
How to cite

Complete issue

More information about this article

Journal's webpage in redalyc.org

Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and
Portugal

Project academic non-profit, developed under the open access initiative

Texto Livre
ISSN: 1983-3652

Universidade Federal de Minas Gerais - UFMG

Soares, João Marcos; Vasconcelos, Rafael Oliveira
A distributed architecture proposal for e-voting

Texto Livre, vol. 16, 2023, pp. 1-15
Universidade Federal de Minas Gerais - UFMG

DOI: https://doi.org/10.1590/1983-3652.2023.42204

Available in: https://www.redalyc.org/articulo.oa?id=577174946025

https://www.redalyc.org/comocitar.oa?id=577174946025
https://www.redalyc.org/fasciculo.oa?id=5771&numero=74946
https://www.redalyc.org/articulo.oa?id=577174946025
https://www.redalyc.org/revista.oa?id=5771
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=5771
https://www.redalyc.org/articulo.oa?id=577174946025

Linguagem e Tecnologia

DOI: 10.1590/1983-
3652.2023.42204

Session:
Articles

Corresponding author:
Rafael Oliveira Vasconcelos

Section Editor:
Daniervelin Pereira
Layout editor:
Leonardo Araújo

Received on:
December 21, 2022
Accepted on:
February 3, 2023
Published on:
April 6, 2023

This work is licensed under a
“CC BY 4.0” license.
cb

A distributed architecture proposal for e-voting
Uma proposta de arquitetura distribuída para votação eletrônica
João Marcos Soares ∗1 and Rafael Oliveira Vasconcelos †1

1Universidade Federal de Sergipe, Departamento de Computação, São Cristóvão, SE, Brasil.

Abstract

Manual voting processes have two main problems, the reliability of the result and the delay in counting the
votes. To defraud the election, that is, change the amount of votes of the candidates, an attacker can
replace ballots with votes for other candidates with ballots with votes for the candidate to be benefited. In
this scenario, the security of the electoral process strongly depends on the control of physical access to the
ballot boxes. On the other hand, electronic voting systems (e-voting) are known for their agility in counting
the votes, as well as having the potential to increase the security of the electoral process. However, both
solutions present challenges in relation to the transparency, security and secrecy of the vote. This work presents
conceptual and technological requirements for a secure electronic election, proposes a distributed solution for
electronic voting, and presents its limitations and some possibilities for future work. Finally, more studies are
required to implement the solution, mainly in relation to the secrecy of the vote and incoercibility.

Keywords: Election. Electronic voting system. E-voting. Consensus. Distributed systems.

Resumo

Processos de votação manual apresentam dois principais problemas: a confiabilidade do resultado e a demora
na contagem dos votos. Para fraudar a eleição, isto é, alterar a quantidade de votos dos candidatos, um
atacante pode substituir cédulas com votos para outros candidatos por cédulas com votos para o candidato
a ser beneficiado. Nesse cenário, a segurança do processo eleitoral depende fortemente do controle de acesso
físico empregado às urnas. Por outro lado, sistemas de votação eletrônico (e-voting) são conhecidos pela
agilidade na contagem dos votos, bem como têm potencial para aumentar a segurança do processo eleitoral.
Entretanto, ambas as soluções apresentam desafios em relação à transparência, segurança e sigilo do voto.
Este trabalho apresenta os requisitos conceituais e tecnológicos para uma eleição eletrônica segura, propõe
uma solução distribuída para votação eletrônica, apresenta suas limitações e algumas possibilidade de trabalho
futuro. Por fim, são requeridos mais estudos para a implementação da solução, principalmente em relação ao
sigilo do voto e incoercibilidade.

Palavras-chave: Eleição. Sistema de votação eletrônico. E-voting. Consenso. Sistemas distribuídos.

