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ABSTRACT

The large dynamic range in some astrophysical N -body problems led to the
use of adaptive multi-time-steps; however, the search for optimal strategies is still
challenging. We numerically quantify the performance of the hierarchical Hamilto-
nian Splitting (HHS) integrator for collisionless simulations using a direct summa-
tion code. We compare HHS with the constant global time-step leapfrog integrator,
and with the adaptive one (AKDK). We find that HHS is approximately reversible,
whereas AKDK is not. Therefore, it is possible to find a combination of parameters
such that the energy drift is considerably milder for HHS, resulting in a better per-
formance. We conclude that HHS is an attractive alternative to AKDK, and it is
certainly advantageous for direct summation and P3M codes. Also, we find advan-
tages with GADGET4 (Tree/FMM) HHS implementation that are worth exploring
further.

RESUMEN

El gran intervalo dinámico en algunos problemas astrof́ısicos de N -cuerpos
ha llevado al uso de pasos de tiempo múltiples adaptivos, sin embargo, la búsqueda
de estrategias óptimas es aún un reto. Estudiamos numéricamente el integrador
Hierarchical Hamiltonian Splitting (HHS) utilizando un código de suma directa y
comparamos con el rendimiento de leapfrog con paso global constante y su ver-
sion multi-paso adaptivo (AKDK). Encontramos que HHS es aproximadamente
reversible, mientras que AKDK no. Por lo que es posible encontrar una combi-
nación de parámetros tales que el cambio de enerǵıa es considerablemente menor
para HHS, resultando en una mayor eficiencia. Concluimos que HHS es una al-
ternativa competitiva con ventaja para códigos de suma directa y P3M. También,
hallamos ventajas para la implementación de HHS en GADGET4 (Árbol/FMM)
que merecen ser investigadas más.

Key Words: celestial mechanics — galaxies: kinematics and dynamics — gravita-
tion — large-scale structure of Universe — methods: numerical —
software: simulations

1. INTRODUCTION

Historically, fully self-consistent realistic astro-
physical N -body simulations are a challenging prob-
lem (Aarseth 1971; Efstathiou et al. 1985; Stadel
2001; Springel et al. 2001; Dehnen & Read 2011;
Klypin 2018). On the purely gravitational case, di-
rect summation N -body codes suffer from a bottle-
neck due to the computational cost of force calcula-
tion on a particle-by-particle basis, which scales as
the square of particle number (N2

p ). For this reason,
they are primarily used for simulating dense stellar

environments or planetary systems. Such limitations
triggered the development of sophisticated approxi-
mate hybrid collisionless methods, like the TreePM
(Tree-Particle Mesh)/P3M (Particle Particle- Par-
ticle Mesh)/P3T (Particle Particle- Particle Tree)
codes (Xu 1995; Bode et al. 2000; Bagla 2002;
Bode & Ostriker 2003) where the short-range com-
ponent of the force is carried out either by expen-
sive/accurate direct summation or tree force solvers
(Couchman 1991; Oshino et al. 2011; Habib et al.
2013). Alternatively, AMR (Adaptive Mesh refine-
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ment) methods are used to compute the large dy-
namical range of the gravitational force (Villum-
sen 1989; Jessop et al. 1994; Kravtsov et al. 1997;
Teyssier 2002), seeking a balance between accu-
racy and computational efficiency. N -body simula-
tions require both a fast way to calculate the ac-
celerations and an accurate and efficient integration
method to evolve particles in time. The second-
order leapfrog symplectic integrator (Verlet 1967) is
the most widely used in collisionless N -body simula-
tions (e.g. Klypin 2018; Angulo & Hahn 2021). It is
strictly symplectic when a global-constant time-step
is adopted; however, this is not suitable for address-
ing problems with a large dynamical range that are
currently studied with modern codes. In the quest
to improve efficiency, it is necessary to adopt mul-
tiple or adaptive time-steps. The general problem
of geometric/symplectic (preserving phase space vol-
ume), time-symmetric (recover initial conditions af-
ter changing dt for -dt) and reversible integrators (re-
cover initial conditions after changing the sign of ve-
locities) has been addressed in the field of differential
equations for dynamical systems (Hairer et al. 2002).
In such work, they point out the differences between
adaptive global time-steps or multi-time-steps (sev-
eral rates of evolution for different parts of the sys-
tem) and discuss the constraints required for the in-
tegration method and the time-step selection func-
tion to preserve the mapping properties. In astron-
omy, the influential study of Quinn et al. (1997) dis-
cusses different operator-based leapfrog implementa-
tions using time step blocks plus a time-step selection
function in the KDK/DKD leapfrog integrator for
massive N -body simulations. They point out that
particle migration across time-step blocks may break
up the symmetry and sometimes involves backward
integration, which can be difficult to reconcile with a
dissipative component like gas. Current collisionless
simulations codes commonly use the KDK leapfrog
implementation with adaptive time-steps (e.g. Quinn
et al. 1997; Springel 2005; Dehnen & Read 2011;
Klypin 2018), which we call hereafter AKDK. Re-
cently, Dehnen (2017) discusses conditions where the
Hairer et al. (2002) analysis for time-symmetric in-
tegrators can be extended to discrete time-stepping.
They conclude that there is no general solution.
Many of the proposed integrators truly preserve the
symmetries; however, the specific time-step selection
function should also respect symmetrization. In sev-
eral cases, the computational overhead makes the
proposal impractical.

In this paper, we explore and quantify the Hier-
archical Hamiltonian Splitting (HHS) strategy pro-

posed by Pelupessy et al. (2012), which is, as
leapfrog, a second-order scheme. This integrator
was tested for small number of bodies or collisional
simulations, delivering good energy conservation and
momentum conservation at machine accuracy. How-
ever, no analysis of time-symmetry or reversibility
was presented. Some modern N -body codes like
AREPO (Weinberger et al. 2020) and GADGET4
(Springel et al. 2021) have implemented versions of
HHS with some differences with respect to the origi-
nal proposal, although they do not give details of the
performance or other properties that allow the com-
parison with the commonly used integrators. In this
work, we extend the discussion of HHS in the con-
text of collisionless N -body simulations, by numer-
ically investigating the time-symmetry and velocity
reversibility. We also test some time-step selection
functions to explore the potential advantages. In all
cases we compare with the global constant time-step
leapfrog integrator and the adaptive one (AKDK) in
order to assess the conditions under which HHS is a
competitive alternative. As we discussed above, in
some modern P3M codes running in hybrid architec-
tures, the most expensive calculation is the short-
range direct summation force integration, in some
cases processed inside GPUs (Habib et al. 2016).
Motivated by that, we implemented HHS in a direct
summation code running in GPUs and complement
that with additional tests with the Tree/FMM code
GADGET4.

