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ABSTRACT

The orbital dynamics of a spacecraft orbiting around irregular small celestial
bodies is a challenging problem. Difficulties to model the gravity field of these bodies
arise from the poor knowledge of the exact shape as observed from the Earth. In
order to understand the complex dynamical environment in the vicinity of irregular
asteroids, several studies have been conducted using simplified models. In this
work, we investigate the qualitative dynamics in the vicinity of an asteroid with
an arched shape using a tripole model based on the existence of three mass points
linked to each other by rods with given lengths and negligible masses. We applied
our results to some real systems, namely, asteroids 8567, 243 Ida and 433 Eros and
also Phobos, one of the natural satellites of Mars.

RESUMEN

La dindmica orbital de un satélite en torno a un cuerpo celeste irregular es un
problema abierto. La dificultad de modelar el campo gravitatorio de esos cuerpos
surge del pobre conocimiento que tenemos sobre sus formas, al observarlos desde la
Tierra. Para entender el complejo entorno dindmico de los asteroides irregulares se
han propuesto modelos simplistas. En este trabajo, investigamos cualitativamente
la dindmica en el entorno de un asteroide en forma de arco, mediante un modelo de
tripolo basado en tres puntos masa unidos por barras de longitudes determinadas y
masas despreciables. Aplicamos nuestros resultados a algunos cuerpos reales, como
el asteroide 8567, el 243 Ida, y el 433 Eros, asi como a Phobos, uno de los satélites
naturales de Marte.

Key Words: methods: numerical — minor planets, asteroids: general — space ve-

hicles

1. INTRODUCTION

Small-body explorations, such as asteroids and
comets, have become an essential subject in deep
space exploration. They involve multiple disciplines,
such as science and control engineering, aerospace
science and technology, celestial mechanics, and as-
tronomy, among others. The combination of non-
spherical gravitational attraction together with the
rapid rotation of the asteroids around their axis gov-
erns the dynamics of the spacecraft near its sur-
face. Thus, the analysis of the orbits of a spacecraft
around these bodies is one of the current challenges
in astrodynamics.

Developing mathematical models to represent the
gravitational field around irregular bodies is an im-
portant research topic in orbital dynamics. Often,
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a spherical harmonics expansion is used to model
the Earth and other Planets, as these more massive
celestial bodies (when compared to asteroids) have
a shape that resembles a sphere (Elipe & Riaguas
2003). On the other hand, when the body does not
resemble a sphere, this expansion is no longer con-
venient and, in some cases, convergence cannot be
guaranteed (Elipe & Riaguas 2003). Generally, when
the field point is located within the circumscribing
sphere, the series diverge (Lan et al. 2017; Elipe &
Riaguas 2003). Furthermore, the expansion of low-
order Legendre coefficients often does not provide a
good approximation for the motion of a spacecraft
due to the fact that higher order terms can gener-
ate divergence after several iterations (Riaguas et al.
1999; Jiang & Baoyin 2018).

The shape of a celestial body, its rotation period,
and other physical characteristics can be obtained
by light curve and radar analysis. From these ob-
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servations, it is possible to use the solid polyhedron
method to determine the dynamics around irregu-
lar bodies, including gravitational fields, stationary
state solutions (equilibrium points, periodic orbits,
quasiperiodic orbits, and chaotic motion), stability,
bifurcation, etc (Werner 1994; Scheeres et al. 1996;
Jiang & Baoyin 2018; Chanut et al. 2015b; Jiang
et al. 2014; Yu & Baoyin 2012; Tsoulis & Petrovié
2001). However, this approach requires a large com-
putational effort depending on the quantity of poly-
hedral shapes. This problem was partially solved in
Chanut et al. (2015a), where the authors consider-
ably reduced the computation time (/ 30 times) ap-
plying the Mascon gravity framework, as presented
in Geissler et al. (1996), using a shaped polyhedral
source to model the external gravitational field of a
small celestial body. For more details about this ap-
proach we also refer the readers to Venditti (2013)
and Aljbaae et al. (2017).

The gravitational potential can be obtained with
high accuracy using the polyhedral model, but from
this model it is difficult to understand the effect of
certain parameters (mass ratio (u), shape, among
others) on the dynamics. This happens because, in
the polyhedron model, the parameters mix and pro-
duce a mixed influence on the gravitational field of
irregular bodies. Therefore, to study the effect of a
single parameter, it is often necessary to model ir-
regular bodies using simplified models.

By using simplified models, it is possible to per-
form semi analytical studies to understand which pa-
rameters affect stability, appearance of equilibrium
points, bifurcations, etc. Thus, simplified models
help to understand the dynamics around irregular
bodies, and allow us to design orbits (Wang et al.
2017; Zeng & Liu 2017), feedback control schemes
(Yang et al. 2017), as well as the permissible hover-
ing regions (Zeng et al. 2016).

An effective way to analyze the surface of an as-
teroid is body-fixed hovering in a region close to the
asteroid, where the spacecraft maintains its position
constant with respect to the asteroid (Wen et al.
2020). Great locations for using the body-fixed hov-
ering are the equilibrium points, due to the fact that
they are locations that receive minimal disturbance.
Jiang et al. (2014) investigated body-fixed hovering
at equilibrium points and classified the manifolds
close to these points into eight types. Body-fixed
hovering can be used to obtain accurate measure-
ments of a region on the surface of the target asteroid
and to facilitate the descent and ascent maneuvers
of a spacecraft whose mission is to return to Earth
with samples (Broschart & Scheeres 2005). Such ma-

neuvers were used in the Hayabusa mission (Scheeres
2004).

Several bodies with different shapes can be de-
scribed using simplified mathematical models. For
example, Elipe & Lara (2003); Riaguas et al. (1999,
2001), analyzed the motion of a particle under the
gravitational field of a massive straight segment. A
simple planar plate (Blesa. 2006), a rotating homo-
geneous cube (Liu et al. 2011) and a triaxial ellipsoid
(Gabern et al. 2006) have also been used to model
bodies with irregular shapes.

