

Revista Arbitrada Interdisciplinaria Koinonía ISSN: 2542-3088 koinonia@fundacionkoinonia.com.ve Fundación Koinonía Venezuela

Patrones de accidentabilidad a nivel terrestre en el Ecuador

Mujica Betancourt, Rubén Dario; Mora Chuquer, Edwin Jonathan; Realpe Cabrera, Iván Alirio Patrones de accidentabilidad a nivel terrestre en el Ecuador Revista Arbitrada Interdisciplinaria Koinonía, vol. 3, núm. 6, 2018 Fundación Koinonía, Venezuela

Disponible en: https://www.redalyc.org/articulo.oa?id=576869148002

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

Artículos

Patrones de accidentabilidad a nivel terrestre en el Ecuador

Patterns of accidents at the land level in Ecuador. Period of analysis 2016

Rubén Dario Mujica Betancourt ruben.mujica@upec.edu.ec *Universidad Politécnica Estatal del Carchi, Ecuador*Edwin Jonathan Mora Chuquer jonathan.mora@upec.edu.ec *Universidad Politécnica Estatal del Carchi, Ecuador*Iván Alirio Realpe Cabrera ivan.realpe@upec.edu.ec *Universidad Politécnica Estatal del Carchi, Ecuador*

Revista Arbitrada Interdisciplinaria Koinonía, vol. 3, núm. 6, 2018

Fundación Koinonía, Venezuela

Recepción: 01 Mayo 2018 Aprobación: 13 Junio 2018

Redalyc: https://www.redalyc.org/articulo.oa?id=576869148002

Resumen: El presente estudio tuvo como objetivo principal evaluar los patrones de accidentabilidad a nivel terrestre en el Ecuador durante el año 2016. Se utilizó un paradigma Positivista con un método descriptivo, correlacional, expos-facto y transversal, en el que se trabajó con una totalidad de 30269 registros correspondientes a las características de los accidentes de tránsito. Se realizó una revisión documental de donde se extrajo la información. Los registros fueron suministrados por la Agencia Nacional de Tránsito (ANT). Se utilizó la estadística descriptiva para caracterizar la situación problema y se aplicaron pruebas de independencia estadística Chi Cuadrado y pruebas de Regresión Logística. Las variables consideradas en el estudio fueron: Provincia, Mes, día, hora del accidente, clase de accidente, causa probable, zona de ocurrencia, número de lesionados y número de fallecidos. Como resultado se obtuvo: alto porcentaje de accidentes en Pichincha, Guayas e Imbabura, meses preponderantes Enero, Diciembre y Octubre. Días y hora de mayores accidentes viernes de 19:00 a 19:59 y sábados de 20:00 a 20:59. Los cuales se deben a Choques e impericia del conductor, con un saldo menor a 7 lesionados y menor a 4 fallecidos. Se evidencia relación estadística entre las variables: clase de accidente y día, mes y causa probable y causa del accidente y hora, a un nivel del 5%. En cuanto a la regresión logística, las variables de mayor significancia estadística fueron: Hora: 16:00 a 16:59 y 19:00a 19:59; Causas: Embriaguez / Droga y Exceso de Velocidad; Clase: Atropellos, Estrellamientos, Rozamientos y perdida de pista; Mes: Enero y Octubre; Día: no hubo discriminación.

Palabras clave: accidente de tránsito, causas de accidentes, Ecuador, regresión logística, Transporte.

Abstract: The main objective of the present study was to evaluate the patterns of accidents at the land level in Ecuador during 2016. A positivist paradigm was used with a descriptive, correlational, expos-facto and transversal method, in which a total of 30269 records corresponding to the characteristics of traffic accidents. A documentary review was made of where the information was extracted. The records were supplied by the National Transit Agency (ANT). Descriptive statistics was used to characterize the problem situation and statistical independence tests Chi Square and Logistic Regression tests were applied. The variables considered in the study were: Province, Month, day, time of accident, type of accident, probable cause, area of occurrence, number of injuries and number of deaths. The result was: high percentage of accidents in Pichincha, Guayas and Imbabura, preponderant months January, December and October. Days and time of major accidents Friday from 19:00 to 19:59 and Saturdays from 20:00 to 20:59. Which are due to Driver's crashes and lack of skill, with a balance of less than 7 injured and less than 4 deaths. Statistical relationship between the variables is evidenced: class of accident and day, month and probable cause and cause of the accident and time, at a level of 5%.

As for the logistic regression, the variables with the greatest statistical significance were: Time: 16:00 to 16:59 p.m. and 19:00 to 19:59. Causes: Drunkenness / Drugs and Excess Speed; Class: Run-ins, Starings, Friction and loss of track; Month: January and October; Day: there was no discrimination.

Keywords: traffic accident, causes of accidents, Ecuador, logistic regression, Transport.

Introducción

A nivel mundial siempre ha existido preocupación por los altos índices de accidentabilidad a nivel tránsito terrestre que aquejan a algunos países, sobre todo los desarrollados; debido a que ésta situación genera en la sociedad inconvenientes de tipo económico, familiar, psicológico e incluso gubernamental. Por tal motivo, es importante realizar un control de la tasa de accidentabilidad que en una ciudad, zona o país se genera cada cierto periodo de tiempo con el objeto de establecer algunas medidas de protección para la sociedad y llevar estadísticas para predicciones futuras que puedan servir de base para algunas prevenciones.

Según la Comunidad Andina (CAN) en su informe anual 2016, establece que un accidente de tránsito es un evento generalmente involuntario, generado al menos por un vehículo en movimiento, que causa daños a personas y/o bienes involucrados en el. Además, se puede considerar como todo suceso eventual o acción involuntaria, que como efecto de una o más causas y con independencia del grado de estas, ocurre en vías o lugares destinados al uso público o privado, ocasionando personas muertas, individuos con lesiones de diversa gravedad o naturaleza y daños materiales en vehículos, vías o infraestructura, con la participación de los usuarios de la vía, vehículo, vía y/o entorno. (Reglamento a la LOTTTSV, 2012).

