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ABSTRACT

It is generally accepted that linear theory of growth of structure under gravity
produces a squashed structure in the two-point correlation function (2PCF) along
the line of sight (LoS). The observed radial spread out structure known as Finger of
God (FoG) is attributed to non-linear effects. We argue that the squashed structure
associated with the redshift-space (s−) linear theory 2PCF is obtained only when
this function is displayed in real-space (r−), or when the mapping from r− to
s−space is approximated. We solve for the mapping function s(r) that allows us to
display the s−space 2PCF in a grid in s−space, by using plane of the sky projections
of the r− and s− 2PCFs. Even in the simplest case of a linear Kaiser spectrum
with a conservative power-law r−space 2PCF, a structure quite similar to the FoG
is observed in the small scale region, while in the large scale the expected squashed
structure is obtained. This structure depends on only three parameters.

RESUMEN

Comúnmente se acepta que la teoría de colapso lineal gravitacional produce
una estructura comprimida a lo largo de la visual en la función de correlación de dos
puntos (2PCF). La estructura conocida como Finger of God (FoG) se ha atribuido
a efectos no-lineales. Argumentamos que la estructura asociada con el espacio de
corrimiento al rojo (s−) de la 2PCF de la teoría lineal, sólo se obtiene cuando
esta función se despliega en el espacio-real (r−) o cuando el mapeo de r− al s− se
calcula mediante una aproximación. Resolvemos para la función de mapeo s(r), lo
que permite visualizar correctamente la s− 2PCF en una malla en s−, utilizando
proyecciones en el plano del cielo para ambas 2PCFs, r− y s−. Aún en el caso más
simple, el de un espectro de Kaiser con ley de potencia para la 2PCF del r−, se
aprecia a pequeña escala una estructura similar a FoG, mientras que a gran escala
se obtiene la estructura comprimida esperada, que solo depende de tres parámetros.

Key Words: cosmology: theory — galaxies: clusters: general — large-scale struc-
ture of Universe — quasars: general

1. INTRODUCTION
A spherical object observed at a distance in

its longitudinal (||) and transversal (⊥) dimensions,
should provide a test of different cosmological mod-
els, as first proposed by Alcock & Paczyński (1979).
The Alcock-Paczyński parameter, hereafter AP , ba-
sically the ratio of || to ⊥ dimensions, takes a value
of one at redshift zero, and increases with z with
a strong dependence on the value of the cosmologi-
cal parameters that make up the Hubble function,

1Instituto de Astronomía, Universidad Nacional Autónoma

de México, Ensenada, B. C., México.
2Instituto de Astronomía, Universidad Nacional Autónoma

de México, Ciudad de México, México.

introducing a cosmological distortion to the large
scale structure observations. This apparently simple
comparison is, however, greatly complicated by sev-
eral factors. First, real-space measurements are not
directly attainable and one has to rely on redshift-
space. Then, if the proposed object consists of a
cluster of quasars or galaxies, or a statistical ensem-
ble of such, proper motions of its constituents (either
derived from gravitational collapse or virialized con-
ditions) distort redshift-space measurements causing
a degeneracy problem (e.g., Hamilton 1998). On
cosmological scales, clusters of galaxies or quasars
are among the simplest geometric structures that
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94 SALAS & CRUZ-GONZÁLEZ

one may conceive. Even if single clusters should
have non-spherical or filamentary structures, those
should be randomly oriented. As we probe more dis-
tant clusters, observations become biased towards
brighter and widely separated members, and the
numbers become statistically insignificant. A super-
position of many such clusters may reduce the prob-
lem while retaining spherical symmetry. For more
than 40 years the two-point correlation function
(2PCF), and its Fourier transform, the power spec-
trum, have been fundamental tools in these studies
(e.g., Peebles 1980).

Overdense clusters or associations separate from
the Hubble flow due to their own gravity, which re-
sults in peculiar velocities of its members that dis-
tort redshift-space observations. When gravitational
fields are small, velocities are well described by the
linear theory of gravitational collapse (Peebles 1980).
In the study of these clusters, the 2PCF was initially
conceived as a single entity ξ that could be evaluated
in either real (r−) or redshift (s−) space (Peebles
1980). Davis & Peebles (1983) even mentioned that
when observing the local universe, if the peculiar ve-
locities were relatively small, s−space would directly
reproduce r−space and one would have ξ(r) = ξ(s).
That should be the case for distant objects, although
one should be careful not to mix up the notions of
distant from each other and distant from the ob-
server. In the case of the CfA Redshift Survey (e.g.,
Huchra et al. 1983), as described in Davis & Peebles
(1983) peculiar velocities were significant, and the
authors chose to go from real ξ(r) to observable ξ(s)
by means of a convolution with a pair-wise velocity
distribution, tailored to approach the Hubble flow
at large distances, known as the streaming model.
The convolution integral would at the same time
convert r−space to s−space coordinates. However,
the same function ξ would be obtained as a result
of the convolution of ξ with a function of velocity,
which constitutes an inconsistency. Later on, Kaiser
(1987), hereafter K87, showed that gravitationally
induced peculiar velocities by gravitational collapse
of overdense structures in the linear regime produced
a power spectrum P (s) for s−space different from
the one P (r) for r−space, that is, two different func-
tions for the power spectrum. Both are, however,
functions of the r−space Fourier frequency k. Then,
while P (r)(k) is a spherically symmetric function,
P (s)(k) shows an elongation along the line of sight
(LoS) direction. Later on, Hamilton (1992) trans-
lated these results to configuration space obtaining
the 2PCF in its two flavors: ξ(r)(r) and ξ(s)(r).
Again ξ(r)(r) is symmetric and the possibility of a