1 Introduction
Proposals for electronic election systems (e-voting) seek to lower the costs of an election while main-
taining integrity, security, and privacy requirements (HJÁLMARSSON et al., 2018). While the effi-
ciency and cost benefits in computerized processes are clear relative to analog processes, security care
can become more complex (STALLINGS, 2017).

The literature points to security as the primary challenge in e-voting. Works bring up the theoretical
risks of e-voting compared to the risks of the traditional system (LAUER, 2004; GRITZALIS, 2002).
Other works point out flaws in e-voting system implementations (SPRINGALL et al., 2014; ARANHA;
GRAAF, 2018).

In this sense, the advent of cloud computing and decentralized architectures arise as an attempt to
deal with the imposed security challenges, mainly related to trust in the system. With a decentralized
architecture, the parties involved need to enter into an agreement on the values that will be committed.

∗Email: joao.soares@dcomp.ufs.br
†Email: rafael@dcomp.ufs.br

1/15

https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0002-5242-3289
https://orcid.org/0000-0001-7974-304X
mailto:joao.soares@dcomp.ufs.br
mailto:rafael@dcomp.ufs.br

Sharing responsibilities can improve the trust in the system. To this end, it will be presented how
distributed computing systems resolve conflicts and how this can be leveraged for a decentralized
architecture.

The advantage of the aforementioned tool is to spread the responsibility of the system among
several entities, adding redundancy. This paper seeks to present the requirements and challenges that
a distributed architecture of choice must possess. Initially it was planned that the proposed format
would use blockchain as a platform. However, it was realized that certain exigencies of electoral
systems make the pure application of blockchain not ideal. Blockchain alone does not provide the
authentication mechanisms necessary for e-voting. If the network requires participants to be identified,
a central entity is needed. In addition, part of the secrecy in blockchain (more specifically in the Bitcoin
network) comes from the fact that users are not authenticated and therefore can assume numerous
identities.

Blockchain also does not solve the problem of secret storage of votes (which will be presented in
Section 2.1.9 and discussed at the beginning of Section 3). That is, there is no way to guarantee
that the vote stored in the chain will only be available at the end of the election. Thus, the benefit of
blockchain is restricted to distributed storage and immutability. For distributed storage, a traditional
distributed database can solve the problem. A similar result to immutability can be achieved if the
system enters into consensus on vote ciphers before disclosure (see Section 3.3.2).

1.1 Objectives
The goal of this paper is to present a proposal for a decentralized and distributed architecture for
“small electronic elections”, where the number of responsibilities of a central entity should be as few
as possible. For the purposes of this research, “small electronic elections” will be understood as the
internal elections of public and private institutions, student organizations, and unions.

In order to achieve the general objective, the following specific objectives have been outlined:
• Present the requirements of a secure electronic election;
• Propose a distributed election model based on the raised requirements;
• Analyze the main challenges imposed by this model;
• Analyze its advantages, disadvantages and viability.

1.2 Methodology
For the development of this work, exploratory research on e-voting was carried out in the literature.
After that, concepts about distributed systems and cryptography were studied. Finally, an architecture
based on the studied themes was proposed.

1.3 Related work
For the present study, articles on electronic voting were used as a basis. Gritzalis (2002) points out a
set of principles that the development of election systems should comply with, based on constitutional
principles of democratic countries. In addition, the author discusses whether e-voting should be used
as a complementary means to the traditional process or conducted independently.

Lauer (2004) lists the possible risks of e-voting, both Internet voting and the use of technol-
ogy, to support the traditional election. Risks at the physical and network levels are analyzed and
recommendations are made on how to mitigate these risks.

The work of Springall et al. (2014) analyzes the security of Estonia’s online election system, using
code analysis, in-person observations, and intrusion tests on replicas of the system as a basis. The
results show that there are security flaws in the architecture and that the design of electronic voting
systems is difficult, as it must ensure confidence in the result while maintaining the secrecy of the
vote.