Específicamente en el Ecuador, el tema del tránsito se ha vuelto álgido debido a la gran cantidad de accidentes que ocurren anualmente, de los cuales para el año 2015, la mayor concentración fue en el área urbana ascendiendo a 25189 accidentes y en el área rural 10517 accidentes, para un total de 35706 (CAN, 2016).

La Agencia Nacional de Tránsito (ANT), quien es la institución encargada de regular, controlar y planificar la gestión del transporte, tránsito y seguridad vial en el Ecuador, para el año 2014, clasificó las posibles causas de los accidentes de tránsito en 22 ítems, de los cuales, los de mayor importancia son: impericia e imprudencia del conductor, no respeto a las señales de tránsito, exceso de velocidad, embriaguez del conductor, imprudencia del peatón, daños mecánicos, mal estado de la vía, embriaguez del peatón, obstáculos en la vía, entre otras.

Por todas estas causas, resulta de relevancia realizar un estudio que permita, en primer término, caracterizar la cantidad de accidentes de tránsito durante un periodo especificado, las causas y clases de los accidentes, así como la cantidad de personas fallecidas y lesionadas en los mismos. Y, por otro lado, realizar pruebas estadísticas basadas en la inferencia que puedan dar un conocimiento más profundo a la problemática estudiada

Objetivos del estudio

Objetivo General

· Evaluar los patrones de accidentabilidad a nivel terrestre en el Ecuador durante el año 2016.

Objetivos Específicos

- · Caracterizar la problemática de accidentes de tránsito en el Ecuador durante el año 2016
- · Determinar el grado de asociación entre variable de interés, relacionadas con los accidentes de tránsito
- · Establecer la relación entre el índice de fallecidos en el Ecuador y otras variables de accidentabilidad terrestre a través de la regresión logística.

Métodos

La presente investigación fue descriptiva por cuanto se caracterizó la problemática de accidentalidad de tránsito terrestre en el Ecuador durante el año 2016, realizando un análisis de las características que inciden en tal situación, desde sus variables principales. Así mismo es explicativa, debido a que se indagaron cuáles fueron las causas principales que afectan los accidentes de tránsito en cada uno de los meses de estudio, estableciendo relaciones con otros patrones observados.

También tiene un carácter correlacional debido a que se estudió el grado de asociación e independencia estadística entre algunas variables de estudio como: clase de accidente y día de ocurrencia, causa probable y mes de ocurrencia, causa probable y hora de ocurrencia, número de fallecidos y hora, causa, clase y día del accidente.

Se consideró un estudio expos-facto debido a que la recogida de información se realizó después de ocurrido los eventos o hechos, además que no se pueden manipular las variables experimentalmente. También es transversal debido a que analizó la relación entre un conjunto de variables en un punto específico del tiempo, 2016 en este caso

En general, el paradigma asumido en la investigación es el Positivista (Cuantitativo), debido a que se utilizó la recolección de datos numéricos con el objeto de probar hipótesis, basándose en el análisis estadístico inferencial, para establecer algunas causas y relaciones principales entre las variables.

Como se mencionó anteriormente, el propósito del presente estudio fue evaluar los patrones de accidentabilidad a nivel de tránsito terrestre en el Ecuador durante el periodo de análisis 2016. Como procedimiento general se siguió como se menciona:

- Se realizó una revisión documental en fuentes como revistas científicas, libros, portales de instituciones relacionadas al tránsito en el

país, todo esto con el objeto de identificar el estado del arte, normativas y reglamentos referentes al tema de interés.

- Se hizo una caracterización de los accidentes ocurridos durante el periodo antes especificado. Esto consistió en una codificación de las variables estudiadas, generación de tablas categóricas de 1, 2 y 3 entradas y de algunos gráficos estadísticos con el objeto de tener una visión general de cómo se muestra la problemática, así como las relaciones entre las variables.
- El estudio se realizó estudiando la totalidad de los datos existentes sobre los accidentes de tránsito en el país, los cuales ascienden a 30269 registros. En virtud de ello, no fue necesaria la toma de una muestra.

Se procedió a realizar el procedimiento de prueba de hipótesis estadística usando específicamente la prueba de independencia Chi cuadrado, la cual consiste en establecer el grado de asociación entre dos variables que son cualitativas. El procedimiento consiste en obtener las frecuencias observadas y calcular las frecuencias esperadas a través del estadístico:

$$X^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Oi: Frecuencia observadas

Ei: Frecuencias esperadas

Las hipótesis a contrastar en este tipo de procedimiento son:

Nula (H0): Es aquella que asegura que los dos parámetros analizados son independientes uno del otro.

Alterna (H1): Es aquella que asegura que los dos parámetros analizados no son independientes uno del otro.

- Por último, se trabajó con el procedimiento la Regresión Logística Binaria, el cual es un procedimiento que permite predecir el comportamiento de una variable dependiente categórica (cualitativa) dicotómica (Si/No, Presente/Ausente, etc.), frente a una o varias variables cualitativas o cuantitativas. El objetivo de esta técnica es determinar la probabilidad de que ocurra un evento en cuestión como función de otras variables que se consideran influyen en la anterior variable dependiente. Para el caso de la presente investigación, el evento a modelar es "que fallezca una persona en un accidente" en función de la hora, clase, cause y día del accidente.

De acuerdo a Aguayo (2007), si ese hecho que se quiere modelizar o predecir se representa por Y (la variable dependiente), y las k variables explicativas (independientes y de control) se designan por X1, X2, X3, ...,Xk, la ecuación general (o función logística) es:

$$P(Y = 1) = \frac{1}{1 + e^{(-\alpha - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \dots - \beta_k X_k)}}$$

Donde: «,β,,β2,β3,βk son los parámetros del modelo.

