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ABSTRACT

We present a derivation based on the “center of mass formalism” of the
asymptotic behaviour of internal working surfaces produced in a variable Herbig-
Haro (HH) jet. We obtain the general solution for an arbitrary periodic ejection
time-variability, and then show examples for a limited set of functional forms for
the velocity and density time-evolutions. Finally, we derive a prescription for ob-
taining the time-averaged mass loss rate from observations of knots along an HH jet
(based on the asymptotic solution), and apply it to derive the mass loss rate of the
HH 1 jet.

RESUMEN

Presentamos una derivacién basada en el “formalismo de centro de masa”
del comportamiento asintético de superficies de trabajo internas producidas en un
yet Herbig-Haro (HH) variable. Obtenemos la solucidn general para una eyeccién
periédica arbitraria, y después mostramos ejemplos para un conjunto limitado de
formas funcionales para la evoluciéon temporal de la velocidad y la densidad. Fi-
nalmente, derivamos una prescripcién para calcular la tasa de pérdida de masa
promedio de observaciones de los nudos a lo largo de un yet HH (basada en la
solucién asintética), y la aplicamos para derivar la pérdida de masa del yet de
HH 1.

Key Words: Herbig-Haro objects — ISM: individual objects: HH 1 — ISM: jets

and outflows — ISM: kinematics and dynamics — stars: formation —

stars: winds, outflows

1. INTRODUCTION

The suggestion that the knotty structures in astro-
physical jets could be the result of a time-dependent
ejection was first made in the context of extragalac-
tic jets (see, e.g., Rees 1978; Wilson 1984; Roberts
1986). However, the theory of variable jets has
been mostly developed and applied in the context
of Herbig-Haro (HH) jets from young stars.

Raga et al. (1990) apparently first pointed out
in an explicit way that the structures observed in
HH jets could be easily modeled as “internal working
surfaces” produced by an ejection velocity variabil-
ity with a hypersonic amplitude (though the general
idea that HH knots are the result of a variability of
the ejection hovers around in the literature of the late
1980’s). Since then, a relatively large number of pa-
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pers has been written on numerical simulations and
analytic models of variable ejection HH jets, as well
as comparisons with observations (three relatively
recent examples are Tegileanu et al. 2014; Hansen et
al. 2017; Castellanos-Ramirez et al. 2018).

Kofman & Raga (1992) and Raga & Kofman
(1992) studied analytically the asymptotic regime
reached by internal working surfaces at large dis-
tances from the outflow source. They noted that
the internal working surface shocks (see Figure 1)
asymptotically have shock velocities that scale as
1/z and pre-shock densities with the same depen-
dence on distance x from the source. Approximating
the emission from these shocks with the predictions
from plane-parallel shocks, Raga & Kofman (1992)
showed that the asymptotic working surface model
predicts a [S I1] line intensity vs. a decay that agrees
surprisingly well with observations of the HH 34 jet.
More recently, Raga et al. (2017) showed that the
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successive knots along the HH 1 jet have the pre-
dicted [S II] intensity vs. position dependence, and
also that individual knots follow the predicted be-
haviour as a function of time, following the increase
in x that results from their motion away from the
outflow source.

Kofman & Raga (1992) and Raga & Kofman
(1992) found the asymptotic regime by considering
a “ram-pressure balance” equation of motion for the
internal working surfaces. This equation of motion is
valid for the case in which the gas that goes through
the working surface shocks is ejected laterally in an
efficient way, and does not remain within the work-
ing surface. Though these authors determined the
form of the position dependence of the shock veloc-
ities and pre-shock densities of the internal working
surfaces, they were unable to relate the proportional-
ity constants of these dependencies to the functional
form of the ejection velocity and density.

In this paper, we study the asymptotic regime (of
internal working surfaces at large distances from the
outflow source) using the “center of mass” equation
of motion of Canté et al. (2000). This equation of
motion is valid for internal working surfaces in which
a large part of the gas passing through the shocks
stays within the working surface. The theoretical
attraction of this formalism is that it generally leads
to full (though possibly quite complex) analytic so-
lutions (see, e.g., Canté & Raga 2003).