power-law r−γ is considered, as had been historically
accepted (e.g., Peebles 1980, who favored γ = 1.8 ).
Also, in perfect agreement with K87, ξ(s)(r) shows a
squashing along the LoS direction. Hamilton (1998)
presented in great detail the assumptions that led to
his results. He started by defining selection functions
n(r)(r) and n(s)(s) for r−space and s−space and by
numerical conservation obtained a complicated high
order expression (his equation 4.28) for the density
contrast δ(s). From that one can obtain the 2PCF,
but a series of approximations are needed (the linear
case) to reduce the right hand side of the equation
and to obtain his equation 4.30 for δ(s)(s). Then, he
introduced one extra assumption, δ(s)(r) = δ(s)(s),
which is not justified by the linear approximation.
This changes the left hand side of the equation di-
rectly to δ(s)(r). It may be argued that this approx-
imation is valid in the distant case mentioned above.
Consequently, one could easily write ξ(s)(s) in place
of ξ(s)(r), shifting between one form and the other
as needed. That is an imperative because observable
2PCF are inevitably obtained in s−space.

Since then many authors have tried the Kaiser
linear approximation facing this dilemma and have
introduced similar approximations. In the descrip-
tion of 2PCF in redshift-space, due to the multi-
pole expansion of the inverse Lagrangian operator
derived from the corresponding power spectrum in
Fourier space (Hamilton 1992), there appears a de-
pendence with µ, the cosine of the angle between the
r (real space) vector and the LoS: µ(r) = r||/|r|.
However, it has been a common practice to ap-
proximate µ from redshift-space coordinates as ei-

ther µ(s) = s||/|s| or µ(cs) = c||s||/
√

c2⊥s
2
⊥ + c2||s

2
||

(e.g., Matsubara & Suto 1996; Nakamura et al. 1998;
López-Corredoira 2014). Yet in some other cases
the approximation r|| = s|| is specifically made (e.g.,
Tinker et al. 2006) calling it the “distant observer"
approximation. But, as mentioned above, this is re-
ally intended to mean a wide separation approxima-
tion and does not apply in the small scale regime.
Furthermore, the “distant observer" name is also
used for the plane-parallel case (e.g., Percival &
White 2009), adding to the confusion. In some other
cases the substitution r|| = s|| is just performed with
no further comment (e.g., Hawkins et al. 2003). An-
other facet of the same problem has been to expand
the redshift-space correlation function as a series of
harmonics of that same µ(s), rather than the actual
µ(r) derived in linear theory (e.g., Guo et al. 2015;
Chuang & Wang 2012; Marulli et al. 2017). While
this is certainly a valid approach, the conclusions of
linear theory, like the existence of only monopole,
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ALTERNATIVE APPROACH TO THE FINGER OF GOD 95

quadrupole and hexadecapole terms in the Legendre
polynomial expansion, are not really applicable to
the µ(s) case. All these forms of the approximation
are really one and the same, and to avoid further
confusion (like the term “distant observer") we de-
cided to call it the µ(s) approximation.

When observational data are used to construct
the 2PCF ξ(s)(s), it is generally true that simple lin-
ear theory predictions are not kept. On one hand,
the predicted compression along the viewing direc-
tion is observed, but as one approaches the LoS axis
the observed structure is mostly dominated by an
elongated feature (e.g., Hamaus et al. 2015), usu-
ally called Finger of God (Huchra 1988), hereafter
FoG. Prominent examples of FoG were found in the
Coma Cluster by de Lapparent et al. (1986) and in
the Perseus cluster by Wegner et al. (1993). The
FoG feature is also commonly observed in the 2PCF
of statistical aggregates (e.g., Hawkins et al. 2003),
making it a common feature of large scale structures.

Many studies have been conducted to explain this
discrepancy. In general, non-linear processes are in-
voked. Sometimes the non-linearities are assigned
to virial relaxation in the inner regions of clusters,
while others explore the non-linear terms of the ap-
proximation in the derivation of the K87 result. In
these categories, we mention a small sample of the
representative literature. Kinematic relaxation, like
the virialized motion of cluster members in the inner
regions (Kaiser 1987; Hamaus et al. 2015), are ex-
plored by introducing a distribution of pair-wise pe-
culiar velocities for cluster components. There are at
least two ways of doing so: First, the streaming model

where a velocity distribution f(V ) is convolved with
ξ(r)(r) to obtain ξ(s)(s), without using the K87 re-
sult, similar to Davis & Peebles (1983) but differen-
tiating ξ(s) from ξ(r). More recent work on distri-
bution functions take great care of this issue (Seljak
& McDonald 2011; Okumura et al. 2012a,b) by di-
rectly obtaining the power spectra in redshift-space
as a function of the s−space wave-number. Unfor-
tunately, the expression that results for the power
spectra is rather complicated, even when it is conve-
niently expressed as a series of mass weighted veloc-
ity moments. However, it is possible to obtain FoG
structures in ξ(s)(s) maps by the convolution with
simple velocity distributions, at the same time that a
mapping from r− to s−space takes place (e.g., Scoc-
cimarro 2004). Paradoxically, it is not that easy to
obtain the traditional peanut-shape structure that
is generally recognized as the K87 limit in ξ(s)(s),
unless the limit s ∼ r is once again invoked. Sec-
ond, in the phenomenological dispersion model (c.f.,

Scoccimarro 2004; Tinker et al. 2006) a linear K87
spectrum is multiplied in Fourier space by a velocity
distribution. This can be seen as a convolution in
configuration space, as in Hawkins et al. (2003), but
the procedure has the disadvantage that it obtains
the same function ξ(s) as the result of the convolu-
tion of ξ(s) and f(V ). It has to be noted, however,
that very good fits to the observed data are obtained
by this procedure. The same is true for the fits to
numerical simulation results at mid spatial frequen-
cies obtained by similar procedures in e.g., Marulli
et al. (2017). In the streaming model, the velocity
distribution function can also be obtained from the
interaction of galaxies with dark mater halos (e.g.,
Tinker et al. 2006; Tinker 2007), via the halo occu-
pation distribution formalism.

