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ABSTRACT

In this paper we search for mid-range planar orbits for a spacecraft traveling in
the neighborhood of Deimos. The first task is to perform a numerical search to find
and classify mid-range natural orbits around Deimos that are dominated by Mars,
using the idea of “Quasi Satellite Orbits” (QSO). The influence of the eccentricity of
the orbit of Deimos around Mars and the irregular shape of Mars are considered in
the mathematical model, allowing an assessment of their importance. Our approach
uses two different initial positions for Deimos in its orbit around Mars, at apoapsis
and periapsis. The minimum, maximum, and average Deimos-spacecraft distances
are also obtained.

RESUMEN

En este trabajo se localizan las órbitas planas medias para un veh́ıculo espacial
que viaja en la cercańıa de Deimos. Se realiza un análisis numérico para encontrar
y clasificar las órbitas medias naturales alrededor de Deimos que están dominadas
por Marte, mediante el uso del concepto de las órbitas quasi-satelitales (QSO). El
modelo numérico considera la influencia de la excentricidad de la órbita de Deimos
en torno a Marte, aśı como la forma irregular de Marte, lo que nos permite evaluar
su importancia. Nuestro enfoque considera dos posiciones iniciales distintas para
Deimos en su órbita en torno a Marte, en apoápside y periápside. También se
calculan las distancias máximas, mı́nimas y promedio entre Deimos y el veh́ıculo
espacial.

Key Words: planets and satellites: individual (Deimos)

1. INTRODUCTION

Mars has already been the final destination and
target of observation of several missions and the in-
terest for this planet has been growing. Among the
many missions planned for the red planet, some have
the exploration or observation of its moons, Pho-
bos and Deimos, as important stages of the mis-
sion. Studying these moons remains interesting to-
day, as there are many speculations about their ori-
gin. Among some assumptions, it is possible that
they may have been formed by the agglomeration
of parts of an old body that collapsed, or that they
were formed by the ejection of material from Mars.
They could also be captured primitive bodies, such
as comets or asteroids. In this case they may contain
information about the formation of the Solar Sys-
tem (Oberst et al. 2014). The problem in planning

1National Institute for Space Research - INPE, São José
dos Campos, Brazil.

2São Paulo State University - UNESP/FEG,
Guaratinguetá, Brazil.

missions to these moons is that they have masses
much smaller than Mars. This feature makes the
spheres of influence (Araujo et al. 2008) of both
moons to be just above or even below their surfaces
(Gil & Schwartz, 2010), making it very difficult to
keep a spacecraft in orbit. Alternative and appro-
priate forms for a spacecraft to orbit these moons
were studied (Wiesel 1993) without the use of aux-
iliary thrusters, because this technique would lead
to an increase in cost with a consequent decrease
in the duration of the mission. Among the possible
alternatives, there are some types of natural orbits
that can be found in systems with major mass dif-
ferences between the bodies. These types of orbits
can be found using the circular and elliptical cases
of the restricted three-body problem and using the
small gravitational interaction of the moon to keep
the spacecraft close to it, as if it were actually orbit-
ing the body. In any case Mars dominates the motion
of the spacecraft. They are called “Quasi-Satellite
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Orbits” (QSO) (Benest 1976; Kogan 1989, 1990; Li-
dov & Vashkov’yak 1993, 1994; Mikkola et al. 2006;
Gil & Schwartz 2010). Their use has been consid-
ered for future missions to the moons of Mars. Some
examples of these types of missions are: Phobos and
Deimos and Mars Environment (PADME) (NASA,
2018), DePhine - Deimos and Phobos Interior Ex-
plorer (Wiesel 1993) and Martian Moons Explorer
(MMX) mission (Campagnola et al. 2018). There
are also cases where the spacecraft can be placed at
large distances from the moon and in retrograde mo-
tion, which are the so called “Distant Retrograde Or-
bits” (DRO) (Lam & Whiffen 2005; Villac & Aiello
2005; Whiffen 2003). Quasi-periodic orbits located
further away can also be found around other bodies
of the Solar System, like Mercury, as shown in Ma &
Li, (2013). In the Solar System it is also possible to
find different types of orbits around moons, as can be
seen in Carvalho et al. (2012), Gomes & Domingos,
(2016), Santos et al. (2017) and Cinelli et al. (2019).
Phobos, the largest and closest moon of the Mar-
tian system, has been the main objective of many
studies (Gil & Schwartz 2010). The main goal of the
present paper is to show some differences and also
peculiarities of orbits around Deimos, the smallest
and most distant moon of Mars. The average radius
of Deimos is 6.2 km (JPL/NASA, 2019a) and its dis-
tance from Mars is 23,458 km (JPL/NASA, 2019b).
It is highly non-spherical and very much like Type I
and II asteroids, which are composed of rocks rich in
carbonaceous material. The eccentricity of the orbit
of Deimos is small.

To study how to observe Deimos using QSO-type
orbits, a numerical search will be performed and the
orbits will be selected according to the measured
values of the maximum, minimum and average dis-
tances between the spacecraft and Deimos over a cer-
tain time. In that sense, maps of those quantities will
be obtained to help to find adequate orbits.

The purpose of these measurements is to offer
ranges of options (not just stand-alone orbits) for
a mission to Deimos. In particular, it is desired to
find mid-range orbits to place a spacecraft when it
arrives in the system. Those orbits are very ade-
quate to make the first measurements of Deimos be-
fore a closer orbit is selected. An orbit that causes
the spacecraft to oscillate between distances from 40
to 200 km from the center of Deimos is considered
to follow this criterion. This is a study similar to
the one for Phobos in Cavalca et al. (2018). The
goal is to complete the study of orbits to observe
both moons of Mars. It is interesting for a mission
to have some variations in the distance between the

spacecraft and Deimos, because in this way it is pos-
sible to observe the moon from different locations.
It is also important not to go too close to the moon,
to avoid a risk of collision, while going too far from
the moon increases the risk that the spacecraft will
escape from the vicinity of Deimos. In that sense,
mid-range orbits are adequate, because they allow
the spacecraft to approach Deimos at a distance as
short as possible, without the risk of crashing. In
particular, Deimos has a very irregular shape and
these types of orbits are also interesting because they
are located at a safe distance from collision, and they
are not much affected by the shape of Deimos. The
idea is to use these mid-range orbits to make the
first scientific observations of Deimos, to measure its
gravitational field with more accuracy and to better
analyze its surface. After these preliminary analy-
ses the aim is to prepare a final approach to Deimos
placing the spacecraft in lower orbits, or even landing
on its surface. Some related examples can be found
in Zamaro & Biggs, (2016), Akim et al. (2009) and
Tuchin (2008).