Zeng et al. (2015) proposed that certain classes of
elongated small bodies can be modeled by a double-
particle-linkage called the dipole model. After that,
Zeng et al. (2016) investigated the dynamical prop-
erties in the vicinity of an elongated body (using
the dipole model) in order to analyze the influence
of the force ratio (k), the mass ratio (u) and the
oblateness (As) of the primary in the distribution
of the equilibrium points in the zy plane. Through
this dynamical analysis, Zeng et al. (2016) observed
that the non-collinear equilibrium points exist only
for 0.37 < k < 2.07, and that these equilibria do not
depend on p. In Zeng et al. (2016), the influence of
the parameters k, p and A, (oblateness of the sec-
ond primary) on the positions of the of out-of-plane
equilibrium points and on the topological structure
of the zero velocity curves were analyzed. Zeng et al.
(2016) noted that the oblateness of the second pri-
mary greatly influences the distribution of equilib-
rium points outside the plane. These works, among
others, showed that using that simplified model it is
possible to identify the main parameters governing
the dynamics around certain asteroid systems (Bar-
bosa Torres dos Santos et al. 2017a,b; Zeng et al.
2018).

Inspired by the double-particle-linkage model,
Lan et al. (2017) proposed that small arched bodies
can be modeled by a triple-particle-linkage model de-
termined by five parameters: M, w, I, 7 and 8. An-
alyzing asteroids 433 Eros, 243 Ida, and the Martian
moon M1 Phobos, they validated the so called tripole
model, by verifying that the gravitational field dis-
tribution of unstable annular regions is similar to
the one found with the polyhedral model. Later,
Yang et al. (2018) proposed the non-axisymmetric
triple particle-linkage model as a further step to
improve the modeling towards a more realistic sce-
nario. The authors analyzed the non-axisymmetric
tripole model using three different elongated aster-
oids (243 Ida, 433 Eros, and (8567) 1996 HW1)
and verified that the asymmetrical tripole model was



© Copyright 2020: Instituto de Astronomia, Universidad Nacional Auténoma de México
DOI: https://doi.org/10.22201/ia.01851101p.2020.56.02.09

TRIPOLE MODEL 271

more accurate than its predecessors, the dipole and
the symmetrical tripole model.

We consider different geometries for the tripole
to compute the gravitational potential and we com-
pute the positions of the equilibrium points for the
different combinations of relevant parameters of the
model. Additionally, we analyze the conditions for
linear stability. We find that the existence of some
equilibrium points depends on the azimuthal angle
and that the stability conditions depend on the ro-
tation of the asteroids around their axis (k), on the
azimuthal angle (®), and on the mass ratio of the
system (u*). Also, we investigate the influence of
® on the topological structure of the zero velocity
curves. Finally, we find the relationship between the
Jacobi constant and the azimuthal angle of the aster-
oid for all equilibrium points outside the asteroid’s
body.

Although the works found in the literature deal
with the validation of the symmetric and the asym-
metric tripole model, a semi-analytical analysis of
the tripole model has not yet been performed. So,
the main goal of the present work is to perform a
dynamical analysis around arched asteroids and in-
vestigate which parameters (k, pu* and ®, where ®
determines the degree of arching of the asteroid) in-
fluence the distribution of the equilibrium points, the
topological structure of the zero velocity curves as
well as the stability condition of stationary solutions.
The tripole model has additional degrees of freedom
when compared to the dipole model. So, it is possi-
ble to identify new parameters, such as the azimuthal
angle, and to investigate their influence on the dy-
namical properties around an arched system. With
this, the results can be applied to investigate elon-
gated natural arched bodies, such as some asteroid
systems, comet nuclei and planet moons.

We note that, from a dynamical point of view,
it should be interesting to explore the effect of the
shape on the inner equilibria also. However, since we
focus on the applicability of the solutions, we restrict
the investigation to the points outside the body of
the asteroid.

This article is organized as follows. The model
and the methodology are discussed in § 2. The re-
sults are analyzed and discussed in § 3. In § 4, we
investigate and compare the stability conditions of
the model adopted in this study with real systems
of small bodies. In § 5, some final considerations are
made.

2. MATHEMATICAL FRAMEWORK

In this section, we describe the Restricted Four-Body
Problem using the rotating mass tripole model. In

3 I, = 2Lcos® i

Fig. 1. Schematic representation of the asteroid modeled
by a tripole. The color figure can be viewed online.

our investigations, we use the rotating mass tripole
model shown in Figure 1. This model consists in
three mass points, My, My, and M3, arranged inside
an irregularly shaped asteroid. All the equations de-
veloped in this work refer to the asteroid-particle
system (where the particle is a body with negligible
mass), i.e., the perturbations from other bodies are
not taken into account. The rods connecting M; to
M3 and M5 to M3 have negligible mass and the same
length L = 1, which is the canonical unit. The dis-
tance between M7 and M5 is denoted by I1, while the
distance between Ms and the x-axis, which contains
Mg, is denoted by l5. The parameter 7 is defined as
the ratio of ls to I3, where If = 11/2, i.e. 7=1/I}.

The origin of the reference system (zy) is at the
center of mass of the asteroid. The angle formed
by each rod with the z-axis is called the azimuthal
angle and is denoted by ® . We assume that both
rods make the same angle with the horizontal axis.
The geometric configuration of the asteroid depends
on this angle. The more arched the shape of the as-
teroid, the larger is the azimuthal angle. Note that
when ® = 0° the length of the asteroid is maxi-
mum and equals to two canonical units. The equa-
tions that describe the motion of the particle in the
zy plane around the tripole are written in a rotat-
ing frame that rotates with constant angular velocity
w = 1, in canonical units. The unit of time is de-
fined such that the period of rotation of the tripole
is equal to 2w. We consider that My, Ms, and Ms
have equal masses, i.e., m; = mo = mg.
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2.1. Equations of Motion

Consider that the body with negligible mass (par-
ticle) is located at P(z,y) and its motion is gov-
erned exclusively by the gravitational forces due to
the primary bodies M7, Ms, and M3. M; and M,

have masses m; = my = p*, and M3 has mass

mg = 1 — 2u*, where p* is mass ratio defined as
ma

pr= (1)

mi + mo + M3
The coordinates of the primaries, in canonical
units, are, respectively, given by:

xl = —cos(®), w1 =sin(P) —2u"sin(P®), 2 =0
(2)