Apart from kinematics, non-linear terms also
arise in the expansion of the mass conservation or
continuity equation in r− and s−spaces to obtain the
power spectrum or the 2PCF (e.g., Matsubara 2008;
Taruya et al. 2010; Zheng & Song 2016). Preserving
only first order terms yields the K87 result. How-
ever, a full treatment of all the terms is possible with
the use of perturbative methods. There are diverse
techniques: standard, Lagrangian, re-normalized, re-
sumed Lagrangian (for a comparison see Percival &
White 2009; Reid & White 2011). The latter authors
however, conclude that the failure of these methods
to fit the l=2 and 4 terms in the expansion ξ

(s)
l (r)

on quasi-linear scales of 30 to 80 h−1 Mpc, must be
due to inaccuracies in the mapping between r- and
s-spaces. So, they favor again the streaming model.
Clearly, there is still substantial debate on this sub-
ject.

In most of these works the necessity to trans-
late their results to observable 2PCFs, ξ(s)(s), is
not really addressed. Most authors prefer to dis-
play their results in Fourier space as s-space power
spectrum P (s)(kr) (e.g., Matsubara 2008; Okumura
et al. 2012a), but with kr in r-space; or display its

moments P (s)
l (kr) (e.g., Taruya et al. 2010; Zheng &

Song 2016); or the power spectra with ks in s−space
P (s)(ks, µs) (e.g., Okumura et al. 2012b). Other
authors display the correlation function in r-space,
either as ξ(r)(r) (e.g., Matsubara 2008) or ξ(s)(r)
(e.g., Tinker 2007; Reid & White 2011; Okumura

et al. 2012a), or its moments ξ
(s)
l (s) (e.g., Taruya

et al. 2010) for l=2. Few works try to display di-
rectly the 2PCFs ξ(s)(s) (e.g., Matsubara & Suto
1996; Nakamura et al. 1998; Tinker et al. 2006;
López-Corredoira 2014), but as already mentioned
above, usually perform the µ(s) approximation; this
amounts to really obtaining ξ(s)(r) instead.
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96 SALAS & CRUZ-GONZÁLEZ

To further complicate matters, redshift-space dis-
tortions are often treated separately from the cosmo-
logical distortions. Both are not easily discernible
because both produce stretching or squashing in the
LoS direction (Hamilton 1998; Hamaus et al. 2015).
This degeneracy could in principle be resolved be-
cause the cosmological and peculiar velocity signals
evolve differently with redshift, but in practice the
uncertain evolution of bias (the dimensionless growth
rate for visible matter, see equation 26) complicates
the problem (Ballinger et al. 1996). Furthermore,
Kaiser (1987) and Hamilton (1992, 1998) do not con-
sider cosmological distortions in their analysis of pe-
culiar motions. Since the earlier works, the inclu-
sion of cosmological distortions has been attempted
by several authors (e.g., Matsubara & Suto 1996;
Hamaus et al. 2015).

In this paper, we show that a structure quite sim-
ilar to FoG can be obtained in ξ(s)(s) directly in the
linear theory limit of K87. That is, without invoking
virial relaxation or the streaming model, nor the non-
linearities studied in perturbation theory, but just by
avoiding the µ(s) approximation, in any of its forms
(µ = s||/|s|, “distant observer" or r|| = s|| ), the FoG
structure is recovered. This will be accomplished by
solving for the function r(s) with the aid of the pro-
jected correlation function of both 2PCFs : ξ(s)(s)
and ξ(r)(r). We will stay on the academic power-law
approximation ξ(r)(r) ∼ r−γ in order to be able to
show a closed form for the result, and to prove the
main point of this paper, i.e. that the FoG feature
is derived in the simplest case.

We start with a detailed definition of r− and
s−space, noting that frequently s−space is ex-
pressed in distance units as is r−space. But in doing
so, one multiplies by a scale factor that invariably in-
troduces a cosmological parameter in the definition;
and as a result the named s−space is no longer purely
observational. Later on, the factor is solved by in-
troducing a fiducial cosmology and solving for the
real values. An example can be seen in the analysis
made by Padmanabhan & White (2008) in Fourier
space and Xu et al. (2013) in configuration space.
The latter recognize the need of introducing a two-
step transformation, one isotropic dilation and one
warping transformation, to transform from real fidu-
cial to real space. However, the real fiducial space
is actually redshift-space, and this identification is
missing in these works.

Therefore, we argue (c.f., § 2) that it is conve-
nient to define the observable-redshift-space σ (σ-
space) given by the simple redshift differences and
subtended angles that are truly observable, and that

do not depend on any choice of cosmological pa-
rameters. Multiplying by a unit function (scale fac-
tor) produces the physical redshift-space (s−space):
s = K(Ω, z) σ, that is isomorphic to the observ-
able σ-space, but has actual distance units that are
dependent on a particular cosmological set of param-
eters Ω and on the redshift z. The K(Ω, z) function
is chosen so that the physical redshift-space is related
to real space r by a unitary Jacobian independent of
redshift. So, no additional scaling is needed, and the
only remaining difference will be precisely in shape.
That is why σ and s are more alike, and thus can
both be named redshift-space; σ is the observable
redshift-space while s is the physical redshift-space.
Then, the transformation to real-space necessarily
goes through redshift distortions.

Furthermore, when we introduce peculiar non-
relativistic velocities in this scheme, we will show
that it is possible to keep the same relation between
observable and physical redshift-spaces, s and σ, and
that the Kaiser (1987) effect is recovered indepen-
dently of redshift (see § 3). That is, now redshift-
space will also show an additional gravitational dis-
tortion with respect to real-space.