The paper is organized as follows. In § 2 we pro-
vide a summary of the “center of mass formalism”
of Canté et al. (2000), giving the equation of motion
for the internal working surfaces and the free-flow
(velocity and density) solution for the continuous jet
beam segments between the working surfaces. In § 3,
we derive the full asymptotic solution for large dis-
tances from the outflow source. In § 4, we derive the
properties of the working surfaces for a limited set
of chosen ejection velocity and density variabilities.
In § 5, we calculate the Ha and red [S II] position-
dependent luminosities of the asymptotic working
surfaces. In § 6, we discuss the “inverse problem”
of taking the observed properties of a knot (in par-
ticular, the spatial velocity and line luminosity of a
given knot, and the knot position and knot spacing)
and deducing the mean mass loss rate of the out-
flow. In § 7, we use this inverse problem to deduce
the mass loss rate of the HH 1 jet. Finally, the results
are summarized in § 8.

Fig. 1. Schematic diagram of an internal working surface
produced by the interaction of slower material (of veloc-
ity u1 and density p1) with faster material (of velocity
uz and density p2) ejected at later times. The working
surface has two shocks. the bow shock (blue, solid line)
and the “jet shock” (double, solid red line). The dashed
lines represent the outer boundary of the jet beam. The
color figure can be viewed online.

2. EQUATION OF MOTION FOR AN
INTERNAL WORKING SURFACE

This section is a short summary of the “center of
mass equation of motion” for working surfaces de-
rived by Canté et al. (2000). The idea embodied by
this formalism is as follows:

e in a hypersonic jet (or wind), in the absence
of shocks the fluid parcels are free-streaming,
preserving their initial ejection velocity wug,

e when shocks form due to “catching up” of faster
parcels ejected at later times with slower parcels
ejected at earlier times, “internal working sur-
faces” are formed (see Figure 1). These working
surfaces are assumed to be compact (with ex-
tents along the outflow direction which can be
neglected), so that each of them has a single,
time-dependent distance from the source s,

e if one assumes that all of the mass entering
through the two working surface shocks stays
in a region close to the working surface (an as-
sumption that is correct for a spherical wind,
and might also be appropriate for radiative jets),
then:
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e with this “mass conservation” condition, a
working surface can be seen as a particle formed
by the coalescence of fluid parcels, with the mass
and momentum of the coalesced parcels. Then,
the position x,,s of the working surface will be
equal to the position x.,, of the center of mass
of the fluid parcels if they had continued free-
streaming without coalescing.

Cant6 et al. (2000) showed that this center of mass
can be calculated as a function of the ejection ve-
locity and density history in a direct way, leading to
analytic solutions for the time-dependent positions
and velocities of the successive internal working sur-
faces. Here, we summarize their results.

Let us assume an arbitrary, periodic variation
uo(7), po(r) of the ejection velocity and density.
This periodic ejection variability produces a chain of
internal working surfaces, and we consider the time-
dependent position

St T)P ( )uo( )dr
f rydr

of the centre of mass of the material within one of the
working surfaces. In this equation, ¢ is the present
time, and 7 < t is the “ejection time” at which the
fluid parcels were ejected. The position z(¢,7) of
the free-streaming fluid parcels is given by the free-
streaming flow condition

x(t,7) = (t — T)uo(7) . (2)

(1)

Tem(t) =

The 71 and 79 values in equation (1) are the ejection
times of the fluid parcels which are now entering the
working surface from the downstream and upstream
directions (respectively), and correspond to two suc-
cessive roots of the equation:

Tem = (t = T12) uo(T1,2) - (3)
We also note that the density of a free-streaming

jet with a position-dependent cross section o(x) is
given by:

oopo(T)uo(T)
A T R T TR
where o9 and po(7) are the ejection cross section
and density, respectively, and 1o (7) = dug/d7r. This
solution for the density can be straightforwardly ob-
tained by inserting the free flow condition (2) into
the appropriate continuity equation.