A similar work is done by Aranha and Graaf (2018), but in the context of Brazilian elections. The
authors present the electoral process in Brazil and discuss points of failure involving the electronic
ballot box. It is discussed that one of the main points of failure is in the source code validation
process, as it is not guaranteed that the source code that is contained in the ballot box is the same

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 2/15

as that audited by the stakeholders. Moreover, the source code auditing process itself is limited.
The use of cloud computing for electronic elections is explored in the work of Zissis and Lekkas

(2011). Also in this paper, the use of electronic processes in governments is reviewed, and a set of
threats are listed, such as malicious code on the client, message interception, and their respective
security measures.

2 Background
In this section, the issues that serve as a basis for the paper will be presented. Section 2.1 presents the
principles necessary for the development of a secure electronic election system. Section 2.2 presents
the concept of distributed systems and consensus algorithms. Section 2.3 introduces concepts of
time-based encryption.

2.1 Requirements for a secure electronic election
The first step in building the architecture of a secure election system is to define the requirements
for it to be considered secure and effective. Several papers in the literature (ZISSIS; LEKKAS, 2011;
SAMPIGETHAYA; POOVENDRAN, 2006; HARDWICK et al., 2018) use the work of Gritzalis (2002)
as a reference for requirements’ mapping.

Gritzalis (2002) defines a series of design fundamentals that should be followed when developing
e-voting systems. They derive from from constitutional principles in democratic countries. These
principles sometimes complement and sometimes contradict each other. It is therefore impossible to
design a system (whether traditional or electronic) that completely satisfies all of them. The principles
are listed below.

2.1.1 Principle of isomorphism to the traditional process
The electronic electoral process must guarantee the characteristics of the traditional universal suffrage
electoral process. For this, the following premises are defined:
1. Every voter has the right to participate in the electoral process;
2. The definition of the individual as a voter must be found and controlled by law;
3. The technology to cast the vote must be accessible to all voters;
4. E-voting should be considered an alternative means of voting;
5. The democratic principle (i.e, every voter has the right to participate in the electoral process) leads

to the need for adequate public infrastructure (free internet points, etc).
These definitions were made for national elections. For more restricted electoral processes, such

as those at a university, the law mentioned in item 2 of the above premises can be replaced by internal
regulations. The important thing is that the rules defining who can vote exist. Consequently, in item
5, the important thing is to ensure that voters have access to the necessary infrastructure to exercise
their political will. It is also through this principle that it is necessary for the voting system to ensure
that the voter is authenticated to vote.

2.1.2 Principle of voting eligibility
Voters must be able to register and authenticate themselves in order to cast their vote. This principle
does not conflict with the previous principle, since in order to be considered a voter, the individual
must meet the criteria laid out in the rules defining who can vote in those elections, and it also
prevents a voter from being able to vote more than once.

2.1.3 Principle of incoherence
It must be guaranteed that the vote cannot be bought, and that the voter cannot be extorted. This
principle can only be achieved if the voter is unable to prove that he or she voted for a particular
proposal. In addition to the technical requirements for this, the public voting structure (e.g. polling
booth) must ensure that the person cannot be coerced outside the system.

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 3/15

2.1.4 Principle of freedom of decision
The voter’s freedom of decision can be violated if any party or candidate advertisement is broadcast
during the casting of the vote. In the traditional electoral process, no advertising is permitted at the
polling station. Similarly, in an electronic voting process, no election advertising should be permitted
on the voting site or generally on the system interface.

2.1.5 Principle of the invalid voting option
The voter should have the freedom of preference preserved. This means that if none of the available
options appeals to him, he should be able to cast an invalid (null) vote.

2.1.6 Principle of equality among candidates
The interface of the system should not favor or disadvantage candidates. This principle is similar to
the principle of Freedom of Decision, but with a focus on candidates. The positioning of ballots in a
traditional election and the display of candidates on a computer screen should provide equality among
candidates.

Moreover, all candidates should have equal access to the transparency of the election. That is, they
should all have access to the same tools and information to check and audit the correct functioning
of the election process.

