLAB EVENTS

The functional form of the empirical equation adopted in this study for soft and hard soils is the one
proposed in Reinoso and Ordaz (2001), which is shown in Table 9, where D denotes the SGMD,
ins, M_is the moment of magnitude, R_is the closest distance to the fault, in km, and T is the soil
period, in s. In this study the model coefficients were estimated using a least-squares regression al-
gorithm, implemented in MATLAB (2019). It is noted that that more accurate regression methods
are available in the literature (Joyner and Boore, 1993; Boore ¢z al., 1997; Bommer ez al., 2010) and
that the use of the traditional least-squares method is an oversimplification; however, for simplicity,
and since the main focus of this work is on the development and discussion of the ANN models to
predict the SGMD, we adopted the traditional least-squares method.

The estimated coefficients for each type of earthquake and soil are summarized in Table 9. Figure 7
presents a comparison of the predicted SGMD with the fitted empirical models and the observed
values for interplate and inslab events for soft and firm soils. Similar conclusions to those draw from
Figure 6 are applicable to Figure 7, except that the correlation coefficients between the observed and
predicted values are in general slightly smaller than those obtained when the ANN models are used.
This difference is related to the number of data used to fit the empirical models, which is greater than
that employed to test the ANN models.

CoMPARISON BETweeN PreDICTED SGMD UsinG TRAINED ANN AND EMPIRICAL EQUATIONS

Figure 8 presents a comparison of the variation of the SGMD predicted with the trained ANN mod-
els and that obtained with the empirical equations as a function of M and modal values of R, T, H,

Table 9. Coeficients of the empirical equation.

D=c exp(M) + (czMw+c3)RC+ (c4Mw+c5)(T+ )+ ¢

Interplate events

Case c, c, c ¢, ¢
SS-MC 0.0237 -0.0212 0.3063 6.345 -25.013
FS-MC 0.0332 0.0035 0.1528 - -
FS-M 0.0160 -0.0090 0.2361 - -
Inslab events

Case c, ¢ c e, e
SS-MC 0.0684 -0.0852 0.6722 -2.6447 38.11
FS-MC 0.0501 -0.0931 0.764 - -
FS-M 0.027 -0.0233 0.3278 - -

Notes: ¢, , = 1,2,3,4,5, are regression coefficients; ¢, =0.5; T'is set equal to 0.5 s for firm soils (Reinoso E. Ordaz M
(2001), NTC-SISMO (2017)); € is the error term.
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Figure 7. Comparison of the predicted SGMD with the fitted empirical models and the observed values. Interplate
events: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City firm soil. Inslab events: (d) Mexico
City soft soil, (¢) Mexico City firm soil, (f) Outside Mexico City firm soil.
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M, ¢, 6 and A for soft soil and modal values of Rc, H, MO, ¢, 6 and A and T = 0.5 (s) for
firm soil. It is noted that the use of H, M, ¢, & and A are input parameters of the trained ANN
models; however, they were not considered as input parameter in the empirical expressions. In Figure
8, the empirical model developed in Reinoso and Ordaz (2001), is also included for comparison pur-
poses. It is observed from Figure 8, that in general, the predicted values by using the ANN models
follow those predicted by the developed empirical equations. It is also observed that, for interplate
events, the SGMD predicted with the trained ANN models oscillates within those predicted with
the empirical equations. It is further observed that, for inslab events, the SGMD predicted with the
trained ANN models follows the trend of the SGMD predicted with the empirical equation devel-
oped in this study. For case 8c that corresponds to the SGMD for inslab events for firm soil for places
outside Mexico, the SGMD predicted by using the ANN model presents a bump for M, within 5.5
and 6.5. The rest of the cases showed a smoother behavior. In practically all the cases presented in
Figure 8, the model proposed in Reinoso and Ordaz (2001), predicted smaller SGMD values with
respect to those predicted by the trained ANN models and the empirical equations developed in this
study. The differences between the SGMD values predicted by the ANN models and those with the
empirical equation given in Reinoso and Ordaz (2001), was also observed in the study by Alcintara
etal. (2014).

Figure 9 presents a comparison of the variation of the SGMD predicted with the trained ANN mod-
els and that obtained with the empirical equations as a function of R and selected values of Mw
and modal values of T, H, M, ¢, 6 and A . Similar conclusions to those drawn for Figure 8 are
applicable to Figure 9, except that a better behavior of the predictions made with the ANN models
are observed for both inteplate and inslab events. It is noted that the ANN models used to predict
the SGMD for Figure 8, were also employed for Figure 9; however, it was observed that better pre-
dictions could be obtained if ANN models with different number of neurons were used. The ANN
models employed in Figure 9 are also reported in Table 8. The previous observation indicates that the
trained ANN models for the considered records are not very robust because the trained models with
almost identical mean square errors do not always lead to the same predicted SGMD.