The rest of the paper has been organized as fol-
lows: § 2 summarizes the main properties of the inte-
grators used here to carry out their comparison while
§ 3 introduces the time-step selection functions. § 4
shows accuracy tests performed with emphasis on
the cases on an isolated halo and a minor merger.
§ 5, § 6 and § 7 contain the results of these tests
taking into account the effect of time-step functions,
performance and long-term stability, respectively. In
§ 8, we quantify reversibility and time-symmetry for
the different codes. Finally, a discussion and the
main conclusions are given in § 9.

2. INTEGRATORS

We implemented three different integrators in a
direct summation code dubbed as NPsplitt (Aguilar-
Argüello et al. in prep.), the leapfrog, Adaptive-
KDK (AKDK) and the Hierarchical Hamiltonian
Splitting integrators (HHS). Below, we describe each
integrator. It is common to express integrators as
a composition of operators using the Hamiltonian
splitting technique in potential (Kick) and kinetic
energy (Drift), although there are other possibilities
(Oshino et al. 2011).
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2.1. Leapfrog

The leapfrog integrator is a second-order widely
used integrator. As mentioned previously, this in-
tegrator is strictly symplectic only when a global-
constant time-step is adopted. Symplectic integra-
tors are designed to numerically preserve the inte-
grals of motion and the phase-space volume of the
simulated system.

In the leapfrog method, the evolution of the grav-
itational system can be written as a sequence of Kick
(advance of velocities) and Drift (advance of posi-
tions) operators (e.g. Channell 1993; Quinn et al.
1997), defined by:

K(dt) : v (tn + dt) =v (tn) + dta (tn),

D(dt) : x (tn + dt) =x (tn) + dtv (tn),
(1)

where x, v and a are the position, velocity and accel-
eration of a particle, respectively, and dt is the time
step. In this paper, we use the operator sequence
called KDK leapfrog (also known as velocity Verlet,
Swope et al. 1982):

KDK : K(dt/2)D(dt)K(dt/2), (2)

where we consider that the evolution is for one time
step, i.e. from tn to tn + dt. Through this paper,
we will refer to KDK leapfrog with a global-constant
time-step as the Leapfrog integrator.

2.2. AKDK

Contemporary codes have extensively used KDK
(equation 2) combined with a block time-step scheme
(Hayli 1967; Sellwood 1985; Hut & McMillan 1986;
Hernquist & Katz 1989; Makino 1991), frequently
using rungs which are power of two: dtr = dt02(−r)

and different assigning time-step functions, most fre-
quently an acceleration based one (Springel 2005).
We will use it as a reference integration scheme, but
it should be noted that it is not symplectic (Hairer
et al. 2002) and that the block-step is a multi time-
step scheme.

2.3. Hierarchical Hamiltonian Splitting

The hierarchical Hamiltonian Splitting (HHS)
method is a second-order integrator that uses indi-
vidual time steps of the particles (Pelupessy et al.
2012) through recursively splitting the Hamiltonian.
It accurately preserves linear and angular momen-
tum and has a good energy conservation.

This integrator consists of adaptively and recur-
sively splitting the Hamiltonian as a function of the
current time step, dt, so that the so called Slow sys-
tem (hereinafter S ) contains all the particles with a

time step larger than dt, and the so called Fast sys-
tem (hereinafter F ) contains all the particles with a
time step smaller than dt. Thus, the splitting is as
follows:

HS =TS + VSS + VSF ,

HF =TF + VFF ,
(3)

where:

TX ≡
∑
i∈X

p2i
2mi

,

VXX ≡−G
∑
i∈X

∑
j∈X, j>i

mimj

|ri − rj |
,

VXY ≡−G
∑
i∈X

∑
j∈Y

mimj

|ri − rj |
,

(4)

are, respectively, the kinetic and potential energies,
and VSF is the potential energy of the interactions
between S and F particles. The previous splitting
scheme is known as HOLD (since it “holds” VSF
for evaluation at the slow time-step, Pelupessy et al.
2012).

The S system is solved using the DKD scheme
(also known as position Verlet, Tuckerman et al.
1990), which consists of drifts of the particles in this
system (due to TS) and kicks on the particles of both
systems (due to VSS + VSF ). For the F system, the
same procedure as for the original system is applied
but using a halved time-step. Hence, the splitting is
applied recursively to the F system with time-step
dt/2r. The recursion ends when the system F (of the
rung r) has no particles. At the end of the current
integration step, the new time-step of a particle is
calculated. In this scheme, a particle can change its
time step to higher (lower) value if its current inte-
gration time is synchronized with the higher (lower)
rung.

It is well known that the Kick and Drift oper-
ators are symplectic. However, using multiple or
adaptive time-steps may not preserve such proper-
ties in a general way (Hairer et al. 2002). Therefore
we need to investigate the behaviour of HHS.

3. TIME-STEP SELECTION FUNCTION

Besides the formulation of integrators with indi-
vidual time steps based on symmetric operators, the
choice for each particle time step is made through
the so called time-step selection function. There is
no unique choice; arguably the most commonly used
time-step function in contemporary collisionless N -
body codes (e.g. GADGET, Springel 2005) is based
on the acceleration as:

τi = ηaccel

√
ε

ai
, (5)
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where ai is the acceleration acting on the parti-
cle i, giving the code the possibility of adapting to
high/low accelerations, and ε is the force Plummer
softening1. Improvements have been recently dis-
cussed by using a dynamical time proxy (Zemp et al.
2007) and a tidal force time scale (Dehnen & Read
2011; Grudić & Hopkins 2020), establishing a bal-
ance between short and long time steps, which may
translate into higher efficiency. Extensive compar-
isons of AKDK with both choices have been dis-
cussed in Zemp et al. (2007) and Grudić & Hopkins
(2020).

