Short Communications

Isolation and characterization of microsatellite markers from Garcinia indica and cross species amplification

K.V Ravishankar
ICAR-Indian Institute of Horticultural Research, India
R Vasudeva
University of Agricultural Sciences (Dharwad), India
B Hemanth
ICAR-Indian Institute of Horticultural Research, India
P Nischita
Regional project coordinator (UNEP-GEF), Nepal
B.R Sthapit
Regional project coordinator (UNEP-GEF), Nepal
V.A Parthasarathy
ICAR-Indian Institute of Horticultural Research, India
V.R Rao
ICAR-Indian Institute of Horticultural Research , Bengaluru, India

Isolation and characterization of microsatellite markers from Garcinia indica and cross species amplification

Journal of Horticultural Sciences, vol. 16, núm. 1, pp. 125-129, 2021

Society for Promotion of Horticulture

Recepción: 12 Febrero 2020

Aprobación: 14 Abril 2021

Abstract: Garcinia indica popularly known as ‘Kokum’ or Murugalu”, is a medium sized evergreen tree found in western-ghats of India. This tree species is highly exploited to produce anti-obesity drugs and culinary purposes. Its population is threatened by over exploitation and loss of habitat. Development of microsatellite markers would help in understanding genetic structure and further to develop appropriate conservation strategies. In this study, using next generation sequencing platform Illumina Hiseq 2000, we have sequenced partial genome of G. indica and identified 3725 microsatellites. Forty-eight microsatellite markers were analyzed using 30 accessions. Polymorphism information content (PIC) values ranged from 0.718 to 0.968 with a mean value of 0.922. Allele per locus ranged from 3 to 33 per locus. Probability of identity values ranged from 0.00329 to 0.30489. Cross species amplification SSR primers in the related species, showed a moderate transferability from 12.5 % (for G. morella) to 18.7%(for G. gummigutta)

Keywords: Cross-species amplification Garcinia indica, Microsatellite markers and Next-generation sequencing (NGS).

Garcinia indica Choisy (Thouars; Family Clusia- ceae), is a perennial tree. G. indica is commonly known as a Brindonia Tallow tree or ‘Kokum Butter’ tree in English. Kokum has many uses in cuisines and an important ingredient in locally prepared medicines. The seeds are a rich source of Kokum butter, which is nutritive, demulcent, agent for smoothening, softening and used for cosmetic, confectionery, culinary purposes. Raw fruits, young leaves and bark are also used as medications against several disorders. The fruit rind is a rich source of Hydroxy Citric Acid (HCA) that prevents accumulation of fat in the human body cells. Therefore, G. indica has become the natural source for production of anti-obesity drugs. (Baliga et al., 2011). Garcinia species are endemic and distributed in tropical rain forests of the Western Ghats. Perceiving the threat of over exploitation, FRLHT (Foundation for Revitalization of Local Health Traditions) and IUCN (International Union for Conservation of Nature) have recognized this species as ‘Vulnerable’ and ‘Threatened’ category respectively (Hareesh and Vasudeva, 2010). A few studies examined diversity in this species using general DNA markers like RAPD and ISSR markers (Thatte et al. 2012; Palkar and Sellappan, 2019). However, so far there are no efforts to develop species specific, highly reproducible microsatellite markers or SSR markers in this species. Keeping this in view, an attempt has been made to develop microsatellite or SSR markers using next generation sequencing technology. The development of molecular markers would help in studying its diversity, analyzing the genetics of traits, and further help in evolving conservation strategies and improvement.