To describe the motion of the spacecraft around
Deimos and Mars, the restricted planar elliptic three-
body problem (Szebehely 1967; Domingos et al.
2008) added to the acceleration due to the non-
spherical shape of Mars, represented by the term J2

(Sanchez et al. 2009) is used. In this model, Mars is
called the primary body, because it has the largest
mass of the system. Deimos is called the secondary
body. Finally, the spacecraft is assumed to have a
negligible mass. The primary and secondary bodies,
Mars and Deimos, rotate in elliptical orbits around
their common center of mass. The spacecraft travels
around these bodies without influencing them. In
addition to the gravitational force, we will also con-
sider the effects of the non-spherical form of Mars,
by adding the J2 term of its gravitational potential.
The non-spherical shape of Deimos is not included
in the model because it has only very small effects at
the distances considered in the present paper. An-
other objective of this paper is to measure the in-
dividual contribution of each force included in the
mathematical model of the final trajectories. This is
done by measuring the effect of each force during the
integration time. This type of study was made for
the gravity field of the Earth in Sanchez, Prado &
Yokoyama (2014), and adapted for the Mars-Phobos
system in Cavalca et al. (2018). The present paper
will study different possibilities for the mathematical
model to show the relevance of certain parameters in
the search for mid-range trajectories around Deimos.
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The results will be shown in color maps where it
is possible to identify the maximum, minimum and
average distances spacecraft-Deimos as a function of
the initial conditions of the spacecraft with respect
to Deimos. From these results the mission designer
can select the most appropriate orbits according to
the goals of the mission. It is also possible to iden-
tify regions and families of orbits with certain char-
acteristics. The influence of the position of Deimos
with respect to Mars in the trajectories will also be
studied. In this case, two opposing positions will be
considered: periapsis and apoapsis.

The present paper has the following objectives:(i)
to find and classify orbits to observe Deimos, which
can keep a spacecraft in mid-range distances from
Deimos over a given time; (ii) to measure the impor-
tance of the eccentricity of the orbit of Deimos, even
if small, in the orbits found; (iii) to investigate the
contribution of each force that acts in the dynamics
of the system, and so to be able to measure which
ones are the most relevant; (iv) to analyze the effects
of the initial position of Deimos with respect to Mars
in the trajectories of the spacecraft.

2. MATHEMATICAL MODEL

Next, the mathematical model, the parameters
and other data used and calculated during the sim-
ulations are presented, as well as the forces that in-
fluence the dynamics of the system, and the criteria
to select and classify the orbits. The main idea is
to build general maps that can show different pos-
sibilities of orbits. Thus, these maps can serve as
catalogs, to be used according to the mission re-
quirements, contributing to the choice of the best
parameters to accomplish a mission. First, the ini-
tial conditions of the spacecraft relative to Deimos
are chosen, that is, the initial distance between the
spacecraft and Deimos and the initial components of
the velocity vx and vy of the spacecraft. Then, the
trajectory is numerically integrated over the given
time. Next, the distances spacecraft-Deimos during
the whole period of the natural trajectory are calcu-
lated. Then the averages, minimum and maximum
distances reached by the spacecraft from Deimos are
shown. Each type of orbit can be used for a cer-
tain stage of a mission. The results show that the
average distances follow the same behavior of the
maximum distances, while the minimum distances
present small variations.

Equations 1 and 2 are the equations of motion of
the spacecraft according to the model adopted. The
first two terms of the equations refer to the restricted
elliptic three-body problem, where m1, m2 and m3

are, respectively, the masses of Mars, Deimos and the
spacecraft. Mars and Deimos, calledM1 andM2, ro-
tate in elliptical orbits around their center of mass.
The spacecraft, called M3, travels around these bod-
ies and in the same plane, but without influencing
the motion of M1 and M2. The third terms of the
right side of the equations refer to the acceleration
due to the non-spherical shape of Mars, represented
by the term J2 of its gravity field (Sanchez et al.
2009).

ẍ = −Gm1

(

x− x1

r31

)

−Gm2

(

x− x2

r32

)

−Gm1J2r
2
M1

(

3x

2r51

)

, (1)

ÿ = −Gm1

(

y − y1
r31

)

−Gm2

(

y − y2
r32

)

−Gm1J2r
2
M1

(

3y

2r51

)

, (2)

where the universal gravitational constant is indi-
cated by G; r1 is the distance from the spacecraft
to M1 (Mars); r2 is the distance from the spacecraft
to M2 (Deimos); the radius of Mars is rM1

; and the
position of the spacecraft is indicated by x, y.