3. THE ASYMPTOTIC REGIME

For large distances from the source, most of the
ejected material has already entered the working sur-
faces, so that the ejection time-interval of the mate-
rial entering the working surface from the upstream
and downstream directions becomes 7 — T ~ T,
where 7, is the period of the ejection variability. In
this regime, the 7 — 75 interval of the integrals can
therefore be replaced by the —7,/2 — 7,/2 interval.
Equation (1) then becomes:

Lem = (t - Ta)va ) (5)

where 12

[T, po(ryud(r)dr
T /2 ’
—Z;z/J/Q po(T)ug(T)dr

is the (constant) asymptotic velocity of the working
surface and

(6)

Vg =

o S moo(r >u%;<7>dv | -
af_T 12 Po(T)uo(T)dr

is an average ejection time of the material that lies
within a given internal working surface. Clearly,
by choosing to carry out the integrals over the
—7p/2 — 7,/2 range we are choosing the internal
working surface formed by the material ejected in
this ejection time interval.

Therefore, regardless of the form of the periodic
ejection velocity and density variability, at large dis-
tances from the source the working surfaces travel at
a constant velocity, which is given by equation (6).
It is also possible to obtain the shock velocities of
the working surface shocks in the following way.

At large distances from the source, the material
in the continuous segments of the jet corresponds to
a small range of ejection times around 7,,, where the
index n numbers the successive continuous segments.
The ejection time 7,, is determined by the condition

U (Tn) = Vq , (8)

where one has to choose the root with g(7,) < 0,
and v, is given by equation (6). Clearly,

Tntl = Tn + Tp, 9)

and the free-streaming flows on the two sides of the
working surface have linear velocity vs. position re-
lationships, giving velocities

xcm xcm (10)

Uy = —2 | g = —
t—1n t—Tohe1
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immediately down- and up-stream of the working
surface.
Using equation (9), we have

t—Tpy1 = —m)(1—¢), withe= T , (11)
t— 71,

with € < 1 in the asymptotic regime.
We can then use equations (5), (10) and (11) to

calculate the velocity jump accross the working sur-

face: )
Au=1uy —u; = YaTp , (12)

:Z:Cm

where we have carried out a first order expansion in
€ (see equation 11).

Also, the free-streaming flow density integral (4),
when evaluated in 7, gives:

Po(Tn )00
o (Zem) [1 —(t— Tn)dl;r“o (Tn)] ’

where we can calculate both upstream and down-
stream densities using 7,,, given that in the asymp-
totic regime we have e < 1 (see equation 11). In
this equation, o( is the ejection cross section and
0(Zem) the cross section at the position of the work-
ing surface. Equation (13) can be further simplified
by noting that

P12 = (13)

dlnwug L t=T

—(t—Tn) I (Tn) = - =t (14)

and therefore, in the asymptotic, € < 1 regime the
first term in the denominator of equation (13) can
be neglected. In this way, we obtain

po(Tn)o0tto(Tn)
(X em ) o (1) (E — Th)
with equal densities on both sides of the internal
working surface. The fact that the densities on both
sides of the working surface asymptotically approach
each other, and that the velocity of the working sur-
face becomes constant, implies that the shock ve-
locities of the two working surface shocks also have
the same value. Therefore, the velocity jump Au
across the working surface (see equation 12) is di-
vided into two shocks of velocities Au/2. In this
way, we see that as the working surface travels away
from the outflow source at the asymptotic velocity
Vq, the shocks have velocities that decrease as 1/,
(see equation 12).

Combining equations (5), (15) and (8) we obtain:

P12~ — ) (15)

b

Zem0(Tem)

P12 = ; (16)

where

112

J— a
E - po(Tn)O'o ﬂO(Tn) ’ (17)
is a (positive) constant, o(zsp, ) is the cross section of
the jet (at the position of the working surface) and
po and g are calculated at the time 7,, at which the
material of the asymptotic segments of continuous
jet beam were ejected, which is given by equation (8).

4. EXAMPLES FOR A SINUSOIDAL Uy(r) AND
TWO SIMPLE FORMS OF po(7)

4.1. Ejection Velocity Variability

For the ejection velocity, we choose a sinusoidal vari-
ability:
uo(T) = vy + Avg sinwr, (18)

with mean velocity wvg, half-amplitude Awg, fre-
quency w and period 7, = 27/w. The half amplitude
Avwvg lies in the 0 — vg interval.