To further compare the trained ANN models and the empirical equations, a probabilistic character-
ization of the error, defined as the difference of the logarithmic of the predicted values of SGMD
by using the trained ANN models or the empirical equations for the results presented in Figure 8,
and the logarithmic of the observed values is carried out. Figure 10 presents a comparison of the
calculated errors in Normal probability paper. It is observed from Figure 10 that the error could be
modeled as a normal variate. This was also verified with the Kolmogorov-Smirnov goodness-of-fit
test (Benjamin and Cornell, 1970), which indicates that the normality hypothesis could not be re-
jected at a significance level of at least 1% for both type of seismic events. The mean and standard
deviation of the errors presented in Figure 10 are summarized in Table 10. It is observed from Table
10 that the trained ANN models and the empirical equations are only slightly biased and that the
statistics of the error for the developed ANN models are similar to those of the empirical equations.
Similar results were observed for the ANN models and the empirical equations presented in Figure
9 and for that reason they are not shown.
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Figure 8. Comparison of SGMD predicted by the trained ANN models and by the empirical models with variation in
Mw. Interplate events: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City firm soil. Inslab
events: (d) Mexico City soft soil, (e) Mexico City firm soil, (f) Outside Mexico City firm soil.
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Figure 10. Normal probability paper of the error.
Table 10. Statistics of the error.
Type of ) ANN models Empirical equations
Type of soil
earthquake Case Mean Std. Dev. Mean Std. Dev.
SS-MC All inputs -3.98E-02 0.24 2.70E-01 0.19
Interplate FS-MC All inputs 1.07E-02 0.31 1.01E-01 0.38
FS-M Original case -2.03E-02 0.21 6.39E-03 0.3
SS-MC All inputs -5.50E-03 0.16 -2.51E-01 0.32
Inslab FS-MC Original case -4.14E-02 0.10 1.22E-02 0.18
FS-M All inputs -1.05E-01 0.26 1.58E-02 0.24
CONCLUSIONS

Mexican records from interplate and inslab events were employed to develop Artificial Neural Net-
work models to predict the strong ground motion duration. The principal component method was

used to carry out a dimensionality reduction of the input parameters to develop the artificial neural
network models. Several ANN architectures were tested. For the training of the ANN models, the
input layer considered four different cases (i.e., all inputs, strong relation, moderate relation and
original case), while the logarithmic of the SGMD is used to represent the output neuron.

The model tested considered up to 50 hidden neurons with one and two hidden layers. Additionally,
new regression coefficients to fit empirical equations to estimate the strong ground motion duration
were also obtained. The main observations that can be drawn from the analysis results are:

1. The analyses results indicated that the best prediction of the SGMD is obtained with ANN
models with one hidden layer and 3, 5 and 20 hidden neurons when interplate events are con-
sidered; however, when inslab events are considered, the ANN models with two hidden layers
and 3, 5, 15, 20 an 30 hidden neurons provide the best predictions.
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2. The best ANN models for interplate and inslab events are associated with the cases referred to
as all inputs and original case, which considered 8 and 4 input neurons, respectively. The later
indicates that the selection of the inputs neurons is of paramount importance and that the ANN
models could improve their prediction ability if the number of input neurons is increased.

3. The number of neurons per hidden layer of the ANN models that presented the smallest average
MSE during the testing process were within 3 to 50.

4. In general, the predicted values by using the ANN models follow those predicted by the devel-
oped empirical equations. This indicates that the ANN models represent a good alternative to
the empirical equations in some applications if one does not have to understand the causality to

apply the ANN model.
5. In some cases, the SGMD predicted by using the ANN models presented physically unrealistic

trends in its behavior. For this reason, caution is warranted when the model is extrapolated and
it is recommended to carry out several verifications of the trained ANN models before using
them for further engineering applications, for example the simulation of synthetic records or the
evaluation of damage indices.
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APPENDIX A. WEIGHTS AND BIASES FOR THE TRAINED MODELS

The coefficients of the ANN models summarized in Table 8 in italics are given in the following table.

Table Al. Trained ANN models for interplate events.

Case Weights Biases
(W], (W, [,]; (9,1,
-0.839 1.011 0971 -0.008 -1.890 -0.592 0.365 -0.614 1.830
SS-MC 0.455 -1.239 -0.313 -0.717 0.796 1.647 0.098 0.999 1.348 [-0-693]
| -0.584 0991 0.456 -1.158 -0.380 -9.768 -1.484 | _-1.442 -1.086
0.265 -0.259 0.245 -0.219 -1.224 0.591 0.550 -0.278 -1.608
FS-MC 1.231 0.070 0.032 1.209 0.303 0.346 -0.617 -0.447 -0.336 [-0.344]
| 1.447 0.440 -0.205 1.669 0.151 0.604 0.383 || 0.385 1.765
-2.460 1.128 -1.598 0.679 -0.944 2.484
-1.169 1.676 -2.565 -0.437 1.075 2.975
0.125 2.481 -0.627 0.674 0.261 -2.181
1.532 -1.421 -0.608 1.836 0.000 -2.023
1.039 0.037 -2.611 0.449 -0.125 -1.952
0.182 -2.277 0.936 -1.718 -0.241 -1.489
-2.107 0.495 -0.785 1.543 0.448 1.363
-2.949 1.083 1.394 0.851 0.162 0.523
1.833 -1.087 1.115 -1.125 0.495 -0.394
FS-M -2.168 -0.932 -0.587 -0.039 -1.193 -0.505 [0'136]
0.166 2.162 -0.441 0.812 0.495 -0.536
-3.503 -1.550 -0.533 -0.057 0.784 -0.354
0.751 -0.498 0.358 -2.794 0.161 -1.315
-0.213 1.587 2.650 0.335 -0.177 0.855
1.931 1.533 0.941 -1.366 0.124 1.120
0.703 -0.945 2.787 0.533 -0.117 0.683
-3.326 -0.361 -1.196 0.465 1.064 -2.630
-2.907 -0.053 -1.008 0.658 -0.935 -2.448
-1.962 -1.879 0.812 1.068 0.535 -2.600
| 0505 0.771 1.969 0.885 | 0168 | | 3.408
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