Then, the process to obtain the desired orbits
starts by choosing the values of the initial condi-
tions, position and velocity, and the total integration
time of each orbit. During the integration the aver-
age, maximum and minimum distances spacecraft-
Deimos are calculated. This is repeated for each or-
bit. Finally, the distances are classified and used to
build maps. Equation 3 shows the calculation of the
average distance spacecraft-Deimos (ravg) (Prado
2015), where r2 is the distance between the space-
craft and Deimos and the total integration time is
given by T .

ravg =
1

T

∫ T

0

r2 (t) dt. (3)

Next, the algorithm used to search for the natu-
ral orbits around Deimos is described. At first, Mars
and Deimos are assumed to be fixed on the x-axis in
the fixed reference system. A spacecraft is placed
in this same system and aligned in the x-axis, at a
given distance from Deimos. Since all orbits inter-
sect the x-axis at some point, conducting a search
restricted to this line is enough to map all the or-
bits around Deimos. Figure 1 shows, in the inertial
system, Mars, Deimos and the spacecraft, as well as
the initial conditions (position and velocity), which



©
 C

o
p

y
ri

g
h

t 
2

0
1

9
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

1
9

.5
5

.0
2

.1
6

308 CAVALCA ET AL.

Fig. 1. Illustration of the problem showing the Mars-
Deimos system and the initial conditions that define each
orbit: the initial distance between Deimos and the space-
craft on the x-axis is indicated byD; and the components
of the initial velocity of the spacecraft are indicated by
vx and vy. The color figure can be viewed online.

identify each orbit: D, the initial distance between
the spacecraft and Deimos; and vx and vy, the com-
ponents of the initial velocity of the spacecraft.

Based on Figure 1, it is possible to calculate the
complete set of initial conditions of the spacecraft
and then to make the numerical integrations of the
equations of motion over the given time. During
the numerical integrations the possibility of collisions
of the spacecraft with Deimos is tested. The aver-
ages, minimum and maximum distances between the
spacecraft and Deimos are calculated for each trajec-
tory. These results are presented in the form of maps
that will assist the mission designer in selecting the
most appropriate orbits for each stage of the mis-
sion. The classification of those orbits shows orbits
that are close to Deimos, but that respect some given
limit to avoid collisions and escapes. On the other
hand, it is possible to identify orbits that stay at
longer distances from Deimos, including some that
leave the neighborhood of Deimos. This type of or-
bit can be used to naturally transfer the spacecraft
from an orbit closer to Deimos to an orbit around
Mars located far from Deimos. Depending on the
purpose of the mission, near or distant orbits can be
selected as ideal. To have a better view of the trajec-
tories, they will be plotted in the fixed and rotating
system.

The study of the contribution of each force that
acts in the system, which is made by integrating each
force along the time, is presented. It follows Prado
(2013), who studied the perturbation suffered by a
spacecraft by the gravity fields of the Sun and the
Moon. (For different systems and situations see also
Prado 2014; Sanchez & Prado 2017; Sanchez, How-
ell & Prado 2016; Short et al. 2016; Santos et al.
2015; Oliveira et al. 2014; Oliveira & Prado 2014;

Carvalho et al. 2014). Four types of integrals can
be used to identify different aspects of the problem.
These integrals are given by:

1.
1

T

∫ T

0

|a| dt. (4)

2.
1

T

∫ T

0

avdt, (5)

where av =< a, v̂ > and v̂ =
v

|v|
.

3.
(

p2x + p2y + p2z
)

1

2 , (6)

where pk =
1

T

∫ T

0

akdt,with k = x, y, z.

4.
(

p2x + p2y + p2z
)

1

2 , (7)

where pk =
1

T

∫ T

0

Akdt,with k = x, y, z.

Here, a indicates the acceleration due to the force
under study; v the velocity of the spacecraft; Ak

the difference between the total acceleration and the
Keplerian term of the acceleration, considering the
same set of initial conditions and time; and T the
final time of integration of the trajectory. The bold
letters indicate vectors. The trajectory can be calcu-
lated for any desired time and the greater the time
the greater the value of the integral. To exemplify,
we can choose two trajectories close to Deimos, with
only one of them colliding with Deimos. Analyz-
ing only the value of the integral we could conclude
that the trajectory that does not collide would be
more disturbed than the other, because the integra-
tion time was smaller. In order to avoid this error,
the value of the integral is multiplied by the normal-
ization factor 1/T . Using this technique it is possible
to compare trajectories with different durations.

For this work, the first type of integral is used,
which consists in measuring the total acceleration
suffered by the spacecraft. The second type of inte-
gral measures the variation of energy of the space-
craft due to each force. If it is negative, the force re-
moves energy from the spacecraft. Otherwise, when
it is positive, energy is added to the spacecraft. The
third type of integral is calculated for each compo-
nent of the acceleration. It also considers compen-
sation for negative and positive effects. The fourth
type of integral measures the difference between the
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TABLE 1

PHYSICAL AND ORBITAL PARAMETERS OF MARS AND DEIMOS

Celestial Average GM J2 Semi-major Eccentricity

Body radius (km) (km3/s2) axis (km)

Mars 3396.19 42828.0 0.00195 − −

Deimos 6.2 9.85× 10−5 − 23458 0.0002

accelerations of a Keplerian orbit and a disturbed or-
bit having the same initial conditions. Studies that
use the first and second type of integral in the con-
struction of perturbation maps, whose objective is to
identify regions of low perturbations, can be found
in Sanchez, Howell & Prado, (2016).

3. RESULTS

In this section, the results of the simulations are
presented, considering several sets of initial condi-
tions. Initially, a 30-day integration time is consid-
ered for the orbit, like in Gil & Schwartz, (2010) and
Cavalca et al. (2018), to keep the same values used in
the literature in order to compare the results. Longer
times will be tested later. Table 1 shows the orbital
and physical parameters of Mars and Deimos found
in the JPL HORIZONS System3.

Combining the possible values of the initial con-
ditions of the spacecraft relative to Deimos (D and
the components of the velocity vx and vy), many fig-
ures can be drawn. The figures are presented in the
form of color maps, showing the minimum, maxi-
mum and average spacecraft-Deimos distances. The
regions indicating collisions of the spacecraft with
Deimos are shown in white. Using those maps it is
possible to identify the regions of interest and, if nec-
essary, to make a more detailed search using smaller
steps for the variables to find more accurate initial
conditions. Some of the trajectories are also plotted
to analyze their behavior.