Variables de análisis

Las variables de análisis evaluadas fueron:

- -Provincia: Azuay, Bolívar, Cañar, Carchi, Cotopaxi, Chimborazo, El oro, Esmeraldas, Guayas, Imbabura, Loja, Los ríos, Manabí, Morona Santiago, Napo Pastaza, Pichincha, Tunhuraua, Zamora Chinchipe, Galápagos, Sucumbíos, Orellana, Santo Domingo de los Tsachilas, Santa Elena.
- Mes: Enero, Febrero, Marzo, Abril, Mayo, Junio, Julio, Agosto, Septiembre, Octubre, Noviembre, Diciembre

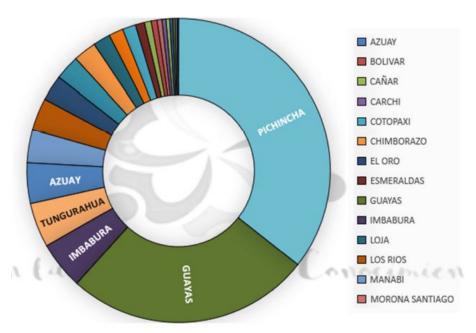
Día: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado, Domingo

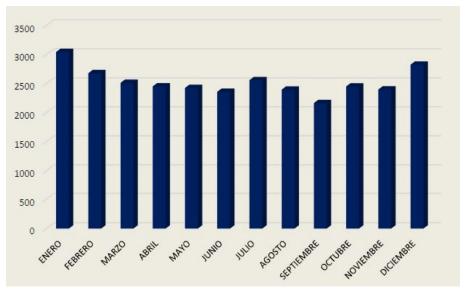
- Hora: 00:00 a 00:59, 01:00 a 01:59, 02:00 a 02:59, 03:00 a 03:59, 04:00 a 04:59,05:00 a 05:59, 06:00 a 06:59, 07:00 a 07:59, 08:00 a 08:59, 09:00 a 09:59, 10:00 a 10:59, 11:00 a 11:59, 12:00 a 12:59, 13:00 a 13:59, 14:00 a 14:59, 15:00 a 15:59, 16:00 a 16:59, 17:00 a 17:59, 18:00 a 18:59, 19:00 a 19:59, 20:00 a 20:59, 21:00 a 21:59, 22:00 a 22:59, 23:00 a 23:59
- Clase de accidente: Atropellos, Caída de pasajeros, Choques, Estrellamientos, Rozamientos, Volcamientos, Pérdidas de pista, Otros
- Causa del accidente: Embriaguez o droga, Mal rebasamiento / invadir carril, Exceso de velocidad, Impericia e imprudencia del conductor, Imprudencia del peatón, Daños mecánicos, No respeta las señales de tránsito, Factores climáticos, Mal estado de la vía, Otras causas.
 - Zona: Urbana o Rural
 - Número de lesionados, Número de fallecidos, Total de víctimas Instrumentos de análisis de la información

Los registros obtenidos de los accidentes de tránsito en el 2016, que equivalen a 30269 datos obtenidos de fuentes primarias de información como instituciones públicas del país, en este caso la Agencia Nacional de Tránsito (ANT). Software estadístico SPSS versión 22 para la generación de pruebas estadísticas, codificación de variables y Microsoft Excel para la tabulación, codificación, generación de tablas y gráficos diversos.

Análisis de resultados y Discusión

Primeramente, se realizó una caracterización de las variables consideras en el estudio. Se obtuvieron tablas y gráficos estadísticos para identificar el panorama inicial. Con respecto a ello, en la gráfica 1, se observa la distribución de la cantidad de accidentes por provincia en el Ecuador.

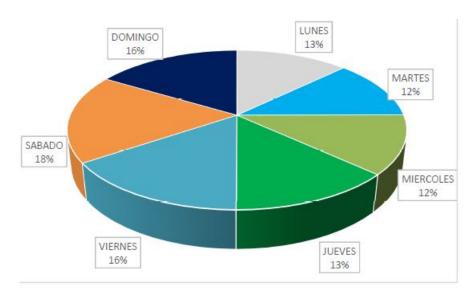



Gráfico 1. Accidentes por provincia. Elaboración propia

Como puede observarse, las mayores provincias con incidencia de accidentes son: Pichincha (35,6%) y Guayas (26,1%) primeramente; le siguen en menor medida: Imbabura (5,1%), Tungurahua (4,8%) y Azuay (4,3%). Así mismo, se identificó como fue la distribución de los accidentes con respectos a los meses, y se encontró como se observa en el gráfico 2 / tabla 1, que la mayor parte de los meses presentan uniformidad en las frecuencias observadas, los meses con la más alta frecuencias son Enero (10,1%) y Diciembre (9,3%), sin embargo, no existen muchas diferencias con respecto a los otros

Tabla 1.
Accidentes por mes

Meses	Frecuencia	Porcentaje
Enero	3044	10,1
Febrero	2679	8,9
Marzo	2513	8,3
Abril	2453	8,1
Mayo	2425	8,0
Junio	2359	7,8
Julio	2559	8,5
Agosto	2396	7,9
Septiembre	2165	7,2
Octubre	2451	8,1
Noviembre	2399	7,9
Diciembre	2826	9,3
Total	30269	100,0


Gráfico 2.Accidentes por mes.
Elaboración propia

Otro aspecto de interés, fue observar cómo era la frecuencia de accidentes por día de la semana, es por ello, que en el gráfico 3 / tabla 2, se puede apreciar que los mayores días con frecuencia de accidentes son los fines de semana: Viernes (16%), Sábado (18%) y Domingo (16%), no obstante, los otros días no se encuentran muy distantes de los porcentajes mencionados anteriormente, durante el fin de semana.