22 = cos(P), yo =sin(P®) —2u*sin(P), 22 =0
(3)
23 =0, y3=—-2u"sin(®), z3=0. (4)

Using the canonical units mentioned above the
Hamilton function of the system is written as
(Broucke 1968):

(pz +v)* + (py + )

H:

; 5)
2 2 * * 172 *
_W_k(u+ﬂ+ﬂ),

2 T1 T2 T3

where
r=v(@—21)2+ (y—y)? + 22, (6)
ro =/(x —22)% + (y — y2)* + 2%, (7)
rs =/(z — 23)% + (y — y3)> + 22, (8)

and p, and p, are the components of the angular mo-
mentum of the particle with respect to the z-axis and
the y-axis, respectively. The dimensionless parame-
ter k is the force ratio, given by the ratio between the
gravitational force and the centrifugal force (Zeng et
al. 2018, 2016):

_G'M

k= ——
27%3 "
w2}

(9)

The value of k depends on the angular velocity
of the asteroid (w*). In the international system of
units, the total mass of the body (M), is given in kg,
the length 7, nd the distance between M; and Ms
in meters; G* is the universal gravitational constant

in the international unit system. So k£ can be com-
puted after obtaining the length of the segment [7.
(Zeng et al. 2018; Lan et al. 2017; Zeng et al. 2016).

From the Hamilton function, it is possible to ob-
tain the equations of motion of the particle in the
rotating reference system:

=op, PtV (10)
OH
Y=——=Dpy — . 11
The remaining dynamical equations are
. O0H
pac:_%:py_x‘FQM (12)
. OH
py:_aiy:pz_y"‘rﬂyu (13)

where €, and 2, are the partial derivatives of (2
with respect to x and y, respectively, and €2 is given
by

.’L'2+2 * * 1_2*
=279 +k<“+“+“). (14)
2 T1 T9 T3

Equation 14 is a scalar function, also known as the
pseudo-potential, which accounts for the acceleration
experienced by the particle in a non-inertial reference
system. The equations of motion in the xy plane
in the Lagrangian formulation are (Szebehely 1967;
Murray & Dermott 1999; McCuskey 1963; Scheeres
2012):

i — 2 = Q, (15)

i+ 24 =9, (16)

which have the same appearance as the equations
of the Classical Restricted Three-Body Problem
(CRTBP) (Moulton 1914; Szebehely 1967; Murray
& Dermott 1999; McCuskey 1963).

Considering the motion in the xy plane, multi-
plying equation 15 by 2z and equation 16 by 2y, and
adding all of them, we have

o0 oN
945 4 20 — 25228 19yt 1
LT+ 299 xay—i— ygy, (17)
which can be rewritten as
.2 .2
d@"+§7) 500 (18)

dt ot

Integrating equation 18 with respect to time, we find
that
v? =20 — C*, (19)
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where v is the velocity of the particle and C* is a
constant of integration.

In this paper, C* is called the modified Jacobi
constant, where modified means that it is different
from the constant studied by Jacobi for the case
of the Classical Restricted Three-Body Problem. A
special case occurs when k = 1, since the modified
Jacobi constant has the same value as the Jacobi
constant, corresponding to the CRTBP. Looking at
equation 19, we note that the velocity of the particle
depends only on the pseudo-potential and the inte-
gration constant C*. The constant C* is determined
numerically in terms of the initial position and ve-
locity of the particle.

2.2. Equilibrium Points

Equilibrium solutions are points in which the par-
ticle has zero acceleration and zero velocity in the
rotating frame. They are good locations in space
to insert the spacecraft because they are located in
regions where external perturbations are minimal,
reducing the fuel consumption required for station-
keeping maneuvers (Barbosa Torres dos Santos et al.
2017a). The locations of the equilibrium points are
explicitly defined in terms of p* (and implicitly by
®). Making the right side of equations 15 and 16
equal to zero, that is, £ = ¢ = 0, implies null accel-
erations:

prle—x)  pf(e—ao)

[@—2)2+(y—y)?]*  [@—292+(y—12)?*
Q=2 (x —as)

[(z — 23)* + (y — y3)?]

1y =) I )
(@202 +(y—y)?]? (@222 +(y—y2)?]?
=2y -ys)
(@ — 23)2 + (y — y3)?]

xr—

3 Y
2

(20)

The solutions of this system of equations can be
determined numerically using an iterative method.

2.3. Linear Stability Analysis
The linear stability analysis of the equilibrium points
(z0,y0) is performed by displacing the origin of the
coordinate system to the position of the libration
points, so that the equations of motion are linearized
around the origin. Equation 15 and 16 can be writ-
ten as, respectively

éf 27’ = Qrz(g:Oy yO)E + sz(an y0)777

L (21)
1)+ 2€ = Quy (20, Y0)& + Qyy (0, Yo)n,

where the partial derivatives in (zg,yp) mean that
the value is computed at the libration point that is
being investigated. £ and 7 represent the coordinates
of the particle with respect to the equilibrium point
(20, Yo), and Quq, Qay, Quy, and Q,, are the partial
derivatives calculated at this point, given by

0. — 3(1 —2p*)a? _ 1—2u*
T @ ()2 (@24 (y - ys)?)P
- W 3 (x — 11)?
@202+ (y—y1)2)3% " (@—a1)?+(y—y1)2)5/?
- W L e m)?
@222+ (y—92)2)32 ' (@—a2)*+(y—y2)?)5/2
_ 30 -2y —ys)® 1—2p"
@) @+ (- ys)?)??
3 (y —y)? B ©*
(z—2)2+ -2 (@—22)2+ -2
3ur(y —y2)* © 4,

(@~ +ly—12?)"* (@~ +y—y2?)*

3(1 —2u")x(y — y3)
(@2 + (y — y3)2)**
3ut(z —x)(y—y1) | 3p(x—x2)(y — 1)

(@202 +@G-1)2)""  (@—222+@—122)"*
(22)

Uy =y =

The nontrivial roots of equations 21 are obtained
from the solution of the characteristic equation of
order four in A:

M4 (4-Q0, —Q) N +Q0,Q0 —(Q9,)* =0. (23)
In equation 23, Q9 ng and Q0 refer, respec-
tively, to Qe (20, Yo), Quy(To, yo) and Qyy (zo, yo)-
The equilibrium point is linearly stable if all the four
roots (or eigenvalues A) of equation 23 are purely
imaginary, or complex with negative real parts (O11é
et al. 2004). However, if one or more of the eigenval-
ues have a positive real part, the equilibrium point
is classified as unstable (Moulton 1914; Szebehely
1967; Murray & Dermott 1999; McCuskey 1963).