Initially, the simulations consider the most com-
plete model, where Mars has a non-spherical shape
and Deimos is in an eccentric orbit. Afterwards, a
new simulation is performed considering the same set
of initial conditions, but with Mars having a spheri-
cal shape and Deimos in a circular orbit. In this way
it is possible to analyze the influence of each force
on the trajectory of the spacecraft and to compare
the results with a more realistic model. The study of
the integrals of the accelerations present in the dy-
namics is also made, to quantify the contribution of
each force acting in the trajectory of the spacecraft.

3https://ssd.jpl.nasa.gov/?horizons

Figures 2 and 3 show the maximum (Dmax), min-
imum (Dmin) and average (Davg) distances between
the spacecraft and Deimos. The distances are pre-
sented as a function of the initial distance D (km) on
the horizontal axis and the velocity vx (km/s) on the
vertical axis. The orbits begin at the moment when
Deimos is at periapsis. The choices of these param-
eters are made after preliminary simulations vary-
ing all the parameters of the initial conditions and
then selecting the most interesting ones. For the ini-
tial velocity vy it was observed that a fixed value of
−0.003 km/s generated orbits that were at short and
mid-range distances from Deimos. For the initial dis-
tance, the rangeD from 40 to 50 km showed to be ad-
equate, as was a range of values for vx from−0.003 to
0.003 km/s. There were 35,760 trajectories that sur-
vive for up to 30 days and 24,340 trajectories not sur-
viving that long, making a total of 60,100 trajecto-
ries. Each orbit is identified by a point on the graph
that gives a specific value of D (horizontal axis) and
vx (vertical axes). Using this technique, it is possi-
ble to show the distances spacecraft-Deimos to select
the orbits of interest. The values of Dmax, shown
in Figure 2(a), range from 80.24 to 22,330.45 km.
The values of Dmin, Figure 2(b), go from 16.00 to
45.43 km. The values of Davg, Figure 2(c), go from
61.66 to 10,553.13 km. From the figures it is possible
to identify that the trajectories that remain closer to
the moon are located in the central part of the plot,
where the lowest values of Dmax (Figure 2a), below
200 km, are located. This corresponds to 22.55%
of the total number of solutions (the solutions that
end in collisions divided by the number of solutions
that survive for 30 days). The lowest values of Davg

(Figure 2c), below 100 km, correspond to 22.33% of
the total solutions. It is also observed that there is
a correspondence in the dispersion of the orbits, for
both the closer and the distant ones. There is also
symmetry with respect to the y axis for vx equal to
zero. However, the minimum distance values, Fig-
ure 2c, behave almost inversely when compared to
the maximum and average values. The highest val-
ues ofDmin, between 40.00 and 45.46 km, are located
in the same region where Dmax and Davg have the
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(a) Maximum distances spacecraft-Deimos. (b) Minimum distances spacecraft-Deimos.

(c) Average distances spacecraft-Deimos.

(d) Trajectory of the spacecraft for T = 30
days, Dmax = 22, 330.4563 km, Dmin =
16.3177 km, Davg = 10, 499.3097 km.

(e) Trajectory of the spacecraft for T =
150 days, Dmax = 46914.6094 km, Dmin =
16.3177 km, Davg = 32705.8703 km.

Fig. 2. Maximum, minimum and average spacecraft-Deimos distances, in km, as a function of D (km) and vx (km/s),
considering vy = -0.003 km/s and that Deimos is at the periapsis of its orbit around Mars. Parts (d) and (e) show the
trajectory with maximum Dmax. The color figure can be viewed online.

lowest values. These trajectories are close to Deimos,
but at safe distances from it, to avoid risks of colli-
sion. These trajectories are excellent options to place
a spacecraft. The lowest values of Dmin, which are
between 16.00 and 20.00 km, can be found, in most
cases, at the limits between the areas of high values
of Dmax (over 200 km) and Dmin (over 100 km) and

areas that indicate a collision, the blank areas. This
indicates that these regions are not good options for
the spacecraft: they take the spacecraft far away
from the moon, but can, sometimes, pass very close
and even collide with Deimos. Figures 2(d) and 2(e)
show the trajectory with maximum Dmax. The ini-
tial conditions are: D = 49.9 km, vx = 0.0012 km/s,
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TABLE 2

THE FIVE ORBITS WITH SMALLEST Dmax (km) AROUND DEIMOS1

D vx Davg Dmin Dmax D∗

avg D∗

min D∗

max Davg −D∗

avg Dmin −D∗

min Dmax −D∗

max

(km) (km/s) (km) (km) (km) (km) (km) (km) (km) (km) (km)

46.4 0 64.0228 45.3666 80.2416 61.6881 42.8124 85.1829 2.3347 2.5542 −4.9413

46.3 0 64.1237 45.4357 80.2701 61.7661 42.9782 84.6516 2.3576 2.4575 −4.3815

46.4 −0.00001 64.0212 45.3513 80.3273 61.6866 42.8118 85.1780 2.3346 2.5395 −4.8507

46.4 0.0001 64.0258 45.3519 80.3292 61.6914 42.8115 85.1919 2.3344 2.5404 −4.8627

46.3 0.00001 64.1268 45.4206 80.3681 61.7693 42.9774 84.7016 2.3575 2.4432 −4.3335

1Assuming vy = -0.003 km/s, Deimos initially at periapsis, e = 0.0002, J2 = 1960.45×10−6, T = 30 days. Corresponding
results for the circular and spherical model are represented by an asterisk (∗).