Tabla 2. Accidentes por día

Día	Frecuencia	Porcentaje
Lunes	3875	12,8
Martes	3673	12,1
Miercoles	3599	11,9
Jueves	3998	13,2
Viernes	4696	15,5
Sabado	5454	18,0
Domingo	4974	16,4
Total	30269	100,0

Gráfico 3. Accidentes por día. Fuente: Elaboración propia

Seguidamente, otro de los aspectos a considerar fue la hora del suceso, para ello se establecieron rangos horarios, por ejemplo: desde las 12 hasta las 12:59, 1:00 hasta 1:59, entre otras, para determinar la distribución de los accidentes a nivel terrestre en las misma. Las horas de mayor ocurrencia de accidentes fueron: desde las 7:00 hasta 7:59pm (5,7%), desde las 4:00pm hasta las 6:59 pm (todas en ese rango poseen una frecuencia porcentual de 5,3%), lo que intuye a pensar que las horas de la tardenoche, son las más propensas a la ocurrencia de accidentes en el Ecuador (gráfico 4).

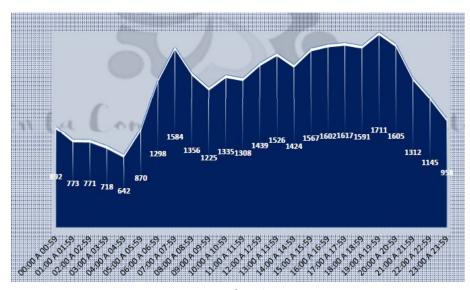
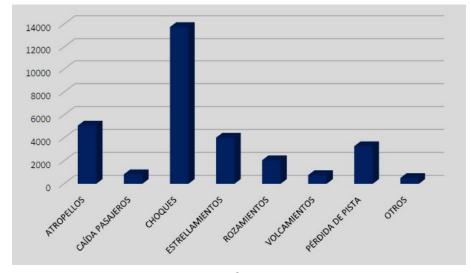


Gráfico 4. Accidentes por hora. Elaboración propia


Un factor de importancia para el estudio fue determinar cuál era la clase de accidente de tránsito que más se producía en el Ecuador, se establecieron algunas categorías como: atropellos, caída de pasajeros,

choques, estrellamientos, rozamientos, volcamientos, pérdida de pista y otros. Tal como puede observarse en el gráfico 5 / tabla 3, la mayor cantidad de accidentes se producen debido a Choques (45,4% casi la mitad de los accidentes), en segundo término, los atropellos (16,8%) y los estrellamientos (13,3%).

Tabla 3. Clase de Accidentes

Clase Accidente	Frecuencia	Porcentaje
Atropellos	5075	16,8
Caída pasajeros	834	2,8
Choques	13745	45,4
Estrellamientos	4017	13,3
Rozamientos	2051	6,8
Volcamientos	763	2,5
Pérdida de pista	3273	10,8
Otros	511	1,7
Total	30269	100,0

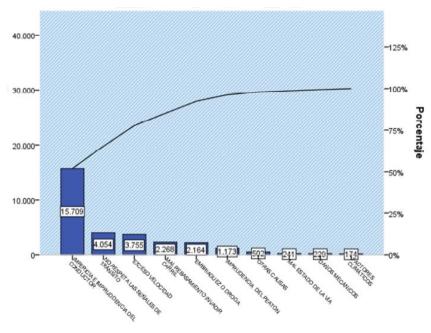


Gráfico 5. Clase de Accidentes. Elaboración propia

Por otra parte, las causas probables de los accidentes también fueron consideradas, se establecieron algunas categorías, a saber: embriaguez o droga, mal rebasamiento / invadir carril, exceso de velocidad, impericia e imprudencia del conductor, imprudencia del peatón, daños mecánicos, no respeta las señales de tránsito, factores climáticos, mal estado de la vía, entre otras causas. Para ello, se construyó un gráfico de Pareto con el objeto de identificar las causas que mayormente afectan a los accidentes de tránsito, siguiendo la regla 80-20, del gráfico 6, se pueden identificar como más frecuentes: impericia e imprudencia del conductor (51,9%),

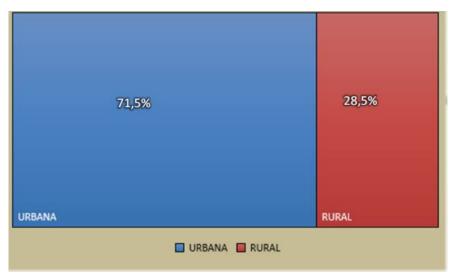
no respeta las señales de tránsito (13,4%) y exceso de velocidad (12,4%). Como puede identificarse, las mayores causas son debidas al conductor. (gráfico 6)

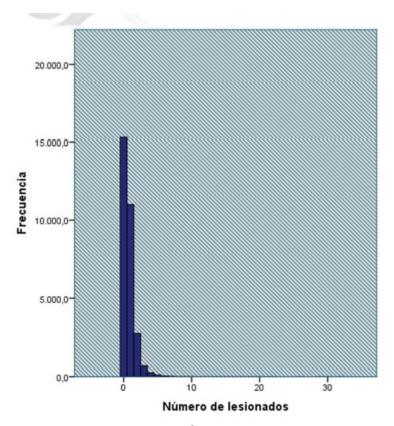
Gráfico 6. Causas probables de los Accidentes. Elaboración propia

En el gráfico 7 / tabla 4, se identificaron las zonas de ocurrencia de accidentes de tránsito, donde puede observarse que mayormente ocurren en la zona urbana con un 71,5%.

Tabla 4. Zona de ocurrencia de Accidentes

Zona	Frecuencia	Porcentaje
Urbana	21633	71,5
Rural	8636	28,5
Total	30269	100,0



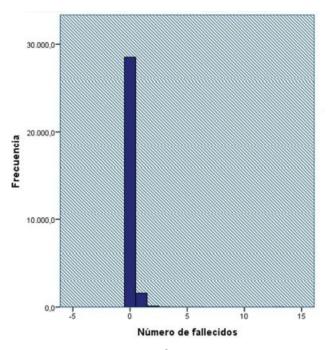

Gráfico 7 Zona de ocurrencia de los Accidentes Elaboración propia

Seguidamente se procedió a identificar la distribución en cuanto al número de lesionados y número de fallecidos en los accidentes de tránsito, para determinar cuáles son las mayores frecuencias, para ello, en la tabla 5 / gráfico 8 se obseva una tabla de distribución de frecuencias y un histograma correspondiente al número de lesionados. Puede evidenciarse que la mayor cantidad de accidentes arrojan entre 0 y 6 lesionados en el Ecuador lo que representa un 99,7%.+

Tabla 5.Distribución del número de lesionados

Clase	fa	Fr	Fa	Fr
0 - 6	30057	99,678	30057	99,68
7 - 13	72	0,239	30129	99,92
14 - 20	17	0,056	30146	99,97
21 - 27	5	0,017	30151	99,99
28 - 34	3	0,010	30154	100,00

Gráfico 8.Distribución del número de lesionados.