4.2. Constant M

We first choose a density variability such that the
jet has a time-independent M. The ejection density
then is:
M M
po(T) = = - ., (19)
ooup(T) 0o (vo + Avg sinwr)

where oy is the ejection cross section, and where we

have used equation (18) for the second equality.
With the chosen ug(7) and po(7) (equations 18

and 19, respectively), from equation (6) we obtain

Vg = V0, (20)
from equation (8) we obtain
Th = Tp/2+nTp, (21)
and from equation (17) we obtain

- MUoTp
B 27TA’UO '

(22)

In this way, we can calculate the shock veloci-
ties Au/2 (see equation 12) and pre-shock densities
p1 = p2 (see equation 16) of the asymptotic working
surfaces as a function of their position x..,, the jet
cross-section o (), the (time-independent) mass
loss rate M , and the period 7, mean velocity vy and
half-amplitude Awvg of the ejection velocity variabil-

ity.
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4.3. Constant pg

We now consider the case of a time-independent ejec-
tion density pg. Then, the time-averaged mass loss
rate of the ejected jet is M = o0povy, where g is
the ejection cross section and vg is the mean velocity
of the jet (see equation 18).

Using equation (18) and setting a time-
independent pg, from equation (6) we obtain

1(Auw)
2’00

from equation (8) we obtain

Vg = Vo [1 + ) (23)

T T, . _. [ Av
Tn:é’—ism 1<2U5)>—|—n7p, (24)

and from equation (17) we obtain

Moy, Avg
Y= Pyl — 25
27TA’U0 g < Vo ) ’ ( )

with

(26)

Avy ?
1 v
AUO |:1+2(U00) :|
() - -
Vo ! < AUU)
4 vo
If we consider the Avg/vy — 0 lower limit of the
velocity amplitude, we regain the results obtained

for the constant mass loss rate case (see § 4.2). If we
consider the Avg/vg — 1 upper limit, we obtain:

31}0
a = T4 2
. (27)
oT,
n = TQP + n’rp s (28)
and )

M

5 _ 3V3Mur, (29)
4’/TA’UO

Therefore, in the Avg/vg — 1 large amplitude limit
the constant pg case gives an asymptotic velocity v,
for the working surfaces which is a factor 3/2 larger
than the one of the constant mass loss case, and a
“density constant” ¥ larger by a factor 3v/3/2.

5. THE EMISSION OF ASYMPTOTIC
WORKING SURFACES

We now estimate the Ha and red [S II] luminosities
of the asymptotic working surfaces as:

Lline = 87TUIline (npre7 US) ) (30)

where o is the cross section of the jet at the po-
sition of the working surface, npre = p1,2/(1.3mu)
(where p1 2 is the pre-working surface shock density,
see equation 16), vy = Awu/2 is the shock velocity
(see equation 12), and I}, is the line flux emerging
from one of the two shocks (the factor 87 account-
ing for the fact that we have 2 shocks radiating into
47 sterad).

As described in Appendix A, we use the plane-
parallel, steady shock models of Hartigan et al.
(1987) to determine the functional form:

Iline = nprefline (Us) ) (31)

with fiine = fra Or fisiy) determined from fits to
the predictions of the plane-parallel shock models
(see equations A38 and A39 of Appendix A).

Combining equations (30), (31), (16) and (25),
we obtain:

_ _AMuory (AUO) Jiine(®s) 59y
Vo ’

mcm

where M is the time-averaged mass loss rate (see
equation 25) and vs = Awu/2 is given by equa-
tion (12). Equation (32) is equivalent to equa-
tion (34) of Raga & Kofman (1992), but includes
a more general form for the shock velocity depen-
dence of the emission and a full determination of the
constants.

For a sinusoidal ejection velocity variability and
a density variability such that the mass loss rate is
time-independent (see § 4.2), the position-dependent
luminosity of the working surface in the Ha and [S 11]
lines can be obtained by setting f = fy, or f = fsrr1
(see equations A38 and A39 in Appendix A, respec-
tively) and g(Awg/vg) =1 (see equation 22).

For the case of a constant density ejec-
tion, the Ha and [S II] luminosities can be
obtained using the g(Awg/vg) function of equa-
tion (26). For Avg/vg < 1, this function has a value
g(Avg/vg) =~ 1.