TABLE 3

THE FIVE ORBITS WITH SMALLEST Dmax (km) AROUND DEIMOS*

D vx Davg Dmin Dmax D#
avg D#

min D#
max Davg −D#

avg Dmin −D#
min Dmax −D#

max

(km) (km/s) (km) (km) (km) (km) (km) (km) (km) (km) (km)

45.1 0 62.8565 45.0877 78.4059 65.5536 44.2349 91.7359 −2.6971 0.8528 −13.3300

45.2 0 62.7707 45.0094 78.4426 65.4260 44.3376 90.6978 −2.6553 0.6719 −12.2552

45.1 0.00001 62.8581 45.0678 78.5177 65.5567 44.2349 91.6955 −2.6986 0.8329 −13.1778

45.1 −0.00001 62.8565 45.0678 78.5178 65.5519 44.2349 91.7801 −2.6954 0.8329 −13.2623

45.2 0.00001 62.7722 44.9944 78.5269 65.4291 44.3370 90.7108 −2.6569 0.6574 −12.1838

*Assuming vy = −0.003 km/s, circular orbit for Deimos and spherical shapes for the bodies and T = 30 days. Corre-
sponding results for the elliptical and flat body models are represented by D#

max. Deimos is assumed to be initially at
periapsis.

vy = −0.003 km/s and two simulation times were
used: 30 and 150 days. They show clearly that the
spacecraft goes away from Deimos and enters an or-
bit around Mars that is co-orbital with Deimos. Fig-
ures 3(a), 3(b) and 3(c) show results corresponding
to Figures 2(a), 2(b) and 2(c), but now the model
does not consider the effects of the flattening of Mars.
The main difference is the reduction of the central
blue region, which means that the maximum dis-
tances increase in this region. It happens for maxi-
mum and average distances. Therefore, the flatten-
ing of Mars helps to keep the orbits closer to Deimos
in this region.

Table 2 shows the values of the maximum, mini-
mum and average distances for the five closest orbits
to Deimos, that is, those with lowest values of Dmax.
Note that the trajectories keep the spacecraft in the
distance range 80.24-80.36 km from Deimos over 30
days, without the need of orbital maneuvers. This
means that they are good options to place the ve-
hicle. The values corresponding to the model where
Deimos is in a circular orbit and Mars has spherical
shape are also presented, indicated by an asterisk
(∗). Analyzing the differences between the values of
the most complete and the simplest model, one can

see the importance of considering a more realistic
model. Note that, when considering spherical bod-
ies and circular orbit for the moon, the errors are of
the order of 4.33 to 4.94 km for the maximum dis-
tances; 2.44 to 2.55 km for the minimum distances
and 2.33 to 2.35 km for the mean distances, over a
period of 30 days. Note also that, when considering
the simpler model, the values of maximum distances
are overestimated. This is shown by the negative val-
ues of the last column of Table 2. The values of the
mean and minimum distances are underestimated,
as shown by the positive values in Columns 9 and
10 of Table 2. Figure 4 shows the trajectories with
both models obtained with the data given by the first
line of Table 2. The trajectories for the other lines
of the table are very similar and they are omitted
here. The left side considers the best model (ellipti-
cal orbit for Deimos and a flat body for Mars) and
the right side the simplified model (circular orbit for
Deimos and a spherical body for Mars). Note that
the best model gives a near periodic orbit, while the
simple model gives an orbit with some oscillations in
the spacecraft-Deimos distance.

Table 3 shows the comparison between the sim-
plified and the more complete model, over 30 days.
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312 CAVALCA ET AL.

(a) Maximum distances spacecraft-Deimos neglecting
the flattening of Mars.

(b) Minimum distances spacecraft-Deimos neglecting
the flattening of Mars.

(c) Average distances spacecraft-Deimos neglecting the
flattening of Mars.

Fig. 3. Maximum, minimum and average spacecraft-
Deimos distances, in km, as a function of D (km) and
vx (km/s), considering vy = -0.003 km/s. The model
considers e = 0, J2 = 1960.45× 10−6, and T = 30 days.
The color figure can be viewed online.

In this case, the simplified model is used as a ref-
erence. Note that the trajectories with the lowest
values of maximum distances have initial conditions
different from those of Table 2, where the reference
case used the most complete model. The lowest max-
imum distance for the complete model shown in Ta-

(a) Model considering an el-
liptical orbit for Deimos and
a flat body for Mars.

(b) Model considering a cir-
cular orbit for Deimos and a
spherical body for Mars.

Fig. 4. Trajectories associated with the first line of Ta-
ble 2 in the rotating frame. The color figure can be
viewed online.

(a) Model considering an el-
liptical orbit for Deimos and
a flat body for Mars.

(b) Model considering a cir-
cular orbit for Deimos and a
spherical body for Mars.

Fig. 5. Trajectories associated with the first line of Ta-
ble 3 in the rotating frame. The color figure can be
viewed online.

ble 2 occurs for D = 46.40 km and vx = 0 km/s,
and the value is Dmax = 80.24 km. The lowest
maximum distance obtained when considering the
model simulated in Table 3 occurs for D = 45.10 km
and vx = 0.00 km/s, and it is Dmax = 78.40 km.
Considering this last set of initial conditions for the
most complete model, we have a maximum distance
of 91.73 km. In Table 3, the five closest trajecto-
ries are presented considering vy = −0.003 km/s, a
circular orbit for Deimos and a spherical shape for
the bodies. The simulation time is equal to 30 days.
The corresponding results considering the most com-
plete model are indicated by D#

max. The values of
Dmax−D#

max vary from −12.18 to −13.33 km, that
is, they are all negative, which shows that the val-
ues of Dmax are underestimated for the orbits near
Deimos. This important fact should be noted.

Next, Figure 5 shows the trajectories with both
models, obtained with the data of the first line of
Table 3. The trajectories for the other lines of the
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TABLE 4

TEMPORAL EVOLUTION OF A SINGLE ORBIT WHIT DEIMOS AT PERIAPSIS*

T (days) 5 15 30 60 90

Dmax (km) 80.2362 80.2416 80.2416 80.2416 80.2416

Dmin (km) 45.3702 45.3703 45.3667 45.3639 45.3639

Davg (km) 64.1184 64.1287 64.0227 64.0606 64.0811

PertDeimos 2.41 2.41 2.41 2.41 2.41

10−8 (km/s2)

PertMars 7.01 7.00 7.00 7.00 7.00

10−5 (km/s2)

PertJ2Mars 4.32 4.32 4.32 4.32 4.32

10−9 (km/s2)

*D = 46.4 km, vx = 0, vy = −0.003 km/s, considering e = 0.0002 and J2 = 1960.45 × 10−6 for the simulation times:
5, 15, 30, 60, and 90 days.