In our study, in an attempt to preserve the energy
stability of the HHS integrator while allowing adap-
tive multi time-steps, and following Pelupessy et al.
(2012), we use an approximated time-symmetrized
time-step extrapolation criterion for each particle.
To obtain such a time-step criterion, we start from
the implicit criterion (Hut et al. 1995):

τsym =
1

2
[τ (t) + τ (t+ τsym)] , (6)

where τ is a time-step function (non-symmetrized),
and τsym is the symmetrized time-step function of τ .
To a first-order perturbative expansion:

τ (t+ τsum) ≈ τ (t) +
dτ

dt
τsym; (7)

hence, from equation 6:

τsym ≈ τ(t) +
1

2

dτ

dt
τsym, (8)

so that the time-step we will use is given by (Pelu-
pessy et al. 2012)

τi = min
j

 τij(
1− 1

2
dτij
dt

)
 . (9)

It is important to state that the minimization in-
dicated above is across the so called Slow particles.
For a time-step proportional to the inter-particle
free-fall time:

τij = ηFF

√
r3ij

G (mi +mj)
,

dτij
dt

=
3vij · rij

2r2ij
τij .

(10)

1We will adopt the softening as twice the average inter-
particle distance at the minimum radius where the density
profile is not dominated by Poisson fluctuations, as it is usu-
ally adopted in collisionless simulations.

The former option is a two-body-based proxy
for the dynamical-time-motivated step function sug-
gested by Zemp et al. (2007).

For completeness with Pelupessy et al. (2012), for
a time-step proportional to the inter-particle fly-by
time (typically used in collisional problems):

τij = ηFB
rij
vij

,

dτij
dt

=
vij · rij
r2ij

τij

(
1 +

G (mi +mj)

v2ijrij

)
.

(11)

We will quantify the efficiency of such time-step
functions. However, the high acceleration derivatives
in the case of collisional problems may require going
beyond the first order in the perturbative expansion.

Along the paper, we will mostly use the approxi-
mated symmetric free-fall time-step for HHS (defined
by equations 9 and 10), and only in a few tests we
will use the minimum of this and the approximated
symmetric fly-by time-step (equations 9 and 11). In
§ 5, we will present a comparison with the GAD-
GET4 implementation of HHS (Springel et al. 2021);
this code uses a time-step function similar to equa-
tion 5 but the accuracy parameter, ηaccel, is included
inside the square root. For AKDK, we will use the
standard time-step function given by equation 5.

Table 1 summarizes the combinations of integra-
tors and time-step selection functions used through
this work.

4. ACCURACY TESTS

In this section, we present the test results of the
HHS algorithm in terms of accuracy by simulating
an isolated halo and sinking satellites, and compare
them with the global-constant time-step leapfrog and
the adaptive one, AKDK. To proceed with the com-
parison we implemented the different integrators in
a direct summation N -body code (Aguilar-Argüello
et al. in prep.). All the experiments were run in a
single GPU. As a sanity check, we performed binary
system tests (not reported here) and the results are
consistent with those reported in other works (e.g.
Dehnen & Read 2011; Pelupessy et al. 2012; Springel
2005).

4.1. Isolated Cuspy Halo

We adopted as a reference model an equal par-
ticle mass, isolated halo following the NFW cuspy
density profile predicted by collisionless dark matter
cosmological simulations (Navarro et al. 1997). The
large density range and the corresponding different
dynamical times make it a suitable system for an
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TABLE 1

COMBINATIONS OF INTEGRATORS AND TIME-STEP FUNCTIONS USED ALONG THIS PAPER

Integrator Integration Time-step Time-step
Reference

name scheme scheme selection function

Leapfrog KDK Global-constant Verlet (1967)

AKDK KDK BLOCK eq. 5 e.g. Quinn et al. (1997); Springel (2005)

Dehnen & Read (2011); Klypin (2018)

HHS HHS HOLD eqs. 9, 10 Pelupessy et al. (2012)

nsHHS HHS HOLD eqs. 9, 10 This work

(without dτij/dt)

sAKDK KDK BLOCK eqs. 9, 10 This work

adaptive time-step code. Such tests depend on res-
olution to actually capture the benefit of individual
time-steps as compared with a global-constant time-
step scheme. We will use as a reference time scale
the dynamical time2 at the NFW characteristic ra-
dius (rs), since it has been used to study the stability
of the halo in other works (e.g. Klypin et al. 2015).

For the integration of our fiducial model, we
adopted G = 1 (gravitational constant), Mvir = 1
(virial mass) and rs = 1 (scale length, also called
characteristic radius), as model units. We will use
these model units through the paper.

To investigate and quantify differences in accu-
racy and performance between the integrators first,
we followed a fiducial halo sampled with 105 particles
for 40 dynamical times at rs, tdyn.

Because our implementations of AKDK and HHS
have different time-step function, a meaningful com-
parison is to assume an energy conservation thresh-
old, which implies using distinct accuracy parame-
ters for both integrators. For the first test, we con-
sidered a 10−7 threshold and accuracy parameters
ηFF = 0.003 and ηaccel = 0.01 for HHS and AKDK,
respectively, both constrained to 6 time-step rungs.
Figure 1 shows the result of these tests. The upper
left panel shows the energy error. HHS (black) stays
very close to Leapfrog (red) during the first 20 tdyn,
afterwards it shows a small drift. AKDK (blue)
drifts almost linearly and after 20 tdyn it slightly flat-
tens. Because the main computational overhead of
HHS over AKDK comes from building and updating
the time-step hierarchy in HHS, we decided to ex-
plore experiments where we delayed such an update,
and denoted them as HHS-sTSS. We observed that
such an action results in important savings in com-

2A dynamical time, also called crossing time, is the time
taken for a typical particle to cross the system. In this paper,

a dynamical time is defined as tdyn(r) =
[
r3 /GM(r)

]1/2
,

where r and M(r) are the radius and mass, respectively.

putational time (yellow line). The energy accuracy
test is lower but acceptable for a collisionless simula-
tion, and it is faster; in addition linear and angular
momentum are preserved to machine precision.