The plant material was obtained from the germplasm collection of the College of Forestry, Sirsi (University of Agricultural Sciences, Dharwad), Karnataka state, India. Total genomic DNA was isolated from the leaves of G. indica genotypes using modified CTAB method (Ravishankar et al., 2000). Genomic DNA was sequenced using Illumina HiSeq2000 platform at M/ s Genotypic Pvt. Ltd, Bengaluru facility following manufactures instructions. High quality sequence data was used for assembly into contigs. De novo assembly of reads into contigs was performed using SOAPdenovo2-src-r240 software (Luo et al., 2012). This has resulted in 92125 contigs. The total assembled size of the contigs is approximately 25.6 Mbp. An SSR survey of genomic sequences using MISA software (http:// pgrc. ipk- gatersleban.de/misa), showed that 3590 contigs contained at least one microsatellite (Ravishankar et al. 2015). A total of 3725 microsatellite was identified. A total of 1374 microsatellites (ESM1) primers were designed using Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/; Untergrasser et al., 2012). From these, randomly 50 loci were selected for initial screening. Finally, 48 SSR primers were selected for genetic analysis based on clear amplification of PCR products. We employed Thirty genotypes of Garcinia indica for assessing polymorphism at each locus. The fluorescence based M13 tailed PCR method of Schuelke (2000) was followed to amplify the microsatellites in a quick, accurate and efficient manner. PCR was carried out in the 20µl reaction volume containing 2µl of 10X reaction buffer, 2.0µl of 1 mM dNTPs, 0.9µl (5 pmol) of forward, 0.9µl reverse primers (5 pmol), labeled M13 probe 1.2µl (5 pmol), 5.0 µl (50-75 ng) of template genomic DNA, 0.8 µl (2 U) of Taq DNA polymerase and 7.2 µl of nuclease free water. The PCR cycling profile was: initial denaturation at 94°C for 2 min, followed by 35 cycles of 94°C for 30sec., 55°C for 30 Sec., 72°C for 1 min and a final extension at 72°C for 5 min. Amplified products were separated on 96 capillary Automated DNA Sequencer (Applied Biosystems, ABI 3730 DNA Analyzer) at M/S Eurofin facility, Bengaluru.

The raw data generated was analyzed and compiled using Peak Scanner V1. 0 software (Applied Biosystems, USA) for estimating the allele size in bp. The allele size data was used for genetic analysis using Cervus 3.0 software (Kalinowski et al . 2007). We have calculated observed heterozygosit y, expected heterozygosit y, polymorphic information content(PIC). The probability of identity (PI) was calculated using IDENTITY1.0 software (http://www.uni-graz.at/~sefck/: Wagner and Sefc, 1999). Genetic analysis of 48 SSR loci, showed PIC values ranging from 0.718 to 0.968 with a mean value of 0.922. The mean values of observed and expected heterozygosity are 0.2813 (Table 1) and 0.933 respectively (Table 1 and 2). The allele per locus ranged from 13 to 41 with a mean of 16.395. The probability of identity (PI) values ranged from 0.00329 to 0.304896 with a mean of 0.03506. The total probability of identity is 8.132729x 10-80. In cross species amplification, out of 48 SSR primers, 6 amplified in G. morella , accounting 12.5 per cent transferability and 9 amplified in G. gummigutta accounting 18.8 percent transferability (ESM2). This relatively low cross-species transferability compared to what has been observed in G. gummigutta species (Ravishankar et al., 2017).

This is the first report of SSR markers for Garcinia indica, where 3725 microsatellites were identified and primers were designed for 1374 microsatellites. The genetic analysis showed that the majority of the SSR primers developed have high PIC values indicating high heterozygosity in the species. The low probability of identity values of many SSR loci is useful for molecular characterization. Finally, the SSR developed will be useful in studying genetic diversity, mapping and fingerprinting of Garcinia indica and related species.