Fig. 6. Perturbation due to Deimos in km/s2 as a func-
tion of D (km) and vx (km/s). The color figure can be
viewed online.

table are very similar and they are omitted here. The
left side considers the best model (elliptical orbit for
Deimos and a flat body for Mars) and the right side
the simplified model (circular orbit for Deimos and
a spherical body for Mars). Note that the simple
model gives a near periodic orbit, while the best
model gives an orbit with some oscillations in the
spacecraft-Deimos distance.

To show the influence of each force on the dy-
namics of the system, the integral tests will be car-
ried out (Prado 2013). These tests are performed
integrating the individual acceleration of each force
for the total time of the trajectory, and then dividing
it by the total integration time. In Sanchez, Prado
& Yokoyama, (2014) a similar study was made for
another system. Dividing the total result by the in-
tegration time, we obtain the average effect of each
force acting during the whole trajectory. Using this

information it is possible to identify the importance
of each force.

Figure 6 shows the contribution due to Deimos, in
km/s2, using the same initial conditions of Figure 2.
The effect due to the gravity of Deimos (PertDeimos)
varies from 1.38 × 10−9 to 2.88 × 10−8 km/s2. The
highest values are located near vx = 0, including the
same area where the trajectories closer to Deimos are
located (with the smallest values of Dmax and Davg),
which is the best region to select orbits. With a sim-
ilar analysis for the other forces, it is possible to find
the contribution of the gravitational field of Mars,
which is approximately 7.07 × 10−5 km/s2, at least
three orders of magnitude stronger than the effect
of Deimos. This measurement confirms that these
types of orbits are dominated by the gravitational
field of Mars, while Deimos is only a perturbation.
This is an interesting result, because it quantifies
the effect expected by the QSOs, where the larger
mass dominates the dynamics of the system. The
contribution of the term J2 due to the gravitational
potential of Mars is of the order of 4.30×10−9, which
is four times smaller than its equivalent in the Kep-
lerian term of the gravity field of Mars. It is also one
order of magnitude smaller then the effect of Deimos,
which means that its effect needs to be included in
the dynamical model. Finally, through this study, it
is possible to quantify and estimate the forces that
influence the motion of the spacecraft.

The next step is to verify the behavior of those
orbits over longer times. Table 4 shows the distance
(km) and the disturbance level (km/s2) for simu-
lation times of 5, 15, 30, 60, and 90 days. It is
clear that some QSOs can “survive” for longer pe-
riods of time. The model considered has an ellipti-
cal orbit for Deimos and a flat Mars, so e = 0.0002
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TABLE 5

THE FIVE ORBITS WITH SMALLEST Dmax (km) AROUND DEIMOS1

D vx Davg Dmin Dmax D∗

avg D∗

min D∗

max Davg−D∗

avg Dmin−D∗

min Dmax−D∗

max

(km) (km/s) (km) (km) (km) (km) (km) (km) (km) (km) (km)

43.8 0 61.1860 43.7992 75.9347 63.8417 43.8000 89.1615 −2.6557 −0.0008 −13.2269

43.8 −0.00001 61.1852 43.7469 76.2244 63.8406 43.7997 89.1683 −2.6554 −0.0527 −12.9439

43.8 0.00001 61.1883 43.7472 76.2267 63.8440 43.8001 89.1563 −2.6558 −0.0529 −12.9297

43.8 −0.00002 61.1860 43.6957 76.5163 63.8408 43.7996 89.1749 −2.6548 −0.1039 −12.6587

43.8 0.00002 61.1920 43.6923 76.5198 63.8477 43.7996 89.1558 −2.6556 −0.1073 −12.63606

1Assuming vy = −0.003 km/s, Deimos initially at its apoapsis, e = 0.0002, J2 = 1960.45 × 10−6, T = 30 days.
Corresponding results for the circular and spherical model are represented by an asterisk (∗).

and J2 = 1960.45 × 10−6, and Deimos at periap-
sis when the motion starts. The initial conditions
of the trajectory are: D = 46.4 km, vx = 0 and
vy = −0.003 km/s. The values of distances and
perturbations remained stable during the time sim-
ulated. Remember that each individual result of the
integrals of the accelerations is divided by the total
integration time, to obtain a normalized number.

The trajectory indicated in Table 4 is shown in
Figures 7 and 8, over 5, 15, 30, 60, and 90 days. The
trajectory is shown in the fixed and rotating system.
Deimos is plotted to scale and fixed in the origin of
both coordinate systems. The trajectory illustrates
very well the stability of the numbers related to it,
as shown in Table 4. Note that when integrating for
longer times the spacecraft completes more revolu-
tions, but all of them have the same pattern.

Now, we study this problem considering the ini-
tial position of Deimos at apoapsis. The results are
shown in Figure 9 and Table 5. In Figure 9 the
same set of initial conditions used to make Figures 2
and 3 is considered: the initial vertical component
of the velocity vy is fixed in −0.003 km/s, the initial
distance D ranges from 40 to 50 km and the hori-
zontal component of the initial velocity ranges from
−0.003 to 0.003 km/s. The maximum, minimum
and average spacecraft-Deimos distances have a be-
havior similar to the one observed when Deimos is at
periapsis. The lower values of Davg (Figure 9c), be-
low 100 km, follow the smaller values of Dmax (Fig-
ure 9a), below 200 km, while the values of Dmin be-
have in an opposite way. However, the results with
the lowest Dmax (Figure 9a) and Davg (Figure 9c)
are shifted to the left with respect to Figures 2(a)
and 2(c). This means that the initial position of
Deimos influences the trajectories. For Figure 9, the
lowest values of Dmax correspond to 31.03% of the
total solutions, and the lowest values of Davg corre-
spond to 17.52% of the total solutions. Comparing

(a) 5 days, fixed system. (b) 5 days, rotating system.