Regarding the conservation of other dynamical
quantities like linear and angular momentum or
the system barycenter the situation is different (see
Figure 1). Leapfrog and HHS preserve almost at
machine precision the linear and angular momen-
tum (see bottom panels), whereas AKDK presents
a smaller accuracy, although it has a slope until
10 tdyn, afterwards it flattens. Interestingly, HHS
with a delay in updating the time-step hierarchy
(HHS-sTSS, yellow) is almost indistinguishable from
HHS and leapfrog. The upper right panel shows
the accuracy in preserving the halo centroid. Once
again, leapfrog and both HHS versions accurately
keep the centroid, while the AKDK accuracy is de-
graded two orders of magnitude. The wall-clock time
for leapfrog, HHS and HSS-sTSS experiments was,
respectively, 1.7, 0.8 and 0.6 times the corresponding
for AKDK. As a complement, we performed tests us-
ing larger time steps reaching lower energy accuracy,
the general results are the same. Finally, we empha-
size that all integrators accurately preserve the den-
sity profile, as we can see in Figure 2; with obvious
dependence on the number of particles, we decided
to show the test with two million particles in order
to minimize discreteness effects.

4.2. Minor Merger: Sinking Satellites

Satellite accretion onto larger galaxies is an astro-
physical problem commonly simulated by both iso-
lated and cosmological N -body simulations (Miller
et al. 2020; Arca-Sedda & Capuzzo-Dolcetta 2016).
We simulated a satellite, represented by a softened
and massive particle, falling into a spherical sys-
tem, represented by collisionless softened particles,
for seven dynamical times. The spherical system
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Fig. 1. Error in conserved quantities for an isolated NFW halo with N = 105 particles, simulated up to 40 dynamical
times (at scale radius, rs). Shown is the energy error (upper left panel), change in center of mass position (upper right
panel), error in linear (lower left panel) and angular momentum (lower right panel) for the three integrators: Leapfrog
(red), AKDK (blue) and HHS (black). Also, it is shown the HHS with a delay in the time-step hierarchy update
(HHS-sTSS, yellow) version. The color figure can be viewed online.
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0

Fig. 2. Density profile, at different times, of the iso-
lated NFW halo with 2 × 106 particles simulated up to
10 dynamical times for the three integrators: Leapfrog
(solid lines), AKDK (dotted lines) and HHS (dashed
lines). The three integrators accurately preserve the den-
sity profile. The color figure can be viewed online.

consists of N = 105 equal mass particles spatially
distributed according to the NFW density profile
(Navarro et al. 1997). We adopted the same units

as the previous fiducial isolated halo case. We used
Plummer softening and we chose a softening parame-
ter ε = 0.026 (in model units). The satellite’s initial
separation from the center of the spherical system
is Rsat = 2.6, and its mass is msat = 0.01, which is
≈1300 times bigger than the mass of one collisionless
particle.

This test is particularly useful because the sink-
ing process involves orbital angular momentum and
energy transfer into the host system. We tracked
energy, linear and angular momentum conservation
as well as the host center of mass behavior (see Fig-
ure 3). Leapfrog (red) stays flat. HHS (black) starts
to jump at one dynamical time, afterwards it stays
flat. AKDK (blue) shows a lower accuracy in en-
ergy conservation and presents a systematic energy
growth. As in the case of the isolated halo, the HHS
energy drift slope is considerably flatter than the cor-
responding to AKDK. Linear and angular momen-
tum are less accurate for AKDK by several orders
of magnitude, while system barycenter behaves es-
sentially the same for all three integrators. These
results indicate that HHS is an excellent alternative
for dynamical friction studies.

The evolution of the satellite radial position
shows differences below the one percent level (see
Figure 4). We conclude that, for a reduced number
of dynamical times, the three integrators can provide
an accurate description of the sinking process.



HIERARCHICAL HAMILTONIAN SPLITTING 203

Fig. 3. Error in conserved quantities for a NFW halo with N = 105 particles plus a satellite simulated up to 7 dynamical
times. Shown is the energy error (upper left panel), change in center of mass position (upper right panel), error in linear
(lower left panel) and angular momentum (lower right panel) for the three different integrators: Leapfrog (red), AKDK
(blue) and HHS (black). The color figure can be viewed online.
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Fig. 4. Evolution of the satellite radial position (upper
panel) for the sinking satellite test and for the three inte-
grators: leapfrog (red), AKDK (blue) and HHS (black).
When comparing with leapfrog (lower panel), the differ-
ences are below 1% between integrators. The color figure
can be viewed online.

5. TIME-STEP SELECTION FUNCTION TESTS

As it has already been discussed some hierar-
chical/adaptive time-step integrators, like HHS and

AKDK, include a time-step selection function; such
a prescription may help restoring the integrator sym-
metry. We may question if the approximated sym-
metric time-step selection function based on particle
pairs given by equation 9 is only useful for a partic-
ular kind of simulation or code, and if we lose all the
convenient properties of HHS, observed at this point,
when the problem is not tractable by a direct sum-
mation code. To quantify such an effect we evolved
the fiducial isolated halo switching the time-step se-
lection function and we additionally performed test
with the Tree/FMM code GADGET4.