3. RESULTS

In this section we will show the numerical results ob-
tained from our numerical simulations. The goal is
to gain a general view of the dynamics of the prob-
lem, which will allow us to draw some conclusions.
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Fig. 2. Equilibrium points for an azimuthal angle of (a)
0° and (b) 45°. In both cases u* = 1/3. The color figure
can be viewed online.

3.1. Influence of [k, u*, ®] on Equilibrium Points

We start by computing the equilibrium points of the
system. Figure 2(a) shows the points of mass M,
(green circle on the left side), My (green circle on
the right side) and M3 (green middle circle), and six
equilibrium points (red) for & = 0°, p* = 1/3 and
k = 1. The equilibrium points between M; and Mj3
and between My and Mjz overlap with the rod that

[ S]
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S 038 ;
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¢ x
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S 05
S
-
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1.5
S o0° x15° w30° @4 4600 T 00°
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Fig. 3. Equilibrium points separated by regions A to E.
The color figure can be viewed online.

connects the spheres (see Figure 1). Therefore, we
assume that these equilibrium points are inside the
body of the asteroid.

Figure 2(b) is similar to Figure 2(a), with u* =
1/3 and k£ = 1, but now ® = 45°. In this case,
there are eight equilibrium points, all of them off
the z-axis. The position shift occurs because a new
configuration is necessary to fulfill the equilibrium
conditions as the positions of the primaries change,
modifying the value of the azimuthal angle.

We performed numerical investigations to under-
stand how the coordinates of the external equilib-
rium points change when p*, k and ® are varied. To
facilitate this analysis, we identified five regions, A,
B, C, D, and E, as shown in Figure 3. We note that
the regions are symmetric with respect to the y-axis.
Observe that regions A, B and E are symmetric with
respect to the y-axis, i.e., if the equilibrium point (in
regions A, B or E) has coordinates (z, y), then there
will be another equilibrium point in the coordinates
(-z, y). Due to this symmetric property of the re-
gions, we will only analyze the situations for which x
is negative. Figure 3 displays the equilibrium points
when p* =1/3, k = 1 and ® is varying. It illustrates
how the equilibrium points move as this parameter
is varied. The corresponding azimuthal angles are
given in the caption of the plot. One can note the
“path” followed by the equilibrium points as ® in-
creases. For & = 90°, the equilibrium points are
equivalent to those of a dipole aligned at = = 0.
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Fig. 4. Coordinates of the equilibrium points in region
A as a function of k, u* and ®. (a) Position of the equi-
librium points on the z-axis. (b) Position of equilibrium
the points on the y-axis. The color figure can be viewed
online.

For region A, we plot the behavior of the equilib-
rium points in the z and y plane as a function of p*,
k and @, as shown in Figure 4.

Figure 4 shows how the coordinates of the equi-
librium points vary with k, p* and ®. Note that
the graphs show the variation in the mass of the
body M3, given by 1-2u*. That is, if the mass of Mj
increases, consequently the mass of M; (and Ma),
given by p*, decreases. The color bar represents the
value of the azimuthal angle. First, we investigate
the solutions when we vary k& and keep p* and ®
constant. Note from Figure 4 that as the rotation of
the asteroid decreases, that is, as k becomes larger,
the equilibrium points move away from the center of
mass of the system. This is because increasing k im-

plies decreasing the angular velocity of the asteroid
around its own axis (see equation 9), thus making
the value of the centrifugal force smaller. The con-
dition of existence of an equilibrium point is that
the resulting force at one point in space is zero, that
is, the gravitational force and the centrifugal force
must have the same value (in the module) but in op-
posite directions. So, to keep the centrifugal force
at a value that counteracts the gravitational force,
the distance from the center of mass to the position
of the equilibrium points must increase. As k in-
creases, the equilibrium points appear farther from
the center of mass.

Next, keeping the values of k and ® constant
and varying p*, Figure 4 shows that, as yu* becomes
smaller, the equilibrium points on the z-axis inside
region A approach the center of mass of the sys-
tem. On the other hand, as 1-2u* decreases (i.e. p*
increases), the equilibrum points move away from
the asteroid. This happens because, as the mass of
the bodies M; and M, becomes smaller, the gravi-
tational force on the asteroid edge decreases on the
z-axis, making it necessary to reduce the centrifugal
force of the system on this axis. Conversely, the po-
sitions of the libration points move away from the
center of mass along the y-axis as the gravitational
force on this axis becomes larger due to the increase
in the mass of Ms.

Finally, in region A as we increase ®, the equi-
librium points along the x-axis come nearer to the
center of mass of the system, while the ones along
the y-axis move away from the center of mass of the
system. These equilibrium points only exist when
the azimuthal angle is between 0° and 76°. Beyond
this value, the configuration of the tripole does not
allow the existence of equilibrium points in region A.

For region B, the variations of the = and y co-
ordinates of the equilibrium points as a function of
k, p* and ® are shown in Figures 5(a) and (b), re-
spectively. For a better view of the path taken by
the equilibrium points when we vary the parameters
k, p* and ® , we insert a curve (black line) in the
yellow region (® = 65°).

We note that, as k becomes smaller, the positions
of the equilibrium points in region B shift away from
the center of mass of the system. This is true for
the equilibrium points on both the z-axis and the
y-axis and it occurs for the same reason as for the
equilibrium points in region A.