Elaboración propia

Cuanto al número de fallecidos, la tabla 6 de distribución de frecuencias y el histograma (gráfico 9), muestra claramente que no supera a más de 3 el número de fallecidos con respecto al total. Si bien, hubo 13 fallecidos en un accidente, éste no es significativo. El 94,2% corresponde a cero fallecidos en todos los accidentes ocurridos.

Tabla 6. Distribución del número de fallecidos

fa	fr	Fa	Fr
30258	99,96	30258	99,96
10	0,033	30268	99,99
0	0,000	30268	,99,99
1	0,003	30269	100,00
	30258	30258 99,96 10 0,033 0 0,000	30258 99,96 30258 10 0,033 30268 0 0,000 30268

Gráfico 9.Distribución del número de fallecidos.

Elaboración propia

Se establecieron frecuencias para visualizar que tipo de accidente prevalecía de acuerdo a la zona de ocurrencia del mismo, la información de la tabla 7 – gráfico 10 permite visualizar que en la zona urbana prevalecen la mayor parte de las causas encontradas, sin embargo, en la zona rural prevalecen: "mal estado de las vías" y "factores climáticos", aspectos que presentan una lógica debida al tipo de zona que se está tratando.

Tabla 7. Distribución de la Causa probable – Zona

Causa probable del assidente	Zor	na
Causa probable del accidente	Urbana	Rural
Embriaguez o droga	1706	458
Mal rebasamiento invadir carril	1687	581
Exceso velocidad	3000	755
Impericia e imprudencia del conductor	10237	5472
Imprudencia del peatón	865	308
Daños mecánicos	145	84
No respeta las señales de tránsito	3540	514
Factores climáticos	71	103
Mal estado de la vía	113	128
Otras causas	269	233
	-	

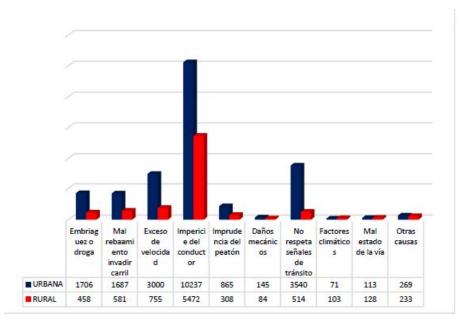


Gráfico 10.

Causa probable del accidente por zona de ocurrencia

Resultó de importancia establecer el grado de asociación entre algunas variables categóricas consideradas. Para ello, se utilizó la prueba de Independencia Chi-cuadrado que busca determinar si existen diferencias significativas entre las distribuciones observada y teórica. Inicialmente se plantea la hipótesis de que no existe relación entre las variables consideradas (para ello se construye una tabla de contingencia).

El cálculo del Chi-cuadrado arroja como resultado un valor numérico denominado alfa (#), el cual debe ser comparado con el valor teórico de 0.05 (utilizando el paquete SPSS). Cuando el valor calculado es menor que el 0.05 se rechaza la hipótesis nula, con lo cual se puede concluir que si existe una relación entre las variables; por el contrario, si el valor calculado es mayor que 0.05 no se rechaza la hipótesis nula aceptando que no existe ninguna relación entre las variables.

En primer término, se quiso determinar si existe relación entre la clase de accidente y el día de ocurrencia, construyéndose la tabla de contingencia 8 donde se muestran las frecuencias observadas relacionadas por categoría de las variables

Tabla 8. Distribución de los días de ocurrencia y la clase de los accidentes

Clase de		Dia de ocurrencia						Total
accidente	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo	_
Atropellos	670	641	637	696	842	866	723	5075
Caida pasajeros	129	114	104	109	113	133	132	834
Choques	1829	1704	1736	1896	2149	2364	2067	13745
Estrellamientos	407	379	341	455	600	937	898	4017
Rozamientos	316	310	304	300	323	292	206	2051
Volcamientos	88	89	70	88	109	155	164	763
Pérdida de	377	358	338	370	469	631	730	3273
pista								
Otros	59	78	69	84	91	76	54	511
Total	3875	3673	3599	3998	4696	5454	4974	30269

Con ayuda del paquete estadístico SPSS, se obtuvieron las frecuencias esperadas y se corrió la prueba chi cuadrado para un nivel de significancia del 5% arrojando la información de la tabla 9, donde se observa que el valor de significación de chi cuadrado de Pearson obtenido es de 0,00 el cual es menor al nivel de 0,05, por lo cual se rechaza la hipótesis de que no existen diferencias significativas entre la clase de accidente y el día de ocurrencia, es decir, se concluye que si existe relación entre las variables.

Tabla 9. Prueba chi cuadrado para clase de accidente y día de ocurrencia

Estadísticos	Valor	gl	Sig. asintótica (bilateral)
Chi-cuadrado de Pearson	573,939 a	42	,000
Razón de verosimilitudes	570,357	42	,000
Asociación lineal por lineal	55,005	d	,000
N de casos válidos	30269		
a. 0 casillas (0,0%) tienen u		ia esp	erada inferior a 5. La
frecuencia mínima esperad	a es 60,76.		