To solve for the relation between real-space and
redshift-space, we will rely on projected correlations.
Projections of the 2PCF in the plane of the sky
have been widely used to avoid the complications of
dealing with unknown components in redshift-space
(e.g., Davis & Peebles 1983). This has the advan-
tage that in the case of a symmetric 2PCF in real-
space, the 3-D structure can be inferred from the
projection. We will show in § 4 that since the pro-
jections of the 2PCF in real-space and in redshift-
space are bound to give the same profile, a relation-
ship can be obtained for the real-space coordinate r||
as a function of the corresponding one in redshift-
space s||. From this, we solve for µ(r) in real-space,
and show that a different view of the redshift-space
2PCF emerges. The main result is that the redshift-
space 2PCF presents a distortion in the LoS direc-
tion which looks similar to the ubiquitous FoG. This
is due to a strong anisotropy that arises purely from
linear theory and produces a change in scale as one
moves into the on-axis LoS direction. As we move
out of the LoS, a structure somewhat more squashed
than the traditional result by the µ(s) approxima-
tion is obtained. As this effect has been missed be-
fore (to the best of our knowledge), we provide a
detailed derivation in § 2 to 4, and show examples of
the derived 2PCFs in redshift-space (§ 5). Finally,
in § 6 we summarize our main conclusions.
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ALTERNATIVE APPROACH TO THE FINGER OF GOD 97

2. REDSHIFT-SPACE

Consider the Friedmann-Lemaître-Robertson-
Walker metric (e.g., Harrison 1993) written in units
of distance and time as follows:

ds2= c2dt2 − dr2

= c2dt2−a(t)2
[
dχ2+Sk(χ)

2
(
dθ2+sin2(θ)dϕ2

)]
, (1)

with Sk = (sin, Identity, sinh) for k = (1, 0,−1).
Then the co-moving present-time length of an ob-
ject dr0 that is observed longitudinally is related to
a variation in the observed redshift dz by

dr0|| =
cdz

H(z)
, (2)

where H(z) is the Hubble function and the 0 su-
perindex is used to define the present time t0. Simi-
larly, an object with a transversal co-moving dimen-
sion dr0⊥ subtends an angle dθ given by the angular
co-moving distance (e.g., Hogg 1999) as

dr0⊥
dθ

= a0Sk

(
c

a0

∫ z

0

dz′

H(z′)

)
, (3)

where a0 is the present day scaling parameter of the
metric.

Observationally one measures redshift differences
dz and subtended angles dθ. We then define
the observable redshift-space adimensional quanti-
ties (dσ|| , dσ⊥) as

dσ|| = dz, (4)

and
dσ⊥ = zdθ. (5)

The physical redshift-space sizes ds|| and ds⊥ can
then be defined in terms of σ as

ds|| = K(Ω, z)dσ||, (6)

and
ds⊥ = K(Ω, z)dσ⊥, (7)

where K(Ω, z) has distance units and depends on the
cosmology, represented here symbolically by the Ω

terms. The relation between real-space and physical
redshift-space is then obtained from equations (2) to
(7), that is:

dr0|| = c||ds||, (8)

and
dr0⊥ = c⊥ds⊥, (9)

with
c|| =

c

K(Ω, z) H(z)
, (10)

and

c⊥ =
a0

z K(Ω, z)
Sk

(
c

a0

∫ z

0

dz′

H(z′)

)
. (11)

It is clear then that the Alcock & Paczyński
(1979) function AP (z), that tests redshift distortions
of a particular cosmology, can be written as

AP (z) =
c⊥(z)

c||(z)
=

a0
c

H(z)

z
Sk

(
c

a0

∫ z

0

dz′

H(z′)

)
.

(12)
Furthermore, from the transformation of physical
redshift-space with coordinates (ds⊥, ds⊥, ds||) into
real-space (dr0⊥, dr

0
⊥, dr

0
||) we get a Jacobian

∣∣∣∣
d3s

d3r

∣∣∣∣ =
1

c||(z)

1

c2⊥(z)
. (13)

In order for this transformation to preserve scale
we need a unitary Jacobian. This condition can be
achieved simply by the following condition:

K(Ω, z) =
c

H(z)
AP (z)2/3, (14)

as can be seen from equations (10) to (12). Here
the dependence on the cosmology is made explicit
through the Hubble function. Note that the result-
ing scale factor K(Ω, z) approaches the Hubble ra-
dius aH = c/H0 as z → 0 and decreases approxi-
mately as 1/(1 + z) thereafter. Also note that for
redshift z > 0, the physical scale that transforms all
dimensions of redshift-space contracts isotropically.
Also we remark that c|| and c⊥ are of order unity as
z → 0, and satisfy c⊥/c|| = AP (z) for all z. In fact
we have (see also Xu et al. 2013):

c||(z) = AP (z)−2/3, (15)

and
c⊥(z) = AP (z)1/3. (16)

Peculiar velocities modify the observed redshift,
and therefore alter the relation between real-space
and redshift-space giving rise to kinematic distor-
tions. Suppose the near-end of an object is at rest
at redshift z, while the far-end is moving with pecu-
liar non-relativistic velocity ~v. Then it will appear
Doppler shifted to an observer at rest at the far-end
position, causing equation (2) to get the form (see
also Matsubara & Suto 1996; Hamaus et al. 2015):

cdz = H(z) dr0|| + (1 + z) (~v · r̂), (17)

where r̂ points in the direction of the far-end, at an
angle dθ from the near-end. Since ~v · r̂ = v||+v⊥ dθ,
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98 SALAS & CRUZ-GONZÁLEZ

then for small angular separations (dθ << 1) the
perpendicular component of the peculiar velocity
may be trivialized. Therefore equation (8) is modi-
fied to

dr0|| = c|| (ds|| − dsv). (18)

where dsv (in physical redshift-space) is given by

dsv = K(Ω, z) dσv, (19)

and dσv (in observable redshift-space) is given by

dσv = (1 + z)
v||

c
. (20)

Through the similarity of equations (19) and (20)
with equations (6) and (4), we note that the concepts
of observable redshift-space and physical redshift-
space can be extended to include peculiar motions
as well.