The equilibrium points in region B occur for
® > 26°. When the mass mg increases, the equilbir-
ium points tend to move away from primary body
on both the z and y axis.
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Fig. 5. Coordinates of the equilibrium points in region
B as a function of k, p* and ®. (a) Position of the equi-
librium points on the z-axis. (b) Position of equilibrium
the points on the y-axis. The color figure can be viewed
online.

Analyzing the positions of equilibrium points in
region B as we increase ®, we find that the equilib-
rium points move upwards along the y-axis and may
cross over to the positive semi-plane. Unlike what
happens for solutions in region A, the equilibrium
points in region B move away from the system’s cen-
ter of mass along the z-axis.

Table 1 summarizes the direction of the displace-
ment of the equilibrium points in region A and B
with respect to the body’s center of mass as k, u*
and ® vary. The symbol  indicates that the cor-
responding parameter is increasing, while = is used
to indicate parameters that are fixed. Directional
arrows denote the direction of the displacement of
the equilibrium points. For example, when we keep

gy =
&0 @
8 &0 %
E 6+ n T
o .
m ;- I an B
et { o8
- !
2 - f-"‘-ﬂﬁ 2
-
/04 L]

——

1.5 1 .

® %2 12" [adim] °
yladim ~ ° al

Fig. 6. Behavior of the equilibrium points on the y-axis
of region C as a function of parameters k, 4 and ®. The
color figure can be viewed online.

fixed the values of k and p*, and increase ®, the
equilibrium points of region A, x and y, move to the
right (approaching the system center of mass) and
up (moving away from the system center of mass),
respectively.

Next, we investigate regions C and D. In these
two regions, the coordinate of the equilibrium points
on the x-axis is zero for all points.

Figure 6 shows the y coordinate of the equilib-
rium points as a function of k, p* and ®. When k
increases the centrifugal force becomes smaller, so
the equilibrium points move downwards, away from
M;. As the mass of M3 increases, the gravitational
force in the y direction becomes stronger, causing the
positions of the equilibrium points to change. As p*
decreases and (1-2p*) becomes larger, the equilib-
rium points in region C move in the negative direc-
tion of the y-axis.

Finally, as ® increases, the equilibrium points
move in the downwards along the y-axis. Figure 6
illustrates that the y coordinate of the equilibrium
points of the C region depends on ®, and that yc(®)
becomes smaller as we increase the azimuthal angle.
This happens because, as we increase ®, M7 and M,
move upwards along the y-axis. Then, to keep the
center of mass of the system at the origin, M3 must
be in the semiplane with negative y-axis. Moreover,
as ® increases, the coordinate of M3 becomes in-
creasingly negative, so the equilibrium points in re-
gion C move away from M3 in the negative direction,
to maintain the balance between the gravitational
and centrifugal forces.
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TABLE 1

VARIATION TRENDS OF COORDINATES FOR THE EQUILIBRIUM POINTS OF THE A AND B
REGIONS

Summary, variation Equilibrium point Equilibrium point

of parameters. motion. A region motion. B region
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Fig. 7. Behavior of the equilibrium points on the y-axis
of region D as a function of parameters k, u* and ®. The
color figure can be viewed online.

Figure 7 shows how the equilibrium points in re-
gion D depend on k, p* and ®. As k increases,
the equilibrium points move upwards, away from
the center of mass of the system. As the mass of
M3 increases, the gravitational force in the y direc-
tion becomes larger, changing the positions of the
equilibrium points. As (1-2p*) becomes larger, the
equilibrium points in region D move in the positive
direction of the y-axis, away from the center of mass
of the system.

Finally, we investigated the behavior of the equi-
librium points on the y-axis when we increase ®. Ini-
tially, when we increase ®, the equilibrium points on
the y-axis approach the center of mass of the system.
This happens because, as we increase the azimuthal
angle, M3 moves downward; consequently, the gravi-
tational force on the positive y-axis becomes weaker.
In contrast, as we increase @, the bodies M; and Ms
move upward with respect to the y-axis. This causes
the gravitational force to increase in region D, now
causing the equilibrium points to move upwards. For

Fig. 8. y-coordinate of the equilibrium points in region
D as a function of ® for [u*, k] = [1/3, 1]7. The color
figure can be viewed online.

a better understanding, we constructed a figure us-
ing [u*, k] = [1/3, 1]T, which shows the equilibrium
point behavior in the D region when we vary ®, as
shown in Figure 8.

Then, as we increase the value of ®, the equilib-
rium point values in region D decrease, approaching
the center of mass of the system; they reach a min-
imum for ®p = 30.32°, and the y position of the
D region that depends on @ is y(®) p—min = 0.6664.
Then they increase again, moving away from the cen-
ter of mass of the system.

Table 2 summarizes the direction of the displace-
ment of the equilibrium points in region D relative
to the asteroid’s center of mass when k, p* and @
vary.

3.2. Influence of the Azimutal Angle on the Zero
Velocity Curves

The azimuthal angle is one of the main parameters
that govern the topological structure of the zero ve-
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TABLE 2

VARIATION TRENDS OF COORDINATES FOR THE EQUILIBRIUM POINTS OF THE C AND D
REGIONS

Summary, variation
of parameters.

Equilibrium point
motion. C region

Equilibrium point
motion. D region

o Yo Lo Yo
kA 12ut =, &= 0 + 0 T
k=, 1-2u* &, &= 0 J 0 T
k=, 12u*= & 0 + 0 )

locity curves around the tripole system. In this sec-
tion, this effect is investigated. For the numerical
simulations we keep [k, u*]T = [1, 1/3]7 and we vary
the angle ® in the interval [0, 90°].

Equation 19 relates the square of the velocity and
the position of the infinitesimal mass body in a rotat-
ing coordinate system. Note that when the integra-
tion constant C* is numerically determined by the
initial conditions, equation 19 gives the speed with
which the infinitesimal mass body moves.