Table 1
Genetic analysis of microsatellite markers developed for Garcinia indica
LocusForward Sequence 5I🡒3IReverse Sequence5I🡒3IRepeat TypeNumber of Allele (k)Allele size range (bp)Observed Heterozygosity (Ho)Expected Heterozygosity (He)Polymorphic Information Content (PIC)Probability of Identity (PI)
GI_KVRa577TTTGGCGAGGGTGTTGGTGAGTACACGTGTAGGCTGACACCAACC(GT)620140-2300.3450.9240.9020.012828
GI_KVRa614TGTGAGTTGTTTGGCATGGGTGAGGAGGGTGAGCAAATCACAGCTCA(TG)2226197-2900.1850.9620.9410.005254
GI_KVRa615TGTGAGGGGTGAGGTTGAGGCTACAAACGCATCCCCACTCTCGG(AT)627283-3790.2590.9530.9330.006829
GI_KVRa651TGGGTGGCAAATTTGGGAGGAAATGCCGCCCAAGGAGAGAGGAAA(AC)824185-2770.20.9710.950.006622
GI_KVRa723TGCACCAGGAGGGTCACAGACTACAACGAGGCCTTCCAACAGGA(AC)1021412-4880.1430.9260.9040.011916
GI_KVRa747TGACAGATCGACAGGCTAGACTCGAATCGCCCCCGTCTATGTATCAGTC(AT)625432-5310.1920.9620.9410.006535
GI_KVRa748TGAATGCCGAGAGCAATTGTGCCTCACATCACAAGGCTTGCTCAAACA(TA)633140-2140.5190.9790.960.003290
GI_KVRa834GTGCACATGTCGCCATAAAGATGGAACCTACCCCTCCATAACATGCCTT(AT)616105-1800.1330.8530.8280.036897
GI_KVRa861GGCCCATGGCCTCCTCTCATACAATGGGGAAGGACAATTAAGTCGGGA(TA)615103-1850.1380.7210.6950.087401
GI_KVRa862GGCACATGTGTCTACACCGCACTGTGGACAGGTAGGGTCACAGGT(AT)79233-2940.1430.8550.8190.037316
GI_KVRa961CCACACACAAAATGCCACAATTCCATGTGCGTGTGTGGTTGACAGGT(CA)61499-1240.2860.8470.8160.036213
GI_KVRb069AGACATCCGTCACCGGGCTCATTGCCATTTGTATGTGTTGTTGGCGG(CA)71099-1250.2140.8730.8410.029837
GI_KVRb130ACCCGCATTCACAATGCACATACAGTGGCGCTATTGGGAAATGAGTACA(CA)78233-3410.0000.860.8230.033681
GI_KVRb131ACCCCTAACGGTGGGTTCGTCATCGAGGGTCCTTGAGTTCTCCCCT(AT)61399-1900.1480.9050.8790.017689
GI_KVRb132ACCCCTAACGGTGGGTTCGTCATGGCCTTCGGTTGAGTTGTCCC(AT)610117-1570.4290.7740.7330.067668
GI_KVRb174ACACCGGTAAGGTGGTGAGAAGGAACACACAGAGTACCCCATATACGCACA(TG)712101-1480.250.7830.7490.054954
GI_KVRb175ACACCGGTAAGGTGGTGAGAAGGAACACAGAGTACCTCACATACGCACA(TG)718100-1650.5170.9150.8910.016365
GI_KVRb176ACACCCGATCCCATTCCGACCTACACCAACCACGCTCCCTTCCT(TA)724453-5240.2760.9450.9250.008223
GI_KVRb200AACTACCATCAAACATCACCAACACGATGGAAGGTGTTGAGGTCGGCCA(CA)622430-5140.320.9570.9340.009077
GI_KVRb201AACGGCTAGCTTTTCAACTGACTGTTGGTAAGTCGATTGTTGGGCTTCG(TA)617116-1790.160.9130.8870.017850
GI_KVRa975CACCCCATACACAACCACATTCCCGGTGTATGTGCCTGGATAAATGAAGGT(CA)623201-2850.1030.9380.9180.009212
GI_KVRa976CACATCCTTACATGTACACGGTCCACCTGACCGGCTAAACATACAAGTTCCA(TA)720316-3970.0830.9260.9010.016775
GI_KVRa977CACATAAGGAACAACAACAAGGCCTCAGCCGGAGGCCGTACAATTGTGTT(AT)72499-1710.4330.8560.8350.031996
GI_KVRa978CAATCTCATTCCTAGACAACCTGCACAAGTTGATCCAGGATTTGGCGAGGGT(AC)62099-1480.4140.9330.9120.011202
GI_KVRa979CAAGGCTGCTCGGACGTCGAATATCCCACCGGCTCGAGCAAGAA(CT)623428-5820.2860.9050.8830.015518
GI_KVRa980CAACATGCTTCAACCAAGCACATACAATGCTACTACCTTAGGAGACATGCATCA(TG)1121112-1980.4440.9420.920.009296
GI_KVRa981CAACAAAGGGCATTCATGCACACATTGGGGGAGGAACCAAGCAAGT(AT)624313-3990.6330.9550.9360.006817
GI_KVRb047AGCGAGGACAAGGGAAAGGACGTGGCGGATATGTGTGCTTGGCG(TA)719323-3650.360.9110.8850.018187