5.1. Direct Summation Code

First, we consider our direct summation code im-
plementation, simulating the fiducial isolated halo
considering the HHS and AKDK integrators, as it
can be seen in the upper panel of Figure 5. We
take as a reference the AKDK integrator with an ac-
curacy parameter ηaccel = 0.08 (fiducial, solid blue
line). The dotted black line shows HHS (with ηFF =
0.055), which is almost twice faster but slightly less
accurate, and the dashed black line shows a case
of HHS (with ηFF = 0.015) remarkably more accu-
rate but 10% slower than the fiducial AKDK. We
include another AKDK case (dashed blue) with a
smaller accuracy parameter ηaccel = 0.049, which is
20% less accurate than HHS (dashed black line) but
10% slower, and also is 20% slower and an order of
magnitude more accurate than the fiducial AKDK
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Fig. 5. Effect of time-step selection function and different acceleration codes. nWCT corresponds to the wall-clock time
of each test normalized to the fiducial AKDK (solid blue line). Upper panel shows tests with our direct summation code.
Solid blue line is the fiducial AKDK test and dotted black line is HHS, almost 50% faster. Dashed lines correspond to
experiments with smaller accuracy parameter but reaching a limit where HHS is faster and more accurate than AKDK.
Magenta dotted/dashed lines show the same HHS tests but neglecting the symmetrizing derivative term in equation 9;
even going with smaller ηnsFF still may be competitive with AKDK. Green dotted/dashed lines show AKDK test with
the symmetrized time-step selection function (equations 9 and 10) using the same parameters as HHS cases (black
dotted/dashed lines, respectively). Middle panel shows experiments with GADGET4 using the Tree version. Results
are consistent with the direct summation code. Solid blue line is the fiducial AKDK, dotted black line is HHS 7%
slower and slightly less accurate. Dashed lines are AKDK and HHS, with almost flat behaviour, slightly better for HHS;
however, AKDK is almost three times slower. Lower panel shows the equivalent tests but now for FMM GADGET4.
As before, the AKDK for the flat case (dashed blue) is slightly worse in energy accuracy and almost twice slower as
compared with HHS (dashed black). We conclude that, even for different time-step functions, there is still a regime
where HHS is more efficient. The color figure can be viewed online.

case (solid blue). This means that considering even
smaller values for the parameter η will not make
AKDK more efficient that HHS. Next, we performed

some changes in the time-step selection function, we
removed the derivative term from equation 9 which
represents the symmetrizing correction for the HHS
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integrator, we dubbed such tests nsHHS and they
appear as the magenta lines in Figure 5. The en-
ergy drift is larger as compared with HHS but it is
still acceptable for collisionless simulations, and it
is faster. For completeness, we performed tests us-
ing equation 9 in AKDK (dubbed as sAKDK, green
lines) with the same parameters (ηFF, rungs, etc.)
as in the HHS tests. The energy drift is larger for
the sAKDK test than the one corresponding to HHS;
however, sAKDK is faster. Note that it is possible
to match HHS accuracy by lowering the ηFF param-
eter in sAKDK tests, but it is slower (we do not
show it because it does not add new information).
So far, our tests suggest that HHS may benefit hy-
brid codes that use direct summation force calcu-
lation as part of their algorithm. For example, in
the P3M technique (Hockney & Eastwood 1998) the
most expensive part corresponds to direct summa-
tion, which runs in accelerators like GPUs (Habib
et al. 2013, 2016; Cheng et al. 2020). Even using
different time-step selection function, HHS may still
obtain considerable performance. We analyze such
a situation in the following sections, as well as the
HHS performance in codes using approximated force
computations (e.g. a tree code).

5.2. Tree Code: GADGET4

Recently, the 4th version of the publicly available
code GADGET has implemented the HHS in the
so called hierarchical gravity mode (Springel et al.
2021). The time-step selection function is similar to
our equation 5 but the accuracy parameter ηaccel is
inside the square root. Changing the step function
is a sensible choice because our equation 9, based on
pair interactions, is not practical for very large num-
bers of particles. Also, in the GADGET4 HHS im-
plementation, instead of using the DKD representa-
tion (as in our implementation), the authors adopted
the KDK one (for further details we refer to Springel
et al. 2021), in a similar way as Zhu (2017). Hence,
this allow us to explore the case of an approximated
gravitational acceleration code, such as a tree code
(e.g. Barnes & Hut 1986), with different time-step se-
lection function. For that purpose, we perform some
tests using AKDK and HHS with the Tree version of
GADGET4. As in the case of direct summation tests
(§ 5.1), we simulated the fiducial isolated halo in such
a way that we can directly compare with the direct
summation code tests, including a non-symmetrized
time-step function. The middle panel of Figure 5
shows the results for the Tree code version of GAD-
GET4. For the corresponding fiducial AKDK (solid
blue line), GADGET4 opens three time-step rungs,

and for its HHS implementation (dotted black line),
it opens only two time-step rungs. Both integrators
show an energy drift similar to 10−3, however, HHS
(dotted black line) is 66% faster, but less accurate.
Motivated by this result, we ran a new HHS test de-
creasing the ηaccel parameter (dashed black line); the
energy is quite flat; therefore, energy conservation
after 40 tdyn is almost an order of magnitude better
than the fiducial AKDK (solid blue line), but it is 7%
slower. If we decrease ηaccel for the AKDK integrator
in order to match energy conservation (dashed blue
line), the wall-clock time is considerably larger, by
50%. Although this is a particular example model,
it is consistent with our previous tests. HHS is more
stable and for medium and long-term integrations
may be more efficient than AKDK, regardless of not
using the approximated symmetric free-fall particle
pairs time-step function (equations 9 and 10).

5.3. Fast Multipole Method Code: GADGET4

Gadget4 has implemented a different gravity
solver based on the Fast Multipole Method expan-
sion (FMM, e.g. Dehnen 2000, 2002). We ran the
same fiducial isolated halo, as in the previous section,
adopting the FMM scheme truncating the expansion
at the quadrupole term. Results are presented in the
lower panel of Figure 5. The blue solid line shows
the fiducial case using AKDK (ηaccel = 0.01125),
the corresponding HHS case (ηaccel = 0.01125, dot-
ted black line) is relatively faster (66%); however,
it is less accurate. We experimented lowering the
ηaccel parameter for HHS, and the energy evolution
is flat (dashed black line). We also decreased ηaccel
for AKDK (dashed blue line); the energy accuracy
is 10% worse but the wall-clock time is almost 100%
larger; therefore, there is no point in trying smaller
ηaccel values. The experiments with the GADGET4
FMM version also confirm the conclusions from our
direct summation tests.

6. PERFORMANCE

Although the adaptive nature of the HHS
and AKDK integrators may imply a higher effi-
ciency compared with the global-constant time-step
leapfrog, the benefit of taking adaptive time-steps is
evident only when the dynamical range is large. In
comparison with AKDK, HHS has a computational
overhead due to the recursive splitting of the Hamil-
tonian needed to build the time-step hierarchy.