In particular, if v is zero, equation 19 defines the
curves at which the velocity is zero. The equation
that gives the zero velocity curves, in Cartesian co-
ordinates, is:

2 2= 2)

2 *
e T M e
1 T2 T3

=C*, (24)

where rq, 7o and r3 are as shown in equations 6, 7
and 8. The zero velocity curves in the zy plane for
six different values of ® are shown in Figure 9. Each
curve in frames (a) to (f) of Figure 9 corresponds
to the value of the Jacobi constant for which the
contacts between the ovals occur and the equilibrium
points appear. The tripole is not illustrated in the
figure.

Figure 9(a) shows the zero velocity curves when
the azimuthal angle is 0°. Note that, for this az-
imuthal angle, My, M5, and M3 are aligned on the
z-axis. On the other hand, Figure 9(b) shows the
zero velocity curves when the azimuthal angle is 20°.
For small values of z and y that satisfy equation 24,
the first two terms are virtually irrelevant and the
equation can be written as:

ptoopt o 2(l-2pf)  Cr (2P 4yt CF
1 T2 r3 - 2 2 a 2
(25)

This equation gives the equipotential curves for
the three centers of force p*, p* and 1-2p*, as shown
in Figure 9(a) and (b). For large values of C*, ovals
consist of closed curves around each of the body. If

—€.

we decrease C*, the ovals around M;, My and Mj
(inner ovals) expand, and the outer contours (outer
ovals) move towards the center of mass of the sys-
tem. The inner ovals connect with the outer ovals,
resulting in the equilibrium points in region A (black
curve) and the ovals between the bodies also connect,
resulting in the equilibrium points in region E (red
curve). See Figures 9(a) and (b).

If C* is further decreased, the regions where
movement is allowed become larger. This happens
because the oval around the masses increases and
merges with the outer oval, leaving only a small con-
fined area (regions C and D), where the movement is
impossible. Note from Figure 9(a) that, due to the
symmetry of the problem, equilibrium points in re-
gions C and D appear for the same value of C* (green
curve). On the other hand, when the azimuthal an-
gle is different from 0°, the equilibrium points in the
C and D regions appear for different Jacobi constant
values (green and blue curves, respectively) shown
in Figure 9(b).

Figure 9(c) shows the zero velocity curves when
the azimuthal angle is 40°. The change in the topo-
logical structure of the zero velocity curves is evi-
dent as the azimuthal angle is varied. Note from
Figure 9(c) that, in addition to the contact points
shown in Figures 9(a) and (b), new contact points
emerge (red curves), in region B. Through numeri-
cal simulations, we observe that the B region arises
when the azimuthal angle is greater than 26°.

When we consider an azimuthal angle of 60°, My,
Ms and M3 form an equilateral triangle relative to
the rotating reference system. Thus, the zero ve-
locity curves have a symmetrical shape. When the
azimuthal angle is 60°, the equilibrium points in re-
gions A and C arise for Cs_¢ = 2.946725190. Like-
wise, the (Cp_p = 3.35803516) is required for con-
tacts between ovals in regions B and D. If the masses
of My and M> are different, the symmetric property
of the equilibrium points and the zero velocity curves
with respect to the zy axis is not valid. Figure 9(e)
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Fig. 9. Influence of the azimuthal angle on the zero-velocity curves in the zy plane. (a) Zero velocity curves for a 0°
azimuthal angle. (b) Zero velocity curves for a 20° azimuthal angle. (¢) Zero velocity curves for a 40° azimuthal angle.
(d) Zero velocity curves for a 60° azimuthal angle. (e) Zero velocity curves for an 80° azimuthal angle. (f) Zero velocity
curves for a 90° azimuthal angle. The color figure can be viewed online.
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Fig. 10. Jacobi constant behavior in regions A, B, C and D, respectively, as a function of azimuthal angle. (a) Values
of the Jacobian constant (Ca) at the equilibrium points versus ®. (b) Values of the Jacobian constant (Cp) at the
equilibrium points versus ®. (c¢) Values of the Jacobian constant (Cc) at the equilibrium points versus ®. (d) Values
of the Jacobian constant (Cp) at the equilibrium points versus ®. The color figure can be viewed online.

shows the zero velocity curves for an azimuthal angle
of 80°. In Figure 9(e), we observe that the regions
A cease to exist, leaving only regions B, C, D and E.
This means that, just as regions B depend on the az-
imuthal angle to emerge or disappear, so do regions
A. Regions A cease to exist for & > 76°.

Finally, considering an azimuthal angle of 90°,
M; and M, overlap, which means that they behave
as a single body with mass m = my + meo. For this
configuration, the system is similar to the Classical
Restricted Three-body Problem with a mass ratio of
wc=1/2.

Note from Figures 9(a) - (f) that, as we increase
the azimuthal angle from 0 to 90°, noticeable changes
in the zero velocity curves can be observed near the
arched asteroid. Note that the regions that connect

the ovals move along the xy plane as we vary the
azimuthal angle. Some fixed points also emerge or
disappear.

The values of the modified Jacobi constants at
the contact points in each region in Figure 9 are
shown in Figure 10. Figures 10(a) - (d) show how
the values of the Jacobi constant at regions A, B,
C, and D (C4, Cp, C¢, and Cp, respectively) vary
as a function of the azimuthal angle ®. In Fig-
ure 10(a), we see that the values of the Jaccobi con-
stant C4(®) decrease as the azimuthal angle ® in-
creases. For Cp(®), one notes that initially the value
of the Jacobi constant increases with increasing az-
imuthal angle, and then it decreases, as shown in Fig-
ure 10(b). This behavior causes a maximum value
for Cp(®), which happens at Cp = 2.989303755, for
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Fig. 11. Values of the mass ratio (u*) versus the azimuthal angle (®) for the stability condition of the equilibrium point
Lp considering different values of k. (a) Values of the mass ratio (u*) versus the azimuthal angle (®) when k = 1 for the
stability condition of the equilibrium point Lp. (b) Values of the mass ratio (u*) versus the azimuthal angle (®) when
k = 3 for the stability condition of the equilibrium point Lp. (¢) Values of the mass ratio (u*) versus the azimuthal
angle (®) when k = 5 for the stability condition of the equilibrium point Lp. (d) Values of the mass ratio (u*) versus
the azimuthal angle (®) when k = 7 for the stability condition of the equilibrium point Lp. The color figure can be

viewed online.