2.1.7 Principle of equality among voters (One voter, one vote)
The principle of Equality Among Voters states that all votes should have the same value. From
this premise, three pieces of information are derived. The first is that there should be no system
of weights where one individual’s vote is worth more than another. The second is that a voter can
cast one, and only one, vote. Finally, Phillips and Spakovsky (2001) argue that in the context of
electronic voting, access to and familiarity with the technology may give a certain group of voters an
advantage when casting a vote. Also, for this reason, access to the tools to cast the vote should be
universal, as discussed in the Isomorphism principle (Section 2.1.1). On the other hand, for people
who for whatever physical reason (comorbidity, geographical distance) cannot attend a traditional
polling place, the e-voting system can help make the principle of Equality Among Voters true.

As aforementioned in Section 2.1, Gritzalis (2002) claims that it is apparently impossible to guar-
antee the principle of “One voter, One vote”. However, one possibility to guarantee such requirement
is ensuring the e-voting system to register that the voter cast the vote. Thus, the system can pre-
vent a voter from casting multiple votes. On the other hand, concerning impaired people or people
unfamiliar with the technology, the organizing institution may have some campaigns or initiatives to
assist those people.

2.1.8 Principle of secrecy
This principle is linked to the principle of incoherence and freedom of decision (Section 2.1.4). Secrecy
is a necessary requirement to ensure free political decision. Once cast, the vote should be irreversible
and not even the voter himself should be able to recover his decision.

In traditional electoral systems, secrecy is guaranteed by physical barriers, however, Gritzalis (2002)
believes that in e-voting systems secrecy can be compromised, and that the following requirements
must be explicitly met:
• Secrecy of the vote must be guaranteed in the casting, in the transport (in this case by network),

in the reception and counting;
• None of the actors involved (organizers, candidates, and voters) should be able to make the

connection between a voter and a vote;
• There should be a well-defined separation between the registration and authentication processes

and the vote-casting and collection processes;
• No voter should be able to prove that he or she voted for a particular candidate.

It is pertinent to point out that in any remote voting system, there is no guarantee that the
individual will not be coerced at the time of casting the vote, for this reason, when designing e-

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 4/15

voting systems, external protective measures should be discussed, such as voting booths (GRITZALIS,
2002). As mentioned, these principles are contradictory since some measures create a conflict with
the Equality principle, which may exclude those people who were unable to move to the voting center.
Thus, the organizer should provide some assistance program for those with special needs, as stated
in Section 2.1.7.

2.1.9 Principle of unmonitored voting
During the electoral process, third parties cannot monitor voting. In traditional elections, this principle
is enforced with measures that ensure that the ballot box is only opened at the time of vote counting.
In an electronic voting context, it must be ensured that the computed votes can only be read after a
certain moment, which indicates the end of the reception of votes. If this does not occur, the entity
storing the votes may perform monitoring.

2.1.10 Principle of transparency
The e-voting election process should be as transparent as possible and the faith in the system as low
as possible. That is, in an ideal situation, all actors involved (organizers, candidates, and voters)
should be able to understand how the election takes place. Gritzalis (2002) emphasizes that faith in
the system is an inherent factor in electronic voting, since an ordinary citizen has no knowledge about
how computer systems work. Although the common voter does not know how computer systems
work, the e-voting system should be audited by reliable third parties, as it happens in the Brazilian
electoral system, for instance.

Therefore, it is important that the electronic electoral system be transparent and that the processes
involved be explained, even if in a high-level language. This characteristic must accompany the system
itself.

2.1.11 Principle of verifiability and accountability
Verifiability is the ability of voters, candidates, organizers, and independent observers to verify that the
electoral process occurs in the correct manner. Accountability relates to the system’s ability to produce
logs and monitoring of all election operations, so that any individual can search for inconsistencies.