Table 1
Contd....
GI_KVRb048AGCGAATGCATGCGTGTAGCGAACGATCACCTTGGGGACGCTCA(AT)619472-5270.2610.8710.8460.031785
GI_KVRb204AACCCAGTGAGTGTAATGCGAATTGTTGTTGTTGGCTTATAGCCGAATGTGA(CA)721102-1950.1070.9480.9270.007728
GI_KVRb205AACCCAATGAGTGTAATGCCAGTTGTACTGTGGTTGGCTTATGGCCTGA(CA)621103-1970.50.9190.8980.015233
GI_KVRb206AACAGGACCGGTGTGCGGTTGATCCGCACATGTGTCCACACCAA(TA)821201-3410.4230.9090.8850.016389
GI_KVRb207AACACGTGGCAGACGCTCAAGGTGGTGAGGTCGGTCCAAACAGGA(AT)68117-1780.2330.7930.7570.070882
GI_KVRb208AACACGCGCGAGGACATACTGCCCAAGCCTCCTCTCCCATTTGTGC(TA)67154-1710.6790.7740.720.077586
GI_KVRb209AACACCTGCACGGGTTTCGTGGACTTTCCATCTCGACCACGCCG(TA)710330-4130.0000.890.860.023726
GI_KVRb213AAAGGACCGGCGAAGAAAGCGGCCCAGCTCAAACCGATGCCCAA(AG)610134-25000.0000.8810.850.026089
GI_KVRb214AAAGAGAGGTCATCTTAGTGAGGGGGTGTTGGCTTGGTCGTAACGGCT(GT)66150-2510.1480.7920.7420.062789
GI_KVRb219TGTTGGGAAGTAAAAGGAGGGAGCATGACCTAGGCATCCATCTCCCCT(TGT)57113-1780.50.7850.7330.063197
GI_KVRb220TGTGGGGATGGCAAATGAGGTGATGCCATTCGGTTGGGGCATACT(CAC)510143-1730.1150.8290.7880.044338
GI_KVRb234TGGCGTGCAGTTCTTCCTCCCAGGGATCGCATCCAACATTCATTTCCA(CAA)53173-2150.1540.3350.3030.304896
GI_KVRb242TGCAACAACAGGCTCAGGCACATGGTGGAGGCACGGGTTGAACA(CCA)515189-2150.50.9070.8810.018089
GI_KVRb243TGAGCGACCGTGCCTGATGTTGAGGGCTCCCTCACCCTCTACCTTA(CAG)513141-1710.360.8640.830.032098
GI_KVRb341ACAAGCATGCCAAACGTAGCCGATGAAGAAGTGCCCAACCCCACT(TGG)512136-1700.5170.780.7410.071213
GI_KVRb352AAGACGGGTGGCGGTGGAGAAAAGAAGCGAACCCTCTCCTCCTGA(TCT)813362-4030.5520.8660.8350.033609
GI_KVRb357TGACAATACGTGGGGAGATCCGTTGTTCAGGCTCAATCCCTTCGTGC(AATA)716115-1910.0000.8860.8610.021333
GI_KVRb368TCCGTGCCAATTCCCTGGCAACTGACCTGTCGCCTTAGCTACCCT(AAAAT)517249-3100.1920.9250.90.014054
GI_KVRb373AGCTAGGGGGCAACCTGTACCATGCTATTGAATTCGTGTTGGTGGTGA(CAATAC)58151-1680.4810.8180.7780.048049
GI_KVRa011TCCGTCCATCCGTTCGTCCGTTACCGGATGGGATCCAGCGATGT(CGTC) 6cgtt (CGTC)712100-1360.1720.750.7220.074675