6. THE INVERSE PROBLEM

Several HH outflow systems show chains of quasi-
periodic, aligned knots within ~ 1017 cm (~ 10* AU)
of the outflow source. These knots generally have
spatial velocities in excess of ~ 150 km s~! (deter-
mined from radial velocity and proper motion stud-
ies), and have very low excitation emission line spec-
trum, with high red [S II]/Ho and [O I] 6300/Ha line
ratios. These line ratios imply relatively slow shock
velocities (of ~ 20-30 km s71).
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In the case of the HH 1 jet, this very low excita-
tion is present in all of the observed knots along the
HH 1 jet, including the knots that lie closer to the
outflow source (observed in the IR, see, e.g., Table 2
of Nisini et al. 2005). The knots formed by a velocity
variability with a half-amplitude Avgy produce inter-
nal working surfaces that rapidly reach peak shock
velocities vs & Avg (before reaching the asymptotic
regime described in § 3), as shown, e.g., by Raga
& Canté (1998) and Canté et al. (2000). There-
fore, the low excitation of all knots along the HH 1
jet (and in particular, the ones closer to the outflow
source) indicates that the ejection time variability in
HH 34 has a small Avg/vy (where vy is the mean
ejection velocity, and Awvg is the half-amplitude of
the variability, see, e.g., equation 18). A similar sit-
uation is found for the HH 1 jet, and for other jets in
which all of the knots along the chains close to the
outflow source have a very low excitation spectrum
(e.g., HH 34, see Podio et al. 2006.

In this section we show how observational deter-
minations of the knot spacing Az, and the luminos-
ity Ljine of a given emission line and spatial velocity
v, of a knot at position z,,s can be used to constrain
the average mass loss rate of the ejection. We will
identify the observed position x,s of the knot with
the x ., center of mass position that comes out of our
model, so that in the following we will set ¢y, = Tys-

For a low-amplitude sinusoidal ejection velocity
variability, both the constant mass loss rate and con-
stant ejection density cases (see § 4.2 and § 4.3) give:

Mgty

;o (33)

Vo =005 Ppre 2T AV Ty 50 (Tps)
where v, is the asymptotic working surface velocity,
and x, is the position of a given working surface.
The line emission of the working surface is then given
by equation (32) with g(Avg/vg) = 1.

For a periodic ejection velocity, all of the work-
ing surfaces in the asymptotic regime move with the
constant velocity v,. Therefore, if we observe the
spatial velocity v, (determined from proper motion
and radial velocity measurements) and knot spacing
Ax, we can obtain the variability period as

A

Va

Tp (34)
We now observe the flux of a given emission line, and
using the distance to the object and the extinction
(which we assume has also been determined) we can
calculate the luminosity Ly, of the line. If the ob-
served knot lies at a distance z,s from the outflow
source, we first use equation (12) to calculate the

shock velocity of the two working surface shocks:

2
_ Au  vimy, v Aw

(35)

Vg = = .
2 2% 2xyws

With our empirical determinations of Ljjne, 7, and
vs, we then invert equation (32) (setting g = 1, see
above) to calculate the average mass loss rate

M o 1~3mHLlineA/U0 LTws
4UOTpfline (Us)

: (36)

where in Appendix A we give analytic forms for the
frine(vs) functions for the Ha and red [S II] emission.
Clearly, in order to calculate the mass loss rate, we
need to know the value of the half-amplitude Avg of
the ejection velocity variability. If we cannot deter-
mine this parameter from other observations, we can
set Avg =~ v,.

7. AN APPLICATION TO THE HH 1 JET

As an example we consider the “HH 1 jet”, which
points from near the source of the HH 1/2 out-
flow system towards HH 1. Raga et al. (2017)
and Castellanos-Ramirez et al. (2018) argue that
the intensity vs. position dependence of the knots
at distances > 5” from the source can be modelled
as coming from working surfaces in the “asymptotic
regime”.

We calculate the mass loss rate of the HH 1 jet
using the calibrated line fluxes of knot G by Nisini et
al. (2005). At the time of their observations, the G
knot was at ¢ = 6.5” = 3.9 x 10'® cm from the out-
flow source. From the HST images shown in Raga et
al. (2017), we see that the separation between suc-
cessive knots is Azg ~ 2” = 1.2x10'6 cm. Also, the
proper motion velocity of knot G is vg = 287 km s~ !,
which is very close to its full spatial velocity because
the outflow lies at a very small angle with respect to
the plane of the sky.

First, with the zg, Azg and vg values, we
use equations (34) and (35) to obtain a period
Tp = 13.3 yr and a shock velocity vy = 44.2 km s7L.