® = 46.524234°. On the other hand, the values of
the function Co(®) increase as we increase ®. Fi-
nally, for Cp, as we increase @, initially the values
of Cp become smaller, reaching a minimum value
of Cp = 2.4120014 when the azimuthal angle is ap-
proximately ® = 19.987°, and then they increase.

3.3. Stability Conditions

Now, we focus on the analysis of the stability condi-
tions for the equilibrium points in regions D and C,
(Lp and L¢), respectively, i.e., points that have null
x coordinate. We describe how the stability condi-
tions for the equilibrium points Lp (and L¢) depend
on the azimuthal angle (®), the force ratio (k) and

the mass ratio (1*). Indeed, if any of these parame-
ters are changed, the stability condition (unstable or
stable) of these equilibrium points may also change.

First let us look at the stability condition for re-
gion D. Figure 11 displays plots of ® versus p*, show-
ing the stability transition. We see from Figure 11(a)
that, when the azimuthal angle increases and k =1,
the mass ratio required to maintain the equilibrium
point Lp stable decreases. When the angle is 0°, the
maximum mass ratio to allow linear stability of the
system studied is p* = 0.0742683. If the mass ratio
is greater than this value, the system is unstable for
every azimuthal angle. Note that, when & — 90°,
the two masses of the tripole (m; and ms) colapse
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into a mass point with a mass ratio 2u*. In this
case, the point Lp is similar to the equilibrium point
Ls of the Classical Restricted Three-Body Problem.
Therefore this equilibrium point is linearly unstable
for any mass ratio, which is in agreement with the
literature (Moulton 1914; Szebehely 1967; Murray &
Dermott 1999; McCuskey 1963).

Figures 11(b) to (d) show ® versus p*, illustrat-
ing the stability regions when & > 1. We see from
Figure 11(b) that, for ® < 70°, the stability transi-
tion is similar to the case when k = 1, but the bi-
furcation occurs when ® =~ 70°. Notice in the graph
that a narrow vertical strip appears, causing the Lp
equilibrium point to be stable for any value of u*. As
® increases, the stability conditions change again,
making the equilibrium point stable only for high
values of p*. So, observe that when the system has
small values of p*, the equilibrium points are linearly
stable for ® < 76°. On the other hand, for a very
arched asteroid (® > 76°), the equilibrium point Lp
is linearly stable when the mass ratio of the system
is large.

Figure 11(c) shows the stability transition curve
for k = 5. We observe that when & < 60°, the sta-
bility transition curve is similar to the previous cases.
We also notice that a narrow vertical strip appears
(around ® ~ 65°) and has a larger area with respect
to the previous case. This means that we can also
find stable regions when we consider large values of
® (& > 60°) and p*. As we increase the value of ®
(when & > 70°), the equilibrium point Lp becomes
linearly stable only for large values of p*. For small
values of p*, the equilibrium point Lp is stable when
® < 70°. The letters S and U shown in Figure 11(c)
are abbreviations for stable and unstable condition,
respectively.

Finally, Figure 11(d) shows the stability transi-
tion when k& = 7. Note that, as in the previous cases,
when we consider k = 7 a narrow vertical strip ap-
pears (around ® 60°), allowing the equilibrium point
Lp to be linearly stable for any value of p*. If we
gradually increase p and ®, the stable regions re-
main until & = 89.6°. On the other hand, if we
decrease ;1 as we increase @ (from 66°), the stable
region extends to ® = 67°. Note in Figures 11(b)
to (d) that the area of the narrow vertical strip be-
comes larger as we increase the k value. This means
that, the larger the value of k, the larger the region
that allows linear stability of the equilibrium point
Lp for any values of u*.

A similar analysis was performed for the equi-

librium point Lo and the results are shown in Fig-
ure 12. Unlike Figure 11(a), when k& = 1, Fig-

ure 12(a) shows that there are two stability tran-
sition limits. The first limit (lower transition, left-
hand curve) exists for small azimuthal angles, start-
ing at 0°, with a mass ratio of 0.07427949. Above
18.351°, numerical evidence shows that another sta-
bility transition arises, as shown by the right-hand
curve in Figure 11(a).

Figures 12(b) - (d) show ® versus p*, which illus-
trates the stability regions, when k > 1. Figure 12(b)
shows two stability transitions. Note that the first
transition starts when & = 0° and p* is approxi-
mately 0.074.

The second stability transition starts when
® = 25°, when the asteroid is 8° more arched than
in the previous case, so the equilibrium point Lo has
a wider stable region compared to when k = 1. For
® > 57.5°, the equilibrium point Lo is unstable for
any mass ratio.

If we further increase the value of k to k = 5,
the stability region becomes even larger, as shown
in Figure 12(c). The first stability transition arises
when ® = 0° and p* = 0.08. In contrast, the second
curve arises when p* = 0 and ® = 28°, thus limiting
the region that allows the equilibrium point Lo to
be stable. If the azimuthal angle is greater than 68°,
the equilibrium point Lo becomes unstable for any
mass ratio.

Finally, we made an analysis considering k = 7.
Note from Figure 12(d) that, due to the slow rota-
tion of the asteroid, now a larger area on the graph
makes the Lo equilibrium point linearly stable. For
k = 7, the first transition starts when ® = 0° and
u* = 0.09. In contrast, the second stability transi-
tion starts when & = 29° and p* = 0. This shows
that when we increase the value of k (ie, the angu-
lar velocity of the asteroid becomes slower), the two
stability transition curves intersect at a larger az-
imuthal angle, ranging from approximately, ® = 35°
when k = 1, to & = 75° when £ = 7. This shows
that, as we increase the force ratio k, the stability
region becomes larger.

4. APPLICATION

To validate the equations and results developed in
this article, we compared the results obtained with
four celestial bodies, (i) 243 Ida, (ii) 433 Eros, (iii)
1996(HW1) and (iv) M1 Phobos.