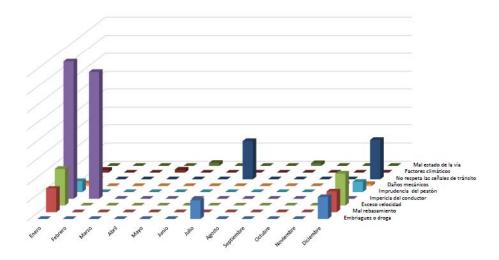
Seguidamente se trabajó la prueba de independencia para establecer si existía relación entre el mes de ocurrencia y la causa probable del accidente, construyéndose la tabla 10, donde aparecen relacionadas las categorías de ambas variables. Las casillas sombreadas en color azul determinan las mayores frecuencias encontradas, por ejemplo, los accidentes debido a embriaguez o droga ocurren mayormente en los meses de julio y diciembre respectivamente.

Los resultados arrojados por el SPSS en la prueba estadística Chi cuadrado a un nivel de significancia del 5%, arrojan que debe rechazarse la hipótesis de que no existen diferencias significativas entre las variables, esto es, la causa probable de accidentes tiene relación con el mes de

ocurrencia (la causa probable no es independiente del mes de ocurrencia). Ver tabla 11, arroja un valor de significancia calculado de 0,00.

Tabla 10.Distribución de los meses de ocurrencia y la causa probable

Mes				Causa pr	obable del acc	cidente					
	Embriaguez o droga	Mal rebasamiento invadir carril	Exceso velocidad	Impericia e impruddencia del conductor	Imprudencia del peatón	Daños mecánicos	No respeta las señales de tránsito	Factores climáticos	Mal estado de la vía	Otras causas	Total
Enero	191	263	408	1528	127	30	393	31	21	52	3044
Febrero	188	221	314	1412	119	17	320	17	13	58	2679
Marzo	147	193	262	1397	84	21	316	21	19	53	2513
Abril	173	193	289	1310	94	18	281	33	23	39	2453
Mayo	186	180	287	1240	100	16	321	19	33	43	2425
Junio	174	132	295	1250	87	14	355	13	9	30	2359
Julio	203	157	311	1299	87	21	419	8	24	30	2559
Agosto	148	150	307	1308	82	20	338	6	. 11	26	2396
Septiembre	166	162	310	1133	77	11	233	can	30	42	2165
Octubre	173	198	349	1247	102	17	302	4	17	42	2451
Noviembre	176	192	266	1234	95	22	344	9	17	44	2399
Diciembre	239	227	357	1351	119	22	432	12	24	43	2826
Total	2164	2268	3755	15709	1173	229	4054	174	241	502	30269


Tabla 11.
Prueba chi cuadrado para causa probable y mes de ocurrencia

Prue	bas de chi-c	uadrado)	
Estadísticos	Valor	gl	Sig. asintótica (bilateral)	
Chi-cuadrado de Pearson	308,211 ^a	99	,000	
Razón de verosimilitudes	312,019	99	,000	
Asociación lineal por lineal	,957	1	,328	
N de casos válidos	30269			

a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 12,45.

En el gráfico 11 también puede observarse la relación entre los meses y la causa probable, pudiéndose observar que, por ejemplo, los accidentes debido a embriaguez o droga, son más probable que ocurran en los meses de julio y diciembre, debido al nivel de asociación obtenido de la prueba aplicada anteriormente

Gráfico 11.Distribución del número de accidentes en relación a la causa y el mes.

Elaboración propia

En el mismo orden de ideas, resultó importante determinar el grado de asociación entre las dos variables categóricas causa probable del accidente y la hora del mismo. Siguiendo el mismo procedimiento de prueba de independencia estadística se construyó la tabla de contingencia 12, que puede observarse a continuación. Las casillas en color azul representan la hora donde se presentó la mayor frecuencia para la causa correspondiente. Por ejemplo, los accidentes por embriaguez o droga se presentan mayormente entre las 20:00 a 20:59 y 23:00 a 23:59.

La prueba de chi cuadrado específica para estas dos variables categóricas también arroja asociatividad en ambas variables, lo que presupone con un nivel del 5% que no son independientes la hora del accidente y la causa probable del mismo (ver tabla 13)

Tabla 12.Distribución de los meses de ocurrencia y la causa probable

				C	ausa Probable	9					
Hora	Embriaguez o droga	Mal rebasamiento invadir camil	Exceso velocidad	Impericia e impruddencia del conductor	Imprudencia del peatón	Daños medinicos	No respeta las señales de tránsito	Factores climáticos	Mal estado de la vía	Otras caus as	Total
00:00 A 00:59	122	32	130	437	41	7	91	5	16	11	892
01:00 A 01:59	122	23	116	373	24	3	89	3	5	15	773
02:00 A 02:59	135	23	102	384	31	1	62	11	6	16	771
03:00 A 03:59	98	15	101	390	22	11/1	66	6	7	12	718
04:00 A 04:59	76	20	110	338	17	5	50	6	9	- 11	642
05:00 A 05:59	78	37	166	429	22	- 5	92	12	6	23	870
06:00 A 06:59	59	197	183	691	37	9	168	11	9	24	1298
07:00 A 07:59	68	153	167	822	64	20	244	10	10	26	1584
08:00 A 08:59	40	136	172	709	52	15	196	SAM	1 23	19	1356
09:00 A 09:59	41	116	147	659	42	15	172	6	9	18	1225
10:00 A 10:59	47	119	162	694	50	21	202	5	8	27	1335
11:59 A	29	124	129	733	66	10	181	5	7.	24	1308
12:00 A 12:59	50	114	150	771	71	15	226	2	12	28	1439
13:00 A 13:59	. 47	138	165	824	77	8	229	3	14	21	1526
14:00 A 14:59	48	125	157	771	58	10	216	8	14	17	1424
15:00 A 15:59	55	132	181	831	56	13	256	12	8	23	1567
16:00 A 16:59	74	135	173	892	49	14	212	17	10	26	1602
17:00 A 17:59	96	127	190	863	54	14	231	9	17	16	1617
18:00 A 18:59	106	124	158	859	89	8	208	4	10	25	1591
19:00 A 19:59	137	134	192	896	74	10	213	6	13	36	1711
20:00 A 20:59	166	127	200	796	58	6	197	7	14	34	1605
21:00 A 21:59	149	86	194	588	56	7	189	10	11	22	1312
22:00 A 22:59	154	73	181	506	44	6	148	6	9	18	1145
23:00 A 23:59	167	48	129	453	19	6	116	4	6	10	958
Total	2164	2268	3755	15709	1173	229	4054	174	241	502	3026