However, the voter’s ability to verify that his or her vote has been counted and counted completely
contradicts the principle of Secrecy (Section 2.1.8) and Incoherency (Section 2.1.3). In general,
electoral systems (both traditional and electronic) make a trade off and give up some of the verifiability
and accountability to maintain the secrecy of the vote.

2.1.12 Principle of simplicity
The principle of Simplicity states that the system should be as simple as possible. Simplicity, then,
coupled with the principle of Transparency (Section 2.1.10), seeks to ensure that the system is user-
friendly, that is, simple, accessible, and understandable to the user. However, due to principles such
as Security and Reliability (Section 2.1.13), the system’s source code is unlikely to be simple, given
the inherent complexity of the system.

2.1.13 Principle of reliability and security
This principle permeates several other principles mentioned above. Reliability means that the election
result is truly a reflection of the will of the electorate, so the system must ensure that the election
result is in accordance with the votes cast and that these have not been modified and are true to what
the voters want. No votes cast should be allowed to be excluded, and invalid votes should be counted,
in accordance with the Invalid Vote Option principle. Just as in Secrecy (Section 2.1.8), Reliability
and Security should also be enforced in all stages of the voting process (i.e., casting, transportation,
reception and counting).

Security refers to ensuring the secrecy, integrity, and availability of the system. The process of
registration and authentication of actors must be done in a secure manner and the system must be
available and protected against denial-of-service attacks, intentional or not, since the unavailability of

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 5/15

the system hurts the right of the voter to cast his vote.
In a sense, Security counteracts the Simplicity principle since security processes inevitably end up

increasing the complexity of the system.
Based on the principles of Reliability, Security (Section 2.1.13), Verifiability and Accountability

(Section 2.1.11), Gritzalis (2002) proposes the following requirements:
• There must be hardware and software certification processes;
• All infrastructure as well as system functionality should be verifiable and comply with Kerck-

hoff’s requirement in order to remain secure even if it is open-source (KATZ; LINDELL, 2020;
DACHSELT; SCHWARZ, 2001);

• All operations should be monitored and generate system logs, except those that might break the
secrecy of the vote;

• The infrastructure should be open for inspection by authorized agents;
• Voters and candidates should be assured that there were no malpractices during the process.

2.2 Consensus in distributed systems
A distributed system is a collection of independent computers that cooperate to solve a problem that
cannot be solved individually (KSHEMKALYANI; SINGHAL, 2008). More precisely, the entities of a
distributed system have the following characteristics:
• Independent physical clocks: The clocks in the network are not necessarily synchronized; this

becomes an obstacle for managing the order of the exchanged messages. This problem was the
motivation for Lamport (1978) work that gave rise to logical time theory;

• Independent Memories: Entities do not share memory, i.e., all communication depends on mes-
sages;

• Autonomy and heterogeneity: Processes have different speeds and can run on different operating
systems, with different implementations.
Since the communication medium is the most important aspect of the network, it is necessary to

classify the errors that can occur during message transmission. The worst type of error in this context
is the byzantine failure, defined by Lamport (1983). In this fault, nodes can show any arbitrary error in
the message exchange, including purposeful alteration of the content. In a variation of this problem,
the Byzantine failure with authentication, the same errors can occur, but the messages can be verified
through signatures.

One of the major problems in distributed systems is the consensus among the nodes. That is, how
a network of nodes agrees on a certain value. In the context of Byzantine failures, the best known
proposed algorithm is Practical Byzantine Fault Tolerance, or PBFT, proposed by Castro, Liskov,
et al. (1999). In this algorithm, it is possible to guarantee consensus on up to n−33 malicious nodes,
where n is the total number of nodes. Another consensus algorithm proposed later is Proof-of-Work.

Blockchain is an append-only data structure, meaning that the only modification allowed is the
addition of more data. Data is entered in blocks, so that each block has a hash of the previous block
(NAKAMOTO, 2008).

Since the network has no central entity, the nodes need to decide together which one will add
the next block to the chain. The most intuitive solution is a lottery. However, this form of random
selection is susceptible to attacks and requires some node to assume a centralizing role (ZHENG et al.,
2017).