3. TWO POINT CORRELATION FUNCTION

Let r be real-space Euclidean co-moving coordi-
nates in the close vicinity of a point at redshift z,
defined as dr in the previous section. Then for az-
imuthal symmetry around the line of sight (aligned
to the third axis) we have r = (dr0⊥, dr

0
⊥, dr

0
||). Let

s denote physical redshift-space coordinates around
the same point (in the same tangent subspace), with
the third axis along the line of sight. Then, from
equations (9) and (18), the Jacobian is

∣∣∣∣
d3s

d3r

∣∣∣∣ =
1

c||(z) c
2
⊥(z)

(
1 +

(1 + z)

H(z)

∂v||

∂r||

)

=1 +
(1 + z)

H(z)

∂v||

∂r||
, (21)

where we have used the unitary condition on equa-
tion (13) to eliminate the c||(z) c

2
⊥(z) term. In going

from r to s space, the density change can be related
to the change in volume V , and the Jacobian by the
equation

(
dρ

ρ

)

s−r

= −
dV

V
= 1−

∣∣∣∣
d3s

d3r

∣∣∣∣ . (22)

This can also be expressed in terms of the contrast
density ratios in s and r spaces defined such that

(
dρ

ρ

)

s−r

= δ(s) − δ(r), (23)

where δ(s) and δ(r) are two distinct scalar functions
of position in either space. This particular definition
of δ(s) requires knowledge of the real-space selection

function (Hamilton 1998), which makes it rarely a
first choice. However, the procedure given below al-
lows us precisely to solve for the function r(s).

In linear theory, Peebles (1980) shows by equa-
tions 14.2 and 14.8 that an overdensity of mass δ(r)
creates a peculiar velocity field similar to the acceler-
ation field produced by a mass distribution. As such,
it can be derived from a potential function whose
Laplacian is the overdensity itself (e.g., Thornton &
Marion 2004) times a constant which is time (or red-
shift) dependent. That is

v(r) = −
H(z) f(z)

(1 + z)
∇∇−2δ(r)m (r), (24)

where ∇ is the gradient, ∇−2 is the inverse Lapla-
cian, and

f(z) =
a(z)

D(z)

dD

da
. (25)

Here D(z) is the growth factor, the temporal compo-
nent of density. Note that in Peebles (1980) coordi-
nates are given in the expanding background model
x, which relate to present time real-space coordi-
nates by r = a0x; this brings about the (1 + z)
factor in equation (24). The m subscript to δ em-
phasizes that all mass is responsible for the velocity
field, while δ without the subscript refers to visible
mass in the form of galaxies or quasars. To account
for the difference, it is customary to introduce a bias
factor b(z) and to define the dimensionless growth
rate for visible matter

β(z) =
f(z)

b(z)
. (26)

Then from equations (21) to (24) we get:

δ(s)(r) =
(
1 + β(z) ∂2

|| ∇
−2

)
δ(r)(r), (27)

where ∂|| denotes ∂/∂r|| in real space. Note that if we
had not required a unity Jacobian (c.f., equation 13),
then equations (21) and (22) would not have can-
celed out the 1−c||(z)

−1c⊥(z)
−2 term. We note that

this term is not small when K(Ω, z) is a constant,
and will vary by one order of magnitude as z → 1,
and up to three orders of magnitude as z → 10. So
the transformation between observable and physical
redshift-spaces cannot be neglected (contrary to the
assumption of Matsubara & Suto 1996).

The square modulus of the Fourier transform of
equation (27) gives an expression for the power spec-
trum, or the Fourier transform of the autocorrelation
function (2PCF) ξ, which generalizes Kaiser (1987)
results for any redshift z

ξ̃(s)(k) =
(
1 + β(z) µ2

k

)2
ξ̃(r)(k), (28)
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ALTERNATIVE APPROACH TO THE FINGER OF GOD 99

where µk = kr3/|kr| is the cosine of the angle be-
tween the kr3 component and the wave number vec-
tor kr in real-space; it arises by the Fourier trans-
form property of changing differentials into products.
Note that wave number vectors in real-space also dif-
fer from their counterparts in redshift-space by the
unknown velocity field in equation (17).

Fourier transforming back into coordinate space
gives the Hamilton (1992) result:

ξ(s)(r) =
(
1 + β(z) ∂2

|| ∇
−2

)2

ξ(r)(r). (29)

Note that this equation is written in a way that all
terms in the right hand side are real-space coordi-
nates r dependent, as is the case for the derivatives
and inverse Laplacian. Recalling that the solution of
the Laplace equation in spherical coordinates con-
sists of spherical harmonics in the angular coordi-
nates and a power series in the radial part, one can
write for the case of azimuthal symmetry

ξ(s)(r) =
∑

l=0

ξl(r) Pl(µ(r)) (30)

where Pl(µ(r)) are the Legendre polynomials,

µ(r) =
r||

|r|
, (31)

explicitly defined for real-space coordinates, and the
harmonics are given by the coefficients ξl(r) that can
be obtained from equation (30) through orthogonal-
ity properties as

ξl(r) =
(2l + 1)

2

∫ 1

−1

Pl(µ(r)) ξ
(s)(r) dµ(r). (32)

Substituting equation (29) in (32) for the case of
spherical symmetry in real-space (ξ(r)(r) = ξ(r)(r)),
one gets by direct evaluation the classical result given
by Hamilton (1992), see also Hawkins et al. (2003).
That result consists of only three terms: monopole,
quadrupole and hexadecapole (l = 0, 2, 4), all the
others evaluate to zero. It is important to note that
this is not true when the expansion of equation (30)
is done in µ(s) as assumed by several authors (e.g.,
Guo et al. 2015; Chuang & Wang 2012; Marulli et al.
2017).