Then, taking the knot G line fluxes from Nisini
et al.  (2005), applying a reddening correction
with their A, = 2.0 extinction (taking a stan-
dard, E(B —V)/A, = 3.1 extinction curve) and as-
suming a distance of 400 pc to HH 1, we ob-
tain Ly, = 177 x 107" Le, and Ligr;y = 5.19 x
107%*Le. Using equation (36) with Avy = v,
we obtain MHQ = T7.76 X 10*8M®yr*1 and
M[SH] =8.07 x 107" Mguyr~! from the observed Ha
and [S II] emission of knot G, respectively.
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These two mass loss rate estimates can be com-
pared with the estimates of Nisini et al. (2005). who
(using different methods) find M ~ 6.9 x 1078 —
2.4 x 107" Mg yr~! for knot G of the HH 1 jet. Of
our two estimates, we favour the 8.07 x 10~" Mg yr—1
estimate obtained from the [S II] luminosity. This
is because the [S II] emission is produced closer to
the shock than He, and the [S II] prediction from
stationary, 1D shock models is therefore more likely
to be applicable to the time-dependent, multidimen-
sional jet flow.

8. SUMMARY

We have applied the “center of mass equation of mo-
tion” to find the asymptotic behaviour (at large dis-
tances from the outflow source) of the internal work-
ing surfaces produced by an arbitrary, periodic out-
flow variability with an ejection velocity ug(7) and
a density po(7). We find the complete asymptotic
solution, giving the constant, asymptotic velocity v,
and the position-dependent shock velocities and pre-
shock densities of the working surfaces.

We obtain the same position-dependencies that
have been found by Raga & Kofman (1992) using
the “ram-presure balance” equation of motion for the
working surfaces. However, Raga & Kofman (1992)
were unable to find the relation between the propor-
tionality constants (for the density and shock veloc-
ity vs. position) and the ejection variability.

With our full asymptotic solution, we compute
the knot properties for two chosen combinations of
uo(7) and po(7) (see § 4). We also discuss the “in-
verse problem” of finding the properties of the ejec-
tion from the observational characteristics of the jet
knots (see § 5). In particular, we derive a very sim-
ple expression for estimating the time-averaged mass
loss rate of the ejection as a function of the position
x, the separation Ax between successive knots, the
spatial velocity v, and the luminosity L. (in Ha
or in the red [S II] lines) of a given knot.

We apply this “inverse problem” to observations
of the HH 1 jet (line intensities and extinctions of
Nisini et al. 2005 and proper motions of Raga et al.
2017), and find mass loss rates which are similar to
the ones of Nisini et al. (2005). This result is nothing
short of surprising, given the fact that our mass loss
rate determination is completely model-dependent,
and comes from a rather eclectic collection of ob-
servational characteristics (e.g., including the knot
spacing).

This success of obtaining the previously deter-
mined mass loss rate is interesting in two different
ways:

e it shows in a quite definite way that the inter-
pretation of the chain of knots of the HH 1 jet
as internal working surfaces formed by a quasi-
periodic outflow variablity is apparently correct,

e it gives us a new method for determing mass
loss rates of outflows from young stars, using the
spatial velocity, knot spacings and the intensity
in a single emission line of the knots along the
HH jet.

Less optimistically, we note that we have deter-
mined (through the use of the asymptotic working
surface model) the mass loss rate of the HH 1 jet
from the Ha and [S II] luminosities, obtaining
M =7.8x10"8and 8.1x10~ 7" Myyr~!, respectively,
which differ by one order of magnitude. This re-
sult is in agreement with the results of Nisini et al.
(2005) partly because they also obtain a range of
mass loss rate determinations which also differ (from
each other) by an order of magnitude. This is clearly
not a very good situation.

In our “asymptotic working surface model” mass
loss rate determinations, the obvious possible reason
for the discrepancy between the Ho and [S II] results
is the modelling of the emission with steady, plane-
parallel shock models. As has been already noted
in the early literature on modelling HH objects (see
Dopita et al. 1982), the cool tail of the recombina-
tion region does not have time to develop fully in
HH shock waves. The resulting “truncation” of the
cooling region has a stronger effect on the predicted
Ha emission than on the forbidden lines (Raga & Bi-
nette 1991), so that the mass loss rate deduced from
the [S II] luminosity (i.e., M = 8.1 x 10~" Mgyr—1)
is likely to be more reliable.