(c) 15 days, fixed system. (d) 15 days, rotating system.

(e) 30 days, fixed system. (f) 30 days, rotating system.

Fig. 7. Time evolution of trajectories obtained using
Deimos at periapsis, D = 46.4 km, vx = 0, vy =
−0.003 km/s, considering e = 0.0002, J2 = 1960.45 ×

10−6 for the simulation times 5, 15 and 30. The color
figure can be viewed online.
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(a) 60 days, fixed system. (b) 60 days, rotating system.

(c) 90 days, fixed system. (d) 90 days, rotating system.

Fig. 8. Time evolution of trajectories obtained us-
ing Deimos at periapsis D = 46.4 km, vx =
0, vy = −0.003 km/s, considering e = 0.0002,
J2 = 1960.45× 10−6 for the simulation times 60 and 90
days. The color figure can be viewed online.

the lowest values of Dmax and Davg with those found
when Deimos is at periapsis, 22.55% and 22.33%, re-
spectively, there is an increase of 8.48% for Dmax

and a decrease of 4.81% for Davg when Deimos is
initially at apoapsis. The Dmax values, Figure 9(a),
range from 75.93 to 23,534.69 km, that is, a range
of values larger than the one found when Deimos
is at periapsis, 80.24 to 22,330.45 km. The trajec-
tory for the Dmax = 22,330.45 km is similar to the
one shown in Figure 2, and the spacecraft goes away
from Deimos to enter an orbit around Mars that is
co-orbital with Deimos. The values of Dmin, Fig-
ure 9(b), range from 16.00 to 43.79, that is, a range
of values larger than the one found when Deimos at
periapsis, 16.00 to 45.43 km. The Davg values, Fig-
ure 9(c), range from 57.63 to 11,173.67 km, that is, a
range of values larger than when Deimos is at periap-
sis, from 61.66 to 10,553.13 km. The values of Dmax

and Davg are the most influenced by the position
of Deimos, presenting smaller minimum values and
larger maximum values when Deimos is at apoapsis.
Figures 9(d), 9(e) and 9(f) show the results corre-
sponding to Figures 9(a), 9(b) and 9(c), but now the
model does not consider the effects of the flattening
of Mars. The main difference is a slight reduction of
the central blue region, which means that the maxi-

mum distances increase in this region. This happens
for the maximum and average distances.

Table 5 shows the five trajectories with the small-
est values of Dmax, obtained with Deimos at apoap-
sis. The initial conditions have the values D =
43.8 km, vx = 0, ± 0.001 or 0.002 km/s and val-
ues of the maximum distances in the interval 75.90
to 76.50 km. In Table 2, Deimos is initially at pe-
riapsis, and the initial conditions were D = 46.30
or 46.40 km, vx = 0.000 or ±0.001 km/s and values
of maximum distances in the interval from 80.20 to
80.30 km. Comparing the values shown in Tables 5
and 2, it is clear that the values of the initial distance
D and the maximum distances are smaller when the
moon is at apoapsis than when it is at periapsis.

Table 5 also shows that, when considering the
simplest model (with circular orbits and a spheri-
cal shape for Mars) the differences for the minimum
distance are between zero and 0.1 km; for the av-
erage distance they are around 2.65 km and for the
maximum distance between 12.6 and 13.2 km, for
an integration time of 30 days. The negative values
of the last column of Table 5 imply that, when con-
sidering the simplest model, we overestimate Dmax.
Comparing these results with those of Table 2, (for
the periapsis case) it is observed that the values of
the last column are of the order of 4 to 5 km, also
negative, therefore smaller in magnitude than those
presented in Table 5. This means that, when con-
sidering the simpler model in the apoapsis case, the
values of the maximum distances are overestimated,
as occurred in the periapsis case, but the errors are
now about three times larger.

Figure 10 shows the trajectories with both mod-
els obtained with the data given by the first line of
Table 5. The trajectories for the other lines of the ta-
ble are very similar and they are omitted here. The
left side considers the best model (elliptical orbit for
Deimos and a flat body for Mars) and the right side
the simplified model (circular orbit for Deimos and a
spherical body for Mars). Note that the best model
gives a near periodic orbit (but not periodic or quasi-
periodic in terms of the known definitions), while the
simple model gives an orbit with some oscillations in
the spacecraft-Deimos distance.

To conclude this study, the trajectory with the
lowest Dmax from Table 5 is presented for T =
30 days in Figure 11. Deimos is plotted to scale and
located at the origin. The values of distances (km)
and disturbances (km/s2) for the time evolution of
the trajectory at times 5, 10, 15, 30, 60, and 90 days
are shown in Table 6. Figures 12 and 13 show the
trajectory at the times shown in Table 6. Again, it
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316 CAVALCA ET AL.

(a) Maximum distances spacecraft-Deimos. (b) Minimum distances spacecraft-Deimos.

(c) Average distances spacecraft-Deimos. (d) Maximum distances spacecraft-Deimos neglecting
the flattening of Mars.

(e) Minimum distances spacecraft-Deimos neglecting
the flattening of Mars.

(f) Average distances spacecraft-Deimos neglecting the
flattening of Mars.

Fig. 9. Maximum, minimum and average spacecraft-Deimos distances, in km, as a function of D (km) and vx (km/s),
considering vy = −0.003 km/s, for orbits with Deimos initially at apoapsis. The model considers e = 0.0002, J2 =
1960.45× 10−6, T = 30 days. The color figure can be viewed online.

is seen that the trajectory is quite stable in time, as
in the periapsis case. In Figures 11(a) and 11(b) the
full model is used, while in Figures 11(c) and 11(d)
the simplest model is considered, assuming a circu-
lar orbit for Deimos and spherical shape for Mars.
It is seen that the trajectory of the most complete
model shows smaller oscillations than the trajec-
tory of the simplest model. The minimum distances
are very similar, but the maximum distances are

much smaller for the more complete model (75.9347
against 89.1615 km). Many more regular orbits are
generated by the best model.