When the 2PCF can be approximated by a
power-law, ξ(r)(r) = (r/r0)

−γ , the solution for equa-
tion (29) can be written as

ξ(s)(r) = g(γ, β, µ(r)) ξ(r)(r). (33)

where g(γ, β, µ(r)) has been written in several equiv-
alent forms (Hamilton 1992; Matsubara & Suto 1996;
Hawkins et al. 2003). One of these is the following:

g(γ, β, µ(r)) =1 + 2
1− γ µ(r)2

3− γ
β(z)+

γ(γ + 2)µ(r)4 − 6γ µ(r)2 + 3

(3− γ)(5− γ)
β(z)2.

(34)

This function takes values greater than 1 for the
equatorial region (µ(r) → 0), and less than 1 for
the polar axis (µ(r) → 1). Alternatively, it has been
mentioned that the quadrupolar term in the multi-
pole expansion dominates the hexadecapole. As a
result of either argument the 2PCF ξ(s)(r) seems
squashed with a peanut shape when displayed in
r-space , in agreement with common knowledge.

However, we will show below that the stretching
of redshift scale along the LoS will counteract this
apparent squashing producing a structure similar to
a FoG. In order to stay within the linear regime,
we ensure not to reach the turnaround velocity by
keeping g(γ, β, µ(r)) positive in the polar region. In
that case β is limited from 0 to an upper limit which
is a function of γ, and equals 2/3 when γ = 1.8.
The β = 0 case gives the no gravity one in which
ξ(s)(r) = ξ(r)(r).

We now remark that µ(r) = r||/|r| (see equa-
tion 31). But in some works (e.g., Matsubara & Suto
1996; Tinker et al. 2006; López-Corredoira 2014)
it has been approximated as µ(s) = s||/|s| or as

µ(cs) = c||s||/
√

c2⊥s
2
⊥ + c2||s

2
||, or even as r|| = s||.

We have referred to this as the µ(s) approximation.
In principle, given that µ is a scalar function, either
form should be acceptable as long as the s and r

vectors refer to the same point. However, we remark
that r|| differs from c||s|| (see equation 18), and that
it is usually unknown, since in order to obtain it from
s||, the infall velocity field must be known. So these
approximations should be carefully used.

The result in our equation (33) has been de-
rived for r-space, profiting from the difference be-
tween r- and s- spaces. Plotting this function di-
rectly in r-space as the independent variable pro-
duces a squashed structure for ξ(s)(r). However,
one wants to display the correlation function in s-
space to compare it with observations, not in r-
space. In order to do so, some authors perform the
µ(s) approximation while others may plainly substi-
tute s for r all the way in equation (33) and write
ξ(s)(s) = g(γ, β, µ(s)) ξ(r)(s) to be able to display
ξ(s) in s-space. This is certainly wrong because s
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100 SALAS & CRUZ-GONZÁLEZ

and r are not just independent names for position,
and there exists a relation s(r) between them that
is not linear. Specifically, the parallel component
is s|| ∼ r|| + v|| (equation 18), with v|| also a (yet
unknown) function of position r. In the case of
small disturbances we expect small velocities (be-
low turnover) that result in a bi-univocal map s(r)
and its inverse. So, if we want to display the result-
ing ξ(s) in s space, we must proceed first to evalu-
ate r = r(s) and then ξ(s)(r) via equation (33), or
in short ξ(s)(r(s)) = g(γ, β, µ(r(s))) ξ(r)(r(s)). We
can therefore informally define ξ(s)(s) ≡ ξ(s)(r(s))
and we claim that this is the correct way to evalu-
ate the two-point correlation function on a grid in
s-space.

On the other hand, if the µ(s) approximation
is used one obtains structures that are squashed in
the LoS direction, and with a characteristic peanut-
shaped geometry close to the polar axis (see for ex-
ample Hawkins et al. 2003). One concludes that
this geometry fails to reproduce the structure known
as “Finger of God" (FoG). The consequence is that
other processes are called upon to account for it,
such as random motions arising in the virialized in-
ner regions of clusters. We show below that avoiding
this approximation allows us to obtain a geometrical
structure quite similar to the FoG feature.

4. PROJECTED CORRELATION FUNCTION

In order to avoid the complications that redshift-
space distortions introduced in the correlation func-
tion, such as those produced by gravitationally in-
duced motions or virialized conditions, the projected
correlation function w⊥(r⊥) is frequently preferred
in the analysis. This approach was first suggested in
the analysis of CfA data by Davis & Peebles (1983),
who mention that at small redshift separations pe-
culiar velocities may cause ξ(s) to differ from ξ(r).
To avoid this effect, they integrate ξ(r) along the
redshift difference to obtain the projected function
w⊥(r⊥) on the plane of the sky. Then, from it,
they recuperate ξ(r) inverting the problem by solv-
ing Abel’s integral equation (Binney & Tremaine
1987) numerically. See also Pisani et al. (2014) for
other possibilities. In the case where ξ(r) is a power-
law, w⊥(r⊥) will be one as well, and the relation be-
tween them is analytical (e.g., Krumpe et al. 2010).

We will show that the projected correlation func-
tion can be used to obtain the r||(s||) function that
allows us to calculate µ(r). We start by noting that
the projection on the plane of the sky may be per-
formed either by using the ξ(s) function or its real
space counterpart ξ(r). Then we define the projected

correlation functions as

w
(s)
⊥ (s⊥, s

∗
||) =

∫ s∗||

0

ξ(s)(r(s⊥, s||)) ds||, (35)

and

w
(r)
⊥ (r⊥, r

∗
||) =

∫ r∗||

0

ξ(r)(r⊥, r||) dr||, (36)

where ξ(s)(r(s⊥, s||), given by equation (33), may be
understood as ξ(s)(s), as mentioned above.