We decided to make a short exploration of the
simulation parameters (accuracy, rung number, and
minimum time-step) with our direct summation
code. We present the results in Figure 6, which
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Fig. 6. Energy conservation as a function of wall-clock
time (normalized with respect to the red star case in up-
per panel) for the fiducial isolated halo (upper and mid-
dle panels) and for a cuspy halo including four live cuspy
satellites (bottom panel), for the HHS (solid circles) and
AKDK (stars) integrators. In the upper panel, we used
a Plummer softening ε = 0.007, and we varied the mini-
mum time step (dtmin,1 = 5.4×10−3, dtmin,2 = 1.1×10−2

and dtmin,3 = 2.2×10−2) but fixing the number of rungs
(6 and 5 for HHS and AKDK, respectively). In the mid-
dle panel, we used ε = 0.01, and we varied the num-
ber of rungs, but fixed the minimum time step (dtmin =
4.3×10−2). For the bottom panel, we used ε = 0.004, and
we varied the minimum time step (dtmin,1 = 6.4 × 10−3

and dtmin,2 = 1.3×10−2) but fixing the number of rungs
(6 and 3 for HHS and AKDK, respectively).The color
figure can be viewed online
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Fig. 7. Particle distribution across time-step rungs for
different selection functions: acceleration criteria (equa-
tion 5, stars) and the approximated symmetric free-fall
(equations 9 and 10, solid circles), for the fiducial isolated
halo using the same parameters as in Figure 1. Note that
the acceleration criterion has more particles with small
time step and that the free-fall criterion is almost the op-
posite, with potential consequences for the performance.
The color figure can be viewed online.

shows a pragmatic diagnostic of the integrator per-
formance: energy conservation vs. wall-clock time.
The upper and middle panels correspond to the fidu-
cial isolated halo. In the upper panel we fixed the
number of time-step rungs and we varied the min-
imum time-step; whereas in the middle panel, we
fixed the minimum time-step (same for both integra-
tors) and we varied the number of time-step rungs.
The lower panel corresponds to the cuspy halo in-
cluding four live cuspy satellites, a common situa-
tion in cosmological simulations that requires a large
dynamical range. In many cases HHS outperforms
AKDK. We may wonder what the reason is given the
extra computations related with the splitting pro-
cess. One possible suspect is the individual time-
step distribution. To investigate that, we built the
histogram of time steps for particles for the initial
conditions and at later times (see Figure 7). For
HHS (solid circles) it is clear that only a moder-
ate fraction of particles are found in the deepest
time-step rung. For AKDK the distribution is al-
most the opposite, there is a peak of particles in
the three deepest rungs, which translates into many
more time-steps than HHS. The difference in perfor-
mance is partly due to the time-step selection func-
tion, in agreement with Zemp et al. (2007); Grudić &
Hopkins (2020). Although tweaking parameters we
may obtain differences in performance and accuracy,
we noticed that for a defined energy conservation
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Fig. 8. As in Figure 1, but following the fiducial isolated halo up to 103 dynamical times (at scale radius). The color
figure can be viewed online.

threshold in many cases HHS outperforms AKDK,
because the energy growth is smaller for HHS than
for the standard AKDK implementation, allowing
HHS to use larger steps. Nevertheless, it is impor-
tant to mention that if all the particles are similarly
distributed in the time-step rungs for both integra-
tors the computational overhead of HHS starts to
play a more important role. This may happen for
very low resolution runs where the dynamical range
is artificially shortened. This is in agreement with
the middle panel of the figure, showing that only
when using more than three step runs HHS is faster
than AKDK. The time-step histogram presented in
Figure 7 is a handy tool to asses the situation.

Our conclusions are consistent with recent stud-
ies that published successful results using HHS with
GADGET4 and reaching an extremely large dynami-
cal range with multi-million particle numbers (Wang
et al. 2020).

7. LONG-TERM STABILITY

At this point we have compared the accuracy and
performance of the integrators for some dynamical
times. A natural question arises, whether the HHS
advantages are relevant for realistic long-term inte-
gration. Dark matter halos survive around 30− 200
dynamical times in cosmological simulations depend-
ing on the merger/accretion history (Klypin et al.
2015). As before, we investigated the stability of en-

ergy, linear and angular momentum and density cen-
troid for our fiducial isolated halo model, this time
for hundreds of dynamical times (see Figure 8). En-
ergy conservation of HHS (black) is quite close to
the global-constant time-step leapfrog (red) behavior
during the first 20− 40 dynamical times (consistent
with our previous tests). However, after that time
it starts to slowly drift which seems to get slower
at the end of the simulation (≈ 700 tdyn). AKDK
(blue) quickly drifts to a considerably larger energy
error and keeps systematically growing. The yellow
curve represents the HHS-sTSS version that delays
the time-step hierarchy updating. As we observed
before, it behaves as AKDK but with a smaller ac-
curacy, although it is faster (≈ 40%). For the lin-
ear and angular momentum all integrators preserve
them. However, while HHS preserves them almost
at machine precision, AKDK preservation is almost
8 orders of magnitude worse. A similar disparity is
obtained by following the halo centroid. Seeking a
cause of this difference in accuracy we tracked the
circular velocity in experiments with a smaller num-
ber of particles (N = 2000) evolving the system for
400 dynamical times at 2.1rs, where the circular ve-
locity peaks. Figure 9 shows the circular velocity
profile at several times. We found some differences,
but they are all inside 10%. We conclude that, at the
level of high accuracy, we do not expect important
differences between integrators, and performance is
the most relevant difference. As for as N -body simu-
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Fig. 9. Circular velocity curves for the fiducial iso-
lated halo with 2000 particles following the system for
long integration times. There is no systematic difference
between different integrators. The energy conservation
level is ≈ 10−5. The maximum circular velocity is scat-
tered inside 10% at different moments. The color figure
can be viewed online.

lations reaching a larger dynamical range, the small-
est structures may live for a larger number of dy-
namical times; in this context HHS may offer a more
stable option.

Recent studies regarding long-term N -body evo-
lution (Hernandez et al. 2020), suggest that long-
term integrations may be unstable to small changes
in initial conditions realizations. This may be partic-
ularly critical for highly non-linear situations like the
three-body problem. We generated a small ensemble
of realizations for the fiducial isolated halo and for
the sinking satellite problem. Results are shown in
Figure 10 only for Leapfrog (red) and HHS (black).
Indeed, some scatter is found; however, overall the
results are robust.