The Proof-of-work algorithm (DWORK; NAOR, 1993) is then used, where nodes need to prove
that they have performed certain work to generate a new block and add it to the network. For this
algorithm, work can also be interpreted as time expenditure, expressed in CPU cycles. In later work,
the idea of the algorithm is extended so that the node can spend other resources, such as space or
digital coins (DZIEMBOWSKI et al., 2015; GAŽI; KIAYIAS; ZINDROS, 2019).

2.3 Time-Based encryption
An interesting problem in the area of cryptography is the study of how to create a way to block access
to a piece of information for a period of time, and after that period the information becomes available

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 6/15

without requiring an action from the person who blocked it. The problem is also sometimes described
as “sending a message to the future”.

Some approaches have been proposed to deal with this problem. One line of research proposes
models that assume a trusted third party is responsible for releasing decryption keys at the correct
time (RIVEST; SHAMIR; WAGNER, 1996; BONEH; BOYEN; GOH, 2005; CHEON et al., 2008).
Another line of research uses the idea that the receiver of the message needs to solve an expressive,
but not impossible, computational problem to unravel the cipher (BONEH; NAOR, 2000; UNRUH,
2015). The difficulty of the problem defines the approximate time for the cipher to be revealed, and
the problems themselves are chosen so that the computational effort cannot be parallelized.

Liu et al. (2018) defines that to have complete time-based encryption, the three criteria must be
met simultaneously:
• Non-interactivity: The sender of the cipher is not needed for decryption;
• Independence: There should be no dependency on a trusted third party. That is, the issuer does

not need to depend on a trusted third party to store the decryption keys until the time of the
cipher opening arrives.

• Resource savings: Interested parties in revealing the cipher should not be forced to spend compu-
tational resources for this purpose. This means that a receiver should only wait until the planned
release time of the cipher to discover the message, and all stakeholders should discover the message
at approximately the same time regardless of computational power.
Liu et al. (2018) proposes a solution that theoretically meets all three requirements. The authors

introduce the idea of a reference computational clock, based on the state of a public, constantly
iterative distributed computation. As an instance of this clock, the authors use the Bitcoin network.
Added with the reference clock, a witness encryption scheme is used (GARG et al., 2013)

3 Proposal
Following the principles proposed by Gritzalis (2002) described in Section 2.1, this section presents
a distributed architecture for e-voting. The goal of this architecture is that the election participants
depend as little as possible on a central authority to conduct the election. The election should be
managed in a distributed manner, even among adversarial parties, as proposed in Table 1:

Table 1. Transfer of responsibility in a decentralized model

Action Responsibility in centralized model Responsibility in decentralized model

Manage Voters Central Authority Central Authority
Managing Candidates Central Authority Central Authority, candidates, observers
Casting Votes Voter Voter
Storing Votes Central Authority Candidates, observers
Perform counting Central Authority Candidates, observers
Auditing the system Voters, candidates, observers Voters, candidates, observers

Source: Author.

In this work, three types of roles played by the network nodes are defined:
Voters: these are the nodes responsible for casting votes. Following the Isomorphism Principle

(Section 2.1.1), voters must be authenticated to cast the vote. It should be possible for the voter to
ensure that his vote has been computed, but it should not be possible for him to generate evidence
of the content of his own vote (Principles of Verifiability and Incoherence, respectively). At the end
of the election, voters should be able to verify and audit the vote count.

Hosts: are the nodes that store the votes. Candidates (or parties) must play the role of hosts.
Assuming that an election has at least two candidates, then there must be at least two hosts. Other
individuals, entities or observers with an interest in being hosts can also play the role.