The integral limits should go to infinity to get the
total projected functions. However, one can project
the correlation function up to a particular real space
distance r∗||. Furthermore, if we assume that there
exists a biunivocal function s||(r||), then we can find
the corresponding s∗|| = s||(r

∗
||). Boundary conditions

are thus well defined (e.g., Nock et al. 2010). On
the one hand, slices in r-space (equation 36) do not
depend on the observer’s perspective, while on the
other (equation 35) the limit of the integral (bound-
ary condition) becomes a function that is precisely
going to be evaluated. Carrying on, due to number
conservation, the projections in redshift- and real-
space multiplied by the corresponding area elements
that complete the volume where the number of pairs
are counted, must be equal. This leads to

w
(s)
⊥ (s⊥, s

∗
||) ds

2
⊥ = w

(r)
⊥ (r⊥, r

∗
||) dr

2
⊥, (37)

for all values of r⊥ (or its corresponding s⊥, see equa-
tion 9). Inverting the s||(r||) map and using equa-
tions (35) to (37), together with (33) and (9) we
obtain

∫ s∗||

0

g(γ, β, µ(r)) ξ(r)(r⊥, r||) ds|| =

c2⊥

∫ r||(s
∗
||)

0

ξ(r)(r⊥, r||) dr||. (38)

Then, changing variables to r|| in the left (ds|| =
ds||
dr||

dr||), and noting that the equality holds for all

values of s∗||, the integral signs can be omitted. Fur-
thermore, using equations (15) and (16) the equation
simplifies to

c|| ds|| =
dr||

g(γ, β, µ(r(r⊥, r||)))
, (39)

where the dependence µ(r(r⊥, r||)) = r||/
√

r2⊥ + r2||
has been emphasized for clarity. Equation (39) com-
pletes the metric transformation between redshift-



©
 C

o
p

y
ri

g
h

t 
2

0
1

9
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

ALTERNATIVE APPROACH TO THE FINGER OF GOD 101

0.0 0.2 0.4 0.6 0.8 1.0

r||/re

0.0

0.5

1.0

1.5

2.0

2.5

s |
|/
r e

0.0
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0.2

0.3
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...

1.0

r⊥/re

Fig. 1. s||/re vs. r||/re for r⊥/re from 0 to 1 as indicated
in the figure, for γ = 1.8, β = 0.4, and c|| = 1, for
any value of the scaling parameter re. The dashed line
indicates the identity s|| = r|| for reference. The color
figure can be viewed online.

and real-spaces. As a consistency test, we note that
in the limit of no gravitational disturbance (β = 0)
we have g(γ, β, µ(r)) = 1 and equation (8) is recov-
ered.

5. RESULTING REDSHIFT-SPACE AND
REAL-SPACE RELATION

We integrate equation (39) numerically using
equation (34), to obtain the s||(r||) function shown
in Figure 1 for different values of r⊥/re, indicated
for each curve in the figure, where re is an arbitrary
scaling parameter, γ = 1.8, β = 0.4, and c|| = 1.
Note that the relation is not linear. If we compare
it to the identity line (s|| = r||) shown as a dashed
line, we note that sometimes the curves of constant
r⊥ lie above or below the identity line, or even cross
it.

So, it can be noted that for on-axis separations
(where r⊥ = 0), the spatial scale in redshift space
is stretched, i.e. s|| > r||, effectively opposing the
squashing effect obtained by the rough µ(s) approx-
imation. On the other hand, for r⊥ → 1 a squashed
structure is seen (even more so that the one ob-
tained by the µ(s) approximation) that ultimately
converges to the limit s|| → r|| as we approach the
plane of the sky (r|| = 0).

These geometrical distortions can be better ap-
preciated by their effect on the 2PCF presented in
Figure 2. Here we start from a grid in s−space,
and transform to r-space using the integral rela-
tion (equation 39) for the parallel component and

equation (9) for the perpendicular one. From there,
we calculate µ(r) (equation 31), g(γ, β, µ(r)) (equa-
tion 34), assuming that ξ(r)(r) = (r/r0)

−γ ; and
finally, ξ(s)(s) (i.e. ξ(s)(r(s)) ) from equa-
tion (33). The cosmological distortion is governed
by the c|| and c⊥ parameters that depend on the
Alcock-Paczyński function AP (see equation 12).
Its value depends on the cosmological parameters
Ω = (Ωm,Ωk,ΩΛ) and increases with the redshift
z (see Figure 1 in Alcock & Paczyński 1979).

Figure 2(a) shows the case that corresponds to
the parameters used for Figure 1: γ = 1.8, β = 0.4
and AP = 1, where the geometrical distortions pro-
duced are evident, an elongation in the polar di-
rection and a squashing in the equatorial direction.
As can be noted the polar elongation resembles the
structure known as FoG.

In the other three Figures, 2(b), 2(c) and 2(d), we
explore the effect of cosmological and gravitational
alterations. Figure 2(b) shows that the effect of in-
creasing AP is a geometrical distortion that concen-
trates the structure towards the polar axis direction
for AP = 2 that corresponds to ΛCDM cosmology at
z = 2.6. In Figure 2(c) we explore the effect of chang-
ing the dimensionless growth-rate for visible mater
β. This gravitational effect is to enhance the FoG
structure as its value increases (recall that its limit
value is 2/3). On the other hand, if β decreases the
structure becomes rounder and the FoG fainter, as
is shown in Figure 2(d). By comparing Figures 2(b)
and 2(c) relative to 2(a), we note that the same en-
hanced strength of the FoG feature is obtained in the
small scale regions, but the large scale structure is
quite different. This is because in the first case the
distortion is cosmological while on the second it is
gravitational.

Although it has not been the purpose of this pa-
per, we may consider different values of the power-
law index γ and we obtain figures similar to those
shown in Figure 2. In some cases they might even re-
semble some of the cases depicted here. It turns out
that lower values may accommodate rounder 2PCFs
at mid scales, while a steeper γ may also concentrate
the structure towards the LoS. Note, however, that
it is easy to discern those cases by a simple projec-
tion on the plane of the sky, as depicted through § 4.
This is because such a projection will erase redshift
distortions, both gravitational (β) and cosmological
(AP ), while preserving the radial structure γ.