8. REVERSIBILITY AND TIME SYMMETRY

The above numerical experiments show that
there are certain parameter combinations where
HHS is more accurate than AKDK or, alternatively,
it is faster for a given energy accuracy. Because both
integrators have different parameters it is natural to
ask if there is a true advantage of HHS or if it is a
misleading result, dependent on our implementation,
accuracy or even particle number.

As we discussed in the introduction and in agree-
ment with Hairer et al. (2003) we performed time
symmetry and velocity reversibility tests using both
HHS and AKDK integrators; we used leapfrog with
a global-constant time-step as a reference case.

We chose the sinking satellite system as the test
bed because the satellite orbit allows easily to track
the system response in configuration space as well as
in energy. At three different moments, termed BW1,
BW2 and BW3, we reversed the velocity signs for
all particles, and for one case instead of velocities we
reversed the time sign; after that we continued the
integration. Figure 11 shows the global result of for-
ward (FW, solid lines) and backward (BW) evolution
(i.e. inverting the sign of velocities) of the satellite
distance to the halo center for all integrators, either
for high (left panels) or low (right panels) energy
conservation accuracy. For high energy conservation
accuracy (≈ 10−8, left panels), the differences in con-
figuration space are in general small, which is consis-
tent with Hernandez & Bertschinger (2018), where
they discuss that AKDK preserves quantities like
angular and linear momentum (see also Figure 3).
However, there are still some differences as we can
see in the lower panel. The satellite distance change
with respect to its own forward evolution (lower pan-
els) is a good diagnostic of reversibility. Clearly,
the position difference in HHS (black) regarding the
symplectic Leapfrog (red, global constant step) is be-
low the simulation resolution determined by the soft-
ening (horizontal grey line), while for AKDK (blue)
the calculated position difference is larger but close
to the simulation softening. At a less accurate en-
ergy conservation but more common in collisionless
simulations (10−3, right panels), differences between
forward and velocity reversal integration in Leapfrog
(global constant step) and HHS are still below the
simulation softening. However, AKDK has notable
differences that are well above the simulation reso-
lution and they are even detected in configuration
space. We also tracked the fractional energy change
(Figure 12). The first outstanding fact is the truly
reversible behavior of the global-constant time-step
leapfrog (upper panel); almost every peak and valley
is reproduced after the velocity reversal. The middle
panel shows the high accuracy tests for AKDK (blue
lines) and HHS (black lines), and the bottom panel
the corresponding low accuracy tests. For AKDK,
there is a roughly systematic growth for both for-
ward integration (blue solid opaque line) and also
after reversing velocities, suggesting that AKDK is
non-reversible. Instead, HHS is almost flat, suggest-
ing that it is approximately reversible. We also ran a
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Fig. 10. Error in conserved quantities for a NFW halo with N = 105 particles plus a satellite simulated up to 7
dynamical times. Shown is the energy error (upper left panel), the change in center of mass position (upper right
panel), the error in linear (lower left panel) and angular momentum (lower right panel) for the Leapfrog (red) and HHS
(black) integrators. Shaded portions represent one sigma standard deviation propagated from different realizations ran
under different random seeds. The color figure can be viewed online.
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Fig. 11. Reversibility test. For the sinking satellite experiment we reversed the velocity sign at different moments,
indicated by BW1 (dashed), BW2(dotted) and BW3 (dash-dot), and continued the integration. Solid lines represents
the forward integration. Purple line labels only indicate the line-style corresponding to the start of each FW/BW
integration. Upper panels show the normalized satellite distance as a function of time for the truly symplectic leapfrog
(red lines), the adaptive one AKDK (blue lines) and HHS (black lines) integrators. Lower panels show the difference
in position regarding the corresponding forward solution (solid lines). For high energy conservation accuracy (≈ 10−8,
left panels), there are some differences between integrators. However, they are inside (Leapfrog and HHS) or very close
(AKDK) to the simulation softening (horizontal grey line). For a lower energy conservation accuracy (≈ 10−3, right
panels), still HHS and Leapfrog position differences are inside the simulation softening, whereas the AKDK case is above
the simulation resolution. The color figure can be viewed online.
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Fig. 12. Fractional energy error before (solid opaque
lines) and after reversibility (dashed, dotted and dash-
dot lines for BW1, BW2 and BW3 moments, respec-
tively), for the same test of Figure 11. Top panel
shows the global-constant time-step leapfrog, middle
panel shows the higher accuracy in energy conservation
tests, and the bottom panel the lower accuracy tests.
Leapfrog is truly reversible. AKDK (blue lines) has a
systematic growth of energy, suggesting that it is non-
reversible. HHS (black lines) is almost flat with a small
drift of energy after ≈ 2 tdyn (4.5 tdyn) for the high (low)
accuracy test of the backward integrations, indicating
that it is approximately reversible. Note that the purple
line labels only indicate the line-style corresponding to
the start of each FW/BW integration. The color figure
can be viewed online.

test using HHS where we changed the time variable
sign. In this case, the energy presents a systematic
growth, showing that HHS is not time symmetric.
However, for the sake of clarity, it was not included.
We performed similar tests for the fiducial isolated
halo and obtained similar results. The small slope
showed in the energy drift suggests that HHS is ap-
proximately reversible. Furthermore the energy drift

is small compared to AKDK, which is non-reversible
and non time-symmetric. This in agreement with
Hairer et al. (2002) who showed that the symplectic
Störmer-Verlet-LeapFrog (AKDK) performs poorly
for an adaptive time-step integrator, unless the time-
step assigning function is properly selected with a
possible computational cost.

Figure 5 shows that even GADGET4 with the
selection function given by equation 5 and its im-
plementation of HHS allows, under certain condi-
tions, for a faster or more accurate integration than
AKDK. Figure 13 investigates the reversibility of
HHS and AKDK in the Tree (upper panel) and
FMM (lower panel) implementations using GAD-
GET4. The forward (FW) evolution of both inte-
grators is shown with solid opaque lines, and the
backward (BW) evolution after changing the veloc-
ity sign, at 40 tdyn, is shown with dashed lines. For
the Tree gravity solver using HHS, the energy drift
for both forward and backward evolution is similar,
particularly during the first 10 tdyn. However, al-
though encouraging, we do not have enough evidence
to claim that HHS is reversible. The time-step func-
tion adopted by GADGET4 may be the reason it
is slightly different to our tests with a direct sum-
mation code. On the other hand, the reversed inte-
gration of AKDK shows a discontinuous change in
its slope, indicating that it is not reversible. We
conclude that Tree-HHS is more stable than Tree-
AKDK. For the FMM gravity solver the test is not
conclusive, because it does not show a significantly
smaller slope in energy drift using the HHS scheme
(Hierarchical Gravity).