Tabla 13.
Prueba chi cuadrado para causa probable y hora de ocurrencia

Estadísticos	Valor	gl	Sig. asintótica (bilateral)
Chi-cuadrado de Pearson	1504,380 ^a	207	,000
Razón de verosimilitudes	1469,566	207	,000
Asociación lineal por lineal	,000	1	,997
N de casos válidos	30269		

 a. 5 casillas (2,1%) tienen una frecuencia esperada interior a 5. La frecuencia mínima esperada es 3,69.

Prueba de Regresión Logística

- · Se eligió el método "introducir" (INTRO EN SPSS), en el que todas las variables de un bloque se introducen en un solo paso.
- · Se consideró el 100% de los casos, es decir 30269 datos registrados (tabla 14)
- · Se realizó una codificación con la variable "número de fallecidos", puesto que, para realizar la prueba de Regresión Logística, la variable dependiente debe ser dicotómica, en este caso se trabajó de la siguiente forma:

Tabla 14. Casos considerados por el paquete SPSS

Res	umen del procesamiento de	los casos		
Casos no ponder	Casos no ponderados ^a			
Casos	Incluidos en el análisis	30269	100,0	
seleccionados	Casos perdidos	0	,0	
	Total	30269	100,0	
Casos no seleccionados		0	,0	
Total	30269	100,0		

Tabla 15. Variables del modelo

11		Dep	pendiente	Independientes
Varia	Variable inicial		Variable transformada	Variables consideradas
W. C. C.	Número de fallecidos 0 1 4 5		Estado (falleció)	Hora del accidente (24 etiquetas) Causas del accidente (10 etiquetas)
			No = 0	Clase de accidente (8 etiquetas)
1			Si = 1	Día del accidente (7 etiquetas)
2	6	13	SI = 1	

· El modelo se ajusta adecuadamente a los datos puesto que la estadística Hosmer-Lemeshow arroja un valor de significancia superior a 0,05.

Tabla 16. Prueba de Hosmer y Lemeshow

Paso	Chi cuadrado	gl	Sig.	
1	15,117	8	,057	

· Se consideró la categoría con mayor frecuencia como categoría de referencia, esto con el objeto de que el programa SPSS utilice esta categoría para compararla con las otras de una misma variable (por defecto el SPSS escoge la última), por ejemplo: en el caso de la variable clase de accidente la categoría de referencia es "choques" (ver tabla 17), para la variable causa probable del accidente la categoría de referencia es "choques" (ver tabla 18).

Tabla 17.
Frecuencias de la causa del accidente

Clase	Frecuencia	Porcentaje	
Atropellos	5075	16,8	
Caída pasajeros	834	2,8	
Otros	511	1,7	
Estrellamientos	4017	13,3	
Rozamientos	2051	6,8	
Volcamientos	763	2,5	
Pérdida de pista	3273	10,8	
Choques	13745	45,4	
Total	30269	100,0	

Tabla 18. Frecuencias de la causa probable del accidente

Causa probable	Frecuencia	Porcentaje
Embriaguez o droga	2164	7,1
Mal rebasamiento invadir carril	2268	7,5
Exceso velocidad	3755	12,4
Otras causas	502	1,7
Imprudencia del peatón	1173	3,9
Daños mecánicos	229	,8
No respeta las señales de tránsito	4054	13,4
Factores climáticos	174	,6
Mal estado de la vía	241	,8
Impericia e imprudencia del conductor	15709	51,9
Total	30269	100,0

· Adicionalmente se observan valores observados y esperados con bastante similitud por lo que la bondad del ajuste es bastante buena. (ver tabla 19)

Tabla 19.

Frecuencias observadas y esperadas para Hosmer y Lemeshow
Tabla de contingencias para la prueba de Hosmer y Lemeshow

		Num_Falle	new = No	Num_Falle	new = SI	Total
		Observado	Esperado	Observado	Esperado	
Paso 1	1	2981	2984,543	45	41,457	3026
	2	2970	2958,959	60	71,041	3030
	3	2944	2937,289	84	90,711	3028
	4	2916	2908,115	98	105,885	3014
	5	2914	2903,771	113	123,229	3027
	6	2865	2878,996	162	148,004	3027
	7	2812	2841,642	209	179,358	3021
	8	2777	2798,371	251	229,629	3028
	9	2753	2729,322	274	297,678	3027
	10	2585	2575,990	456	465,010	3041

- · Finalmente se obtiene las variables que el modelo incluye en la ecuación estimada de regresión logística (B), así como el error estándar (ET) y la significancia para cada una la cual debe ser inferior al 5%.
- · De las tablas se interpreta que, por ejemplo, para la variable causa más probable, la causa 5 (ver tabla 20), un accidente cuya causa sea la Imprudencia del peatón y es evaluada con respecto a impericia del conductor (variable de referencia) tiene 1,347 más riesgo fallecer la persona. Así mismo, el daño mecánico al ser evaluado con respecto a impericia del conductor tiene 1,612 más riesgo fallecer la persona en un accidente.
- En la variable hora del accidente (tabla 21), de un accidente que se produzca entre las 06:00 a 06:59 si es comparado con respecto a las 23:00 a 23:59 tiene 1,428 veces más riesgo de fallecer la persona.