Table 2
Summary of Genetic Analysis
MeanRange
Polymorphic Information Content (PIC)0.84160.303- 0.96
Observed Heterozygosity (Ho)0.28130.000- 0.679
Expected Heterozygosity(He)0.87010.335- 0.979
Allele per locus16.3953- 33
Probability of Identity (PI)0.035060.00329- 0.304896

Total number of Alleles : 787 Total probability of Identity : 8.132729e-080

Acknowledgments

Authors acknowledge financial support from UNEP/GEF regional project “Conservation and Sustainable Use of Cultivated and Wild Tropical Fruit Diversity: Promoting Sustainable Livelihoods, Food Security and Ecosystem Services”

REFERENCES

Baliga, M. S., Bhat, H. P., Pai, R. J., Boloor, R., and Palatty, P. L. 2011. The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): A review. Food Res. Inter., 44:1790-1799.

Hareesh, T. S. and Vasudeva, R. 2010. Regeneration pattern of Garcinia indica Choisy. in the Western Ghats of Uttara Kannada. National Symposium on Garcinia Genetic Resources: linking diversity, livelihood and Management (Eds.) Vasudeva, R., B.S. Janagoudar, B.M.C. Reddy, Bhuwon Sthapit and H.P. Singh., College of Forestry, Sirsi. pp 40-46.

Kalinowski, S.T., Taper, M.L., and Marshall, T.C., 2007, Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molec. Ecol. 16: 1099-1006.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J.,He, G., Chen, Y., Pan, Q., Liu, Y. and Tang, J. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler., Giga Sci. , .:18.

Palkar, R.S. and Sellappan, K. 2019. Genetic diversity between and within the natural populations of Garcinia indica (Thouars) Choisy: A high value medicinal plant from Northern Western Ghats of India using ISSR markers. Journal of Applied Research on Medicinal and Aromatic Plants, 15:100219.

Ravishankar K. V., Dinesh M.R., Nischita P. and Sandya B. S. 2015. Development and characterization of microsatellite markers in mango (Mangifera indica) using next- generation sequencing technology and their transferability across species., Mol. Breed., 35:93

Ravishankar, K.V., Anand, L. and Dinesh, M.R. 2000. Assessment of genetic relatedness among a few Indian mango cultivars using RAPD markers. J of Hortic. Sci. Biotech. 75: 198– 201

Ravishankar, K.V., Vasudeva, R., Hemanth, B., Sandya, B.S., Sthapit, B. R., Parthasarathy,V.A. and Rao, V.R. 2017. Isolation and characterization of microsatellite markers in Garcinia gummi-gutta by next-generation sequencing and cross-species amplification. J. Genetics, 96: 213-218.

Schuelke, M., 2000, An economic method for the fluorescent labelling of PCR fragments. Nat. Biotech., 18: 233-234.

Thatte, K.S., Khandekar, R.G. and Deodhar, M.A. 2012. Assessment of diversity in Garcinia indica (Dupetit-Thouars.) Choisy. using morphological and molecular markers. J. Tropical Agri., 50(1):30-36.

Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S. G., 2012. Primer3 - new capabilities and interfaces., Nucl. Acids Res., 40: e115

Wagner, H.W. and Sefc K.M., 1999. IDENTITY 1.0 Centre for Applied Genetics. University of Agricultural Sciences, Vienna. Austria. http://www.boku.ac.at/zag/forsch/identity.htm.

HTML generado a partir de XML-JATS4R por