As we have indicated, a rounder 2PCF at mid
spatial scales is favored by some works that use
the µ(s) approximation. As can be seen in Fig-
ure 2(b), rounder figures can be obtained with lower
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Fig. 2. Redshift-space two-point-correlation-function (2PCF) ξ(s)(s⊥, s||) in logarithmically spaced contours at e inter-
vals for any value of the scaling parameter re. The parameter values are: (a) γ = 1.8, β = 0.4 and AP = 1; (b) γ = 1.8,
β = 0.4 and AP = 2; (c) γ = 1.8, β = 0.5 and AP = 1; (d) γ = 1.8, β = 0.2 and AP = 1. The color figure can be
viewed online.

values of β. We have estimated that a β = 0.25
produces a 2PCF which is squashed equally to that
obtained by the µ(s) approximation for the case
β = 0.4 for most points in the s-space plane, those
with s⊥ > s||. An increase in the AP parameter may
also contribute to alleviate the situation.

Another possibility, that was not intended to be
covered here, is the case of a more realistic 2PCF
ξ(r)(r) such as the ones inferred from baryon acous-
tic oscillations (BAOs) (e.g. Slosar et al. 2013) or
those obtained by the CAMB code (Seljak & Zal-
darriaga 1996). In order to apply the results of this
paper to such cases, one could try breaking the in-
ferred ξ(r)(r) profile into a series of power-laws, and
then apply equation (39) to each section. If this is
not possible, then we would have to give up equa-
tions (33) and (34) as a way of simplifying ξ(s)(r).
However, the projections on the plane of the sky, i.e.
equations (35) and (36) are still valid, and instead of
using equation (33) to simplify, we would have to go
back to the expansion of ξ(s)(r) in multipoles (equa-

tion 30). In that case one would end up with the
following equation:

c|| ds|| =
ξ(r)(r)∑

l=0,2,4 ξl(r) Pl(µ(r))
dr|| (40)

instead of equation (39). We would also have to find
a way to estimate the multipole moments ξl(r). An-
other possibility is to leave ξ(s)(r) in the denomi-
nator. Considering these possibilities seems like an
interesting task for future works, but it is beyond the
scope of this paper.

We conclude that a whole range of possibilities
in shape and strength of the FoG structure and the
squashing of the equatorial zone can be obtained by
tuning the parameters γ, β, and AP . This may pro-
vide a path towards solving the usual degeneracy
problem between cosmological and gravitational dis-
tortions, which can still be seen at a level of 10% in
1σ correlated variations in recent work (e.g. Satpa-
thy et al. 2017).
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6. CONCLUSIONS

We emphasize the importance of distinguishing
three spaces in cluster and large scale structure stud-
ies: the observable redshift-space σ, the physical
redshift-space s, and the real-space r. The trans-
formation between σ and s is an isotropic dilation
that introduces a scale factor dependent on the cos-
mology.

On the other hand, the transformation between
s and r occurs through a unitary Jacobian inde-
pendent of redshift, and only distorts the space by
factors related to the Alcock-Paczyński AP function
(c.f., equations 15 and 16).

Furthermore, when we introduce non-relativistic
peculiar velocities in this scheme, we demonstrate
that the same relation between observable and phys-
ical redshift-spaces s = K(Ω, z) σ is kept. In the
analysis of the 2PCF in the physical redshift-space
s, we recover the Kaiser (1987) effect independent
of redshift in Fourier space, and Hamilton (1992) re-
sults in configuration space.

We remark that a dependence with µ in real-
space (µ(r) = r||/|r|) appears, and that it has
been a common practice to approximate it from
redshift-space coordinates as either µ(s) = s||/|s|

or µ(cs) = c||s||/
√

c2⊥s
2
⊥ + c2||s

2
|| or r|| = s||, some-

times called the“distant observer approximation", or
simply to substitute s for r in the equations. To
avoid further confusion we have called this the µ(s)
approximation in any of its forms. We argue that
this wrong assumption produces either a squashed
or a peanut-shaped geometry close to the LoS axis,
for the 2PCF in redshift-space.

Since r|| is usually unknown, we propose a
method to derive it from s|| using number conser-
vation in the projected correlation function in both
real- and redshift-spaces. This leads to a closed form
equation (39) for the case where the real 2PCF can
be approximated by a power-law. From this, we solve
for µ(r) in real-space, and show that a different view
of the redshift-space 2PCF emerges. The main result
is that the redshift-space 2PCF presents a distortion
in the LoS direction which looks quite similar to the
ubiquitous FoG. This is due to a strong anisotropy
that arises purely from linear theory and produces a
stretching of the scale as one moves into the on-axis
LoS direction. Moving away from the LoS the struc-
tures appear somewhat more squashed than those
obtained by the µ(s) approximation for equivalent
values of β. The implications of this remains an open
question.

The development presented here produces struc-
tures that qualitatively reproduce the observed fea-
tures of the 2PCF of galaxies and quasars large scale
structure. A squashing distortion in the equatorial
region is attributed to a mixture of cosmological and
gravitational effects. The FoG feature that is usually
attributed to other causes is instead ascribed to the
same gravitational effects derived from linear theory.

We conclude that a whole range of possibilities
in shape and strength of the FoG structure, and the
squashing of the equatorial zone, can be obtained by
tuning the parameters γ, β, and AP . This provides
a path towards solving the usual degeneracy problem
between cosmological and gravitational distortions.
In a future paper (Salas & Cruz-González in prepa-
ration) we will apply these results to the galaxies and
quasar data obtained by current large scale surveys.

I.C.G. acknowledges support from DGAPA-
UNAM (Mexico) Grant IN113417.
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