4. CONCLUSION

In this study a recently developed method for
mapping orbits around small bodies was applied to
Deimos, considering the maximum, minimum and
average distances between Deimos and the space-
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TABLE 6

DEIMOS AT APOAPSIS, D = 43.8 km, vx = 0 km/s, vy = −0.003 km/s*

T (days) 5 15 30 60 90

Dmax (km) 75.9325 75.9346 75.9347 75.9347 75.9347

Dmin (km) 43.8001 43.7999 43.7991 43.7992 43.7991

Davg (km) 61.4833 61.1644 61.1860 61.2332 61.2429

PertDeimos 2.62 2.64 2.64 2.63 2.63

10−8 (km/s2)

PertMars 7.00 7.00 7.00 7.00 7.00

10−5 (km/s2)

PertJ2Mars 4.32 4.32 4.32 4.32 4.32

10−9 (km/s2)

*An elliptical orbit for Deimos and the flattening of Mars are considered. Simulation times: 5, 15, 30, 60, and 90 days.

(a) Model considering an el-
liptical orbit for Deimos and
a flat body for Mars.

(b) Model considering a cir-
cular orbit for Deimos and a
spherical body for Mars.

Fig. 10. Trajectories associated with the first line of Ta-
ble 5 in the rotating frame. The color figure can be
viewed online.

craft during a given time as the main criterion to
select the orbits. The trajectories were mapped and
plotted according to their initial conditions (position
and velocity), to identify the conditions that keep the
spacecraft at mid-range distances to Deimos, and to
find orbits free from risks of collision but not too far
away from Deimos. The method generated several
results showing its efficiency in obtaining mid-range
orbits around Deimos that are affected enough by
the moon to keep the spacecraft near to it, although
the orbit is really dominated by Mars.

The orbits found can be used to place a space-
craft as soon as it arrives in the vicinity of Deimos,
to carry out the first detailed studies of the moon
without having a large risk of collision. In this way,
it is not necessary to know details about the shape
of Deimos in advance. After more detailed studies
made from these mid-range distances, the spacecraft
can be placed in orbits closer to Deimos.

(a) 30 days, fixed system
Davg = 61.1860 km
Dmin = 43.7991 km
Dmax = 75.9347 km

(b) 30 days, rotating system
PertDeimos= 2.64 ×

10−8 km/s2, PertMars=
7.00 × 10−5 km/s2,
PertJ2Mars=
4.32× 10−9 km/s2

(c) 30 days, fixed system
Davg = 63.8417 km
Dmin = 43.8000 km
Dmax = 89.1615 km

(d) 30 days, rotating system
PertDeimos=
2.47 × 10−8 km/s2, Pert-
Mars= 7.00× 10−5 km/s2

Fig. 11. Trajectories considering an elliptical orbit for
Deimos and a flat body for Mars (red), and considering a
circular orbit for Deimos and a spherical shape for Mars
(blue). Deimos is initially at apoapsis, D = 43.8 km,
vx = 0, vy = −0.003 km/s, T = 30 days. The color
figure can be viewed online.
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(a) 5 days, fixed system. (b) 5 days, rotating system.

(c) 15 days, fixed system. (d) 15 days, rotating sys-
tem.

(e) 30 days, fixed system. (f) 30 days, rotating system.

Fig. 12. Trajectories at times 5, 10, 15, and 30 days
shown in Table 6. The color figure can be viewed online.

Among the many trajectories found, those that
were considered good options are the ones that have
Deimos-spacecraft distances in the range of 40 to
200 km over the 30 days of simulation. Using these
trajectories, it is possible to make the first detailed
observations of Deimos without the risk of collision
with it. It was also shown that many of these tra-
jectories are able to survive for up to 90 days and
that the orbits are very regular, keeping about the
same values of distances and perturbations levels
over time.

The initial position of Deimos in its orbit around
Mars showed effects on the behavior of the orbit.
Depending on its initial condition there are differ-
ences in the values of maximum, minimum and av-
erage spacecraft-Deimos distances when considering
the moon at periapsis or apoapsis. These two po-
sitions gave good options for trajectories, but the

(a) 60 days, fixed system. (b) 60 days, rotating sys-
tem.

(c) 90 days, fixed system. (d) 90 days, rotating sys-
tem.

Fig. 13. Trajectories at times 60 and 90 days showed in
Table 6. The color figure can be viewed online.

results found when Deimos is at apoapsis are better
than the corresponding ones with Deimos at peri-
apsis, because the maximum distances were smaller
when at apoapsis than at periapsis.

The importance of the mathematical model
adopted was also shown by comparing it with a more
complete model, which considers Deimos in an ellip-
tic orbit around Mars and the J2 term of the gravita-
tional potential of Mars. The simplest model consid-
ered Deimos in a circular orbit and Mars as a spher-
ical body. It was shown that, for the two positions
of Deimos, periapsis and apoapsis, if the simplest
model was adopted, the values of the maximum dis-
tances were overestimated with respect to the most
complete model. With Deimos at periapsis these er-
rors are of the order of 4-5 km, while they increase
to around 12-13 km for Deimos at apoapsis.

The integrals of the accelerations of each force
that acts in the spacecraft over time were also stud-
ied. Using this technique, it was possible to quan-
titatively measure the influence of each force acting
in the dynamics of the system. It was shown that
the results of the contribution of the gravitational
interaction of Mars are about 3 orders of magnitude
larger than the effects of the gravitational field of
Deimos. This proves and quantifies that Mars is the
body that dominates the motion of the spacecraft,
while Deimos only disturbs this motion.
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