9. DISCUSSION AND CONCLUSIONS

Using a GPU direct summation N -body code,
we tested and characterized the Hierarchical Hamil-
tonian Splitting (HHS) integrator proposed by Pelu-
pessy et al. (2012), but we focused on collisionless
simulations. As a reference we compared with the
global-constant time-step symplectic Leapfrog inte-
grator and the widely used Adaptive one (AKDK).
We also complemented our study using the HHS im-
plementation in GADGET4 (dubbed as hierarchical
gravity, Springel et al. 2021), which uses a different
time-step selection function and approximate force
solvers (Tree and FMM).

As recently discussed (e.g. Dehnen 2017), there
is no general solution for a symplectic adaptive
multi time-step integrator, although there are several
proposals (e.g. Huang & Leimkuhler 1997; Hairer
1997; Calvo et al. 1998; Hardy et al. 1999; Farr
& Bertschinger 2007). The problem is not exclu-
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Fig. 13. Reversibility test for GADGET4. We fol-
lowed the fiducial isolated halo using the GADGET4
code (shown with solid opaque lines) and we reversed
the sign of particle velocities at around 40 tdyn (dashed
lines). Upper panel (Tree-GADGET4): for HHS with
a non-symmetrized step function, remarkably up to 60
tdyn the energy drift stays flat, then it slowly starts to
grow. For AKDK the reversed integration just contin-
ues the forward systematic growth. Lower panel: For
FMM with HHS and AKDK using a non-symmetrized
step function, the energy drift grows systematically for
both integrators. We can see that Tree-GADGET4 with
HHS and the non-symmetrized step function could be
approximately reversible or at least more stable. How-
ever, more studies are required. The color figure can be
viewed online.

sive of astrophysics; the field of differential equa-
tions of dynamical systems has extensively reviewed
the subject (Hairer et al. 2002). In particular, it
is important to say that adaptive and multi-step
techniques are not identical but they are related.
Hernandez & Bertschinger (2018) address the im-
portant case of adaptive time steps, inspired by
Hairer et al. (2002). They discuss what is called the
“backwards error analysis” in order to explore com-
monly used integrators in astrophysics, concluding
that symplecticity, time symmetry and reversibility
are not the same and they are not always a guaran-
tee of energy conservation. Nevertheless, the KAM
(Kolmogorov-Arnold-Moser) theorem assures stabil-
ity for symplectic (geometrical) and reversible in-

tegrators (Hairer et al. 2002) in contrast to non-
reversible ones, like AKDK with the standard time-
step selection function. The case of multi-step inte-
gration, requires extra conditions like the so called
impulse (splitting) or averaging (less often force eval-
uation) techniques (Hairer et al. 2002). Similar prob-
lems have been discussed in the molecular dynamics
field, and the r-RESPA method (Tuckerman et al.
1992) that is a splitting technique has been ap-
plied to the long-short range splitting case or mul-
tiple mass segregation with considerable advantage
in performance. An important feature is that such
approaches to the multi-step problem resulted in a
symmetric or reversible method, not in a symplec-
tic one. The major concrete benefit has been an
improvement in the performance at a given energy
accuracy. A similar situation applies to HHS, the
case we study in this paper. HHS is a composition
of Fast and Slow operators (Pelupessy et al. 2012)
and based in our numerical experiments it is approx-
imately reversible, which explains the performance
advantage shown in § 6. The discussion in Hairer
et al. (2002) and Hernandez & Bertschinger (2018)
shows that the reversibility depends on the symme-
try under a velocity sign change of hamiltonian and
the corresponding time-step assigning function, and
not on the accuracy of gravity calculation or parti-
cle number. The particular case of equation 10 is an
approximate 1st order version of the one proposed
by Hut et al. (1995) that depends only on the mod-
ule of particle pairs relative velocities; therefore it is
reversible. A future interesting avenue inspired by
the r-RESPA method presented by Tuckerman et al.
(1992) is the extension already discussed by Porte-
gies Zwart et al. (2020). We experimented with the
strategy motivated by the multi-step averaging tech-
nique (Hairer et al. 2002), updating the time-step hi-
erarchy only at a given number of global time-steps
(dubbed as HHS-sTSS, Figures 1 and 8). There is a
gain in CPU time; however, the energy drift increases
suggesting that further investigation is required.

Our results are summarized below:

1. Based on reversibility and time symmetry tests
we concluded that HHS is not time symmet-
ric but it is approximately reversible; it is also
more stable than AKDK for a given energy ac-
curacy. Although the exact correspondence be-
tween forward and backwards integration lasts
only for few dynamical times, even for ten dy-
namical times the energy drift growth is small.
In contrast, the AKDK energy drift grows sys-
tematically with time, clearly showing that it is
non-reversible using the commonly used time-
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step selection function. Based in our tests HHS
reversibility explains the advantage in perfor-
mance regarding AKDK. Based on the Hairer
et al. (2002) discussion and the used time-step
selection functions that depend only on the ve-
locity module, such properties are independent
of accuracy in gravity calculation and of particle
number.

2. Our findings with the direct summation code
may be also relevant for the high accuracy and
costly section (PP) of codes using the P3M tech-
nique, as it has been also shown in molecular
dynamics studies (Plimpton et al. 1997).

3. In agreement with our direct summation code
tests, changing the time-step selection function
for a non-symmetrized one, it is possible to find
a combination of parameters in GADGET4 (us-
ing both the Tree and FMM code version) where
HHS is more efficient than AKDK. We found
approximate reversibility for the Tree Gadget4
test. However, for FMM Gadget4 our tests were
inconclusive.

4. The population of particle histogram across the
time-step rungs is useful to find a convenient
parameter combination for the integrators.
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