The parameters k, ® and pu* were taken from Lan
et al. (2017) (for Ida and M1 Phobos) and Yang et
al. (2018) (for Eros and 1996 HW1). The linear sta-
bility of the equilibrium points of the celestial bodies
mentioned above was obtained by Wang et al. (2014)
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Fig. 12. Values of the mass ratio (u*) versus the elevation angle (®) for the stability condition of the equilibrium point
L¢ considering different values of k. (a) Values of the mass ratio (u*) versus the azimuthal angle (®) when k = 1 for the
stability condition of the equilibrium point Lc. (b) Values of the mass ratio (u*) versus the azimuthal angle (®) when
k = 3 for the stability condition of the equilibrium point Lc. (¢) Values of the mass ratio (u*) versus the azimuthal
angle (®) when k& = 5 for the stability condition of the equilibrium point L¢. (d) Values of the mass ratio (u*) versus
the azimuthal angle (®) when k& = 7 for the stability condition of the equilibrium point Lc. The color figure can be
viewed online.

and used in this study for comparison purposes. In
Wang et al. (2014), regions C and D are the equilib-

rium points E4 and Fs, respectively. TABLE 3

THE OPTIMAL PARAMETERS FOR THE

The optimized parameters of the bodies under TRIPOLE MODELS

analysis in this article are shown in Table 3, where

® is determined by setting ® = arctan (2¢) in which Asteroid k w )

o is given by l3/l; and was determined in Lan et al. 243 Ida 0.402 0.237 19.94°

(2017) and Yang et al. (2018). M1 Phobos 22003 0396  56.09°
Knowing the parameters for each celestial body, 433 Eros 0.434 0.260 18.95°

it is possible to find the stability conditions for the 1996 (HW1) 3.158 0.443 27.43°

equilibrium points F4 and Es from equations 22 and
23.
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Eros asteroids. (f) k = 3.15 for the equilibrium point Le (E4) of the 243 Ida and 433 Eros asteroids. The color figure
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Figure 13 shows p* versus ® and illustrates the
stability regions for the equilibrum points Le and
Lp for asteroids 1996 HW1, 243 Ida and 433 Eros
and M1 Phobos.

Figure 13(a) and (b) plot ® vs. p* (27.43, 0.44)
for the asteroid 1996 HW1. We observe that the
point is outside the region that allows stability of
the equilibrium points Fs and Ey4, showing that these
equilibrium points are unstable, a result that coin-
cides with the results obtained by Wang et al. (2014).

Figures 13(c) and (d) show the stability re-
gion of the equilibrium points Fy and FE; when
k = 22. We plotted the ordered pair (56.09, 0.396)
for M1 Phobos. Due to the characteristics (shape,
density and rotation) of M1 Phobos, the equilibrium
points Es and E; are within the stability region,
making these equilibrum points linearly stable.

The stability of the equilibrium points depends
on the bulk density, the shapes, and the angular ve-
locities of the asteroids. The bulk density is obtained
from the composition of the asteroid, a characteris-
tic that is hard to change. The asteroids are shaped
in the long-term in space. On the other hand, the
angular velocities of asteroids are altered due to the
accelerations caused by the YORP effect (Paddack
1969).

Observe that the equilibrium points Fo and Ej4 of
M1 Phobos are close to the boundary that guaran-
tees the condition of stability (see Figure 13(c) and
(d). If the angular velocity of this body increases,
as predicted by the YORP effect, k will decrease,
making the equilibrium point unstable. This result
shows the importance of carrying out a generalized
analysis with the aim of globally understanding the
dynamical properties in the vicinity of celestial bod-
ies.

Finally, Figure 13(e) and (f) provide informa-
tion regarding the stability condition for 243 Ida and
433 Eros asteroids. In Table 3 we see that k for aster-
oids 243 Ida and 433 Eros are very close. Because of
this, we will show the results for these two asteroids
on the same graph, in Figures 13(e) and (f). We plot-
ted (¢, u*) = (18.95,0.26) and (¢, p*) = (19.94,0.23)
for 433 Eros and 243 Ida asteroids, respectively.

We observe that the equilibrium points Fs and
E, (Figure 13(e) and (f), respectively) of asteroids
243 Ida and 433 Eros are unstable due to their phys-
ical and dynamical characteristics.

These results show that our generalized analysis
coincides with the results obtained for asteroids that
can be modeled as rotating mass tripoles.

5. CONCLUSION

Dynamical properties of the rotating mass tripole
were addressed in this article. The rotating mass
tripole consists of three point masses whose geomet-
ric configuration depends on the shape of the aster-
oids under analysis.

We observed that the gravitational potential de-
pends on three free parameters, which are: the force
ratio, the mass ratio and the azimuthal angle. We
note that the number of equilibrium points that arise
depends on the combination of these free parame-
ters. It can be from five to eight equilibrium points.
The tendency to vary the location of the equilibrium
points according to the free parameters was studied.

We also analyzed the topological structure of the
zero velocity curves with respect of the azimuthal
angle. We observed that the zero velocity curves
around the rotating mass tripole have significant
changes due to the arched shape of the asteroid.

Analyzing the linearized equations, we observed
that the condition of stability of the equilibrium
points in regions C and D depends on k, p* and .
For region C, we observed the appearance of bifur-
cations when k£ > 1. On the other hand, the equilib-
rium points in region D show two stability transition
limits for any value of k. For both regions (C and
D), it was observed that as we increased the value of
k the region of stability became larger.

Understanding the dynamics of a particle sub-
ject to the gravitational field of an elongated asteroid
is extremely important for the exploration of these
bodies. The results presented here provide a global
characterization of the dynamical behavior of an in-
finitesimal mass body around an asteroid modeled
as a rotating mass tripole. This allows a better un-
derstanding of the main factors that influence the
topological structure of the gravitational field in the
vicinity of asteroids with an arched shape. More
complex models, such as the polyhedral method, are
much more accurate and are widely used in the anal-
ysis of a specific asteroid, but the present model
proved to be useful in providing general informa-
tion about families of asteroids similar to the tripole
model.
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