En la variable clase del accidente, los atropellos con respecto a los choques tienen 2,551 veces más riesgo de la persona de fallecer (tabla 22). Los volcamientos con respecto a los choques tienen 2,286 veces más riesgo

de fallecer la persona. Otro análisis muestra que estas dos categorías por ser las más altas son las que le infieren mayor riesgo a las personas de fallecer.

Tabla 20. Regresión logística para la causa del accidente

			_			
- 30*	В	E.T.	Wald	GI	Sig.	Exp(B)
CAUSA			69,802	9	,000	
CAUSA(1)	-,618	,121	26,137	1	,000	,539
CAUSA(2)	-,089	,113	,623	1	,430	,915
CAUSA(3)	-,180	,078	5,328	1	,021	,836
CAUSA(4)	-,110	,223	,245	1	,621	,896
CAUSA(5)	,298	,101	8,728	1	,003	1,347
CAUSA(6)	,478	,244	3,830	1	,050	1,612
CAUSA(7)	-,498	,099	25,325	1	,000	,608
CAUSA(8)	-,479	,368	1,693	4	,193	,620
CAUSA(9)	,130	,247	,278	1	,598	1,139

Tabla 21. Regresión logística para la hora del accidente

	o	O	1			
	В	E.T.	Wald	GI	Sig.	Exp(B)
HORA		F10 F100F1	148,314	23	,000	-
HORA(1)	-,004	,179	,001	1	,980	,996
HORA(2)	,084	,183	,208	1	,648	1,087
HORA(3)	-,072	,189	,143	1	,706	,931
HORA(4)	-,192	,195	,965	1	,326	,825
HORA(5)	,272	,184	2,179	1	,140	1,312
HORA(6)	,356	,168	4,504	1	,034	1,428
HORA(7)	-,076	,166	,209	1	,648	,927
HORA(8)	-,571	,176	10,535	1	,001	,565
HORA(9)	-,554	,182	9,206	1	,002	,575
HORA(10)	-,623	,190	10,761	1	,001	,537
HORA(11)	-,494	,181	7,474	1	,006	,610
HORA(12)	-,697	,187	13,856	1	,000	,498
HORA(13)	-,862	,191	20,277	1	,000	,422
HORA(14)	-,691	,180	14,780	1	,000	,501
HORA(15)	-,464	,176	6,941	1	,008	,629
HORA(16)	-,795	,186	18,320	1	,000	,452
HORA(17)	-,436	,171	6,490	1	,011	,647

Tabla 21a. Regresión logística para la hora del accidente

	0	0	I			
HORA(18)	-,592	,176	11,279	1	,001	,553
HORA(19)	-,620	,175	12,621	1	,000	,538
HORA(20)	-,176	,158	1,241	1	,265	,839
HORA(21)	-,212	,163	1,694	1	,193	,809
HORA(22)	-,295	,173	2,917	1	,088	,744
HORA(23)	-,247	,178	1,922	1	,166	,781
32		120	20		200	

Tabla 22. Regresión logística para la clase del accidente

	0					
- 7	В	E.T.	Wald	gl	Sig.	Exp(B)
CLASE	- CPA		366,319	7	,000	
CLASE(1)	,937	,071	174,708	1	,000	2,551
CLASE(2)	-,176	,183	,926	10	,336	,838
CLASE(3)	-,585	,302	3,755	1	,053	,557
CLASE(4)	-,383	,099	15,083	1	,000	,682
CLASE(5)	-1,247	,203	37,699	1	,000	,287
CLASE(6)	,827	,130	40,631	1	,000	2,286
CLASE(7)	,526	,081	42,191	1	,000	1,692
Constante	-2,319	,166	196,171	1	,000	,098

Conclusiones

De acuerdo con los resultados obtenidos, se concluye que:

- El mayor porcentaje de accidentes se producen en las provincias principales del Ecuador: Pichincha y Guayas, les sigue Imbabura
- Los meses de mayor accidentabilidad son: Enero y diciembre, los cuales suman un total de 5870.
- Los días y hora donde ocurren mayor cantidad de accidentes son: los viernes de 19:00 a 19:59 y los sábados de 20:00 a 20:59. Ocurren menos accidentes los martes de 03:00 a 03:59 y miércoles de 04:00 a 04:59
- En líneas generales, la hora de mayor accidentabilidad es a las 7:00 a 7:59, 16:00 a 16:59 y 19:00 a 19:59
- Los accidentes en el 2016 se producen en mayor medida debido a Choques y a Impericia e imprudencia del conductor, en la zona urbana
- El número de lesionados fue menor a 7 en 30057 accidentes contabilizados y el de fallecidos fue menor a 4 en 30258 accidentes
- Si se evidencia relación estadística entre las variables: clase de accidente y día, mes y causa probable y causa del accidente y hora, a un nivel del 5%
- En cuanto a la regresión logística, las variables de mayor significancia estadística son: Hora: 16:00 a 16:59 y 19:00a 19:59; Causas: Embriaguez / Droga y Exceso de Velocidad; Clase: Atropellos, Estrellamientos, Rozamientos y perdida de pista; Mes: Enero y Octubre; Día: no hubo discriminación.

REFERENCIAS CONSULTADAS

- 1. A.N. Constituyente, Reglamento general para la aplicación de la Ley de Transporte Terrestre Transito y Seguridad Vial, art. 392, 2012.
- 2. Barragán, R. (2003). Guía para la formulación y ejecución de proyectos de investigación. Serie PIEB. 3era. Edición. Bolivia.
- 3. Box, G., Hunter, S. y Hunte, W. Estadística para investigadores. Diseño, Innovación y Descubrimiento. 2da. Edición. Editorial Reverté.
- Comunidad Andina (CAN), (2016). Accidentes de tránsito en la comunidad andina, 2006-2015. Informe anual (On line). Disponible en: http://intra net.comunidadandina.org/Documentos/DEstadisticos/SGDE754.pdf.

- 5. Hernández-Sampieri. Metodología de la investigación. 5ta edición. Mc Graw Hill
- 6. IBM (2016). Statistical Package for Social Sciences (SPSS) version 22. [Programa de computation].