Also, not only the shocks in working surfaces
have non-steady state recombination regions, but
also they are not likely to be plane. This is seen in
numerical simulations of variable jets (see, e.g., Raga
et al. 2007) as well as in high angular resolution ob-
servations of HH jets (see, e.g., Reipurth et al. 2002).
It is therefore to be expected that analyses with the
assumption of the emission being produced by plane,
steady, shocks will not give fully consistent mass loss
rate determinations using different emission lines.

We end by noting that there is a lot of indirect
evidence that the knot structures along HH jets are
the result of a variable ejection. This evidence is pro-
vided by the surprising success of variable jet mod-
els at reproducing the observed morphologies, the
proper motions and the time-evolution of HH jets
(see, e.g., Castellanos-Ramirez et al. 2018). How-
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ever, convincing observations of a variable ejection
from the outflow sources (i,e., in the spectra of the
young stars or the protostars ejecting the HH jets)
that can be directly linked to structures along the
jets have been elusive. Some observations of the
so-called “HH microjets” (with distance scales of
~ 106 cm and timescales of ~ a few years) might be
showing such a connection (see, e.g., Agra-Amboage
et al. 2011). However, for obvious reasons such ob-
servations have not been made for the larger scale
“normal” HH jets (with distance scales ~ 107 cm
and timescales from several decades to ~ 1000 yr).

Because of this general lack of direct link to the
time-dependence of the outflow source, the details
of the ejection variability cannot be determined di-
rectly and have to be chosen in a way that results
in the production of a jet with the observed char-
acteristics. In particular, while the mean velocity
and characteristic period of the variability produc-
ing a chain of knots can be satisfactorily constrained
by observations of the spatial motion (radial veloc-
ities+proper motions) and knot spacing, estimates
of the amplitude of the ejection velocity variability
depend on less convincing arguments about the ex-
citation of the emission line spectrum of the knots
closer to the outflow sources (see § 7).
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(UNAM) grant 1G100218. AC was supported by a
DGAPA (UNAM) postdoctoral fellowhip. We thank
Pierre Lesaffre (the referee) for helpful comments.

APPENDIX

A. FITS TO THE LINE EMISSION OF
PLANE-PARALLEL SHOCKS

We approximate the Ha and [S II] 6716+30 (which
we will call “[S II]”) line emission of the working
surface shocks with the plane-parallel, steady shock
models of Hartigan et al. (1987). These lines show
the well known scaling:

Iline = nprefline(vs) ’ (A37)

where Ij;,. is the intensity in a given line emerging
from the front of the shock, np.e is the pre-shock
ion+atom number density (which in the following
we assume is in units of cm™3), and fiine(vs) is a
function of the shock velocity vs which is obtained
from the detailed 1D, stationary shock models. For a
gas with 90% H and 10% He, npre = ppre/(1.3muH)
(with my being the hydrogen mass), where ppre is
the pre-shock density.
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Fig. 2. Predictions of the Ha (crosses) and red [S II]
intensities (open circles) as a function of shock velocity
v, from the models of Hartigan et al. (1987). The solid
and dashed lines show the analytic fits of equations (A38)
and (A39), respectively.

In Figure 2, we show the values of
fHa :FHa/npre and f[SII] = F[SII]/ine for
the vy = 20 — 100 km S~! models of Hartigan et al.
(1987). For the shocks in the vy = 20 — 80 km s~!
range, the Ha flux closely follows the power law:

logqg fHa = 3.57 log g vs — 11.84, (A38)

1 1

with vs in km s7" and fg, in erg cm s+

The red [S II] emission has a more complicated
dependence with v,, and in order to fit it with power
laws one has to specify limited shock velocity ranges.
We fit a cubic polynomial to the “log-log” relation
in the v, = 20 — 80 km s~! range, obtaining:

logyo fisrr =4.28 (logyg vs — 1.59)" +
0.70 log g vs — 7.67, (A39)

with v, in km s~! and fisrn in erg cm s~!'. This
relation provides a smooth interpolation between the
predictions of the 20 — 80 km s~! shock models (see
Figure 2).
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