Certificate Authority: Node responsible only for issuing and verifying digital certificates. It is
the central entity (physically it can be distributed) with reduced power when it comes to issuing and
counting votes. It is an identity and authorization query node for the other nodes. Before the election,

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 7/15

it is necessary that all future participants (voters, candidates, other interested parties) have public
keys registered with the Certificate Authority. Throughout the paper it will be abbreviated to CA.

Two major challenges arise with this model:
1. How should the hosts come to consensus on vote storage?
2. What mechanism will prevent hosts from reading votes before the voting is over?

The first problem can be addressed using the literature on consensus in distributed systems,
inevitably capturing its advantages and disadvantages. Importantly, in this model, although the vote
is secret, the actors involved must be properly authenticated, even if there are operations that protect
the user’s identity, complete anonymity is undesirable for the solution, because it would break the
principle of Equality – i.e., “One voter, one vote” – among voters once the system wouldn’t even know
if a particular individual casted a vote. As a consequence, one might vote more than once, breaking
the principle of Equality (Section 2.1.7). However, complete anonymity wouldn’t impose that votes
have different weights. This means that the messages exchanged must be authenticated in one way
or another. That is, among the possible failure models in distributed systems, the goal is for the
proposed model to be Byzantine failure tolerable with authentication.

The second problem is more complex. In other contexts, when an actor needs to store information
in an untrusted repository, that information is encrypted; to decrypt it, an action by the actor himself
or another actor authorized by him is required. The problem arises in the context of an election, when
at a certain point in the electoral process, the vote needs to be disassociated from the voter. In this
case, it is necessary that the encryption protecting the vote be broken only in the counting and result
stage, without action from the actor that encrypted it, which in this context is the voter. Ideally, this
encryption system needs to fulfill three properties simultaneously:
• The voter does not need to be present for decryption;
• The system cannot depend on a third party who will keep the decryption keys;
• The parties interested in decrypting the cipher cannot have a significant advantage over each

other according to their computing power. That is, all parties must be able to decrypt the vote at
approximately the same time and never before the start of the vote counting and result stage.
Therefore, this encryption needs to be time-based. For the proposed model, it is defined that the

encryption mechanism is based on the work of Liu et al. (2018), because the three properties above
are analogous to the properties of his proposal. However, other approaches are also valid such as a
time-lock encryption where the central authority keeps the secret decryption key until the end of the
voting process. The main drawback of such approach is that the CA is a central actor that hold all
the secret decryption keys and may be attacked (e.g., it may suffer a Denial of Service attack or have
all the decryption keys leaked).

3.1 Rules, constraints, and notations
To serve as a basis for building and understanding the proposed model, it is necessary to define the
set of rules and assumptions of the proposal:
• The system consists of a distributed set of nodes;
• The notation for the asymmetric key pair of a node n is (PKn, PRn), where PKn is the public key

and PRn is the private key. The notation E(m, k) = c means that message m is encrypted with
key k and generates a cipher c . The notation D(c, k) = m means that cipher c is decrypted with
key k and generates message m;

• Nodes can participate in an event called Election. During an Election, the following rules exist:
– An election is composed of a question q, which can be answered with a proposal p, which may

be a blank or null vote. The set of proposals is P ;
– Each host can issue only one proposal p;
– Each voter may cast only one vote v , to show support for only one proposal of any kind. The

notation for extracting a proposal from a vote is f v(v) = pn. The set of votes computed from
an election is V and V * is the set of valid votes (i.e., blank and null votes aren’t considered
valid votes) computed from the same election;

– The number of candidates must be less than or equal to the total number of hosts;

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 8/15

– The number of candidates must be greater than 1.
• Nodes are required to perform the voting steps over a computer network (i.e., online);
• The nodes use the NTP (Network Time Protocol) to synchronize the clocks;
• Message exchanges between nodes are done with end-to-end encryption.

3.2 Phase one: election setup
An election is commonly divided into three stages (Figure 1): a preparation, where the characteristics
of the election are defined; the vote casting period, which occurs sometime after the close of the first
stage; the vote counting, which can occur immediately after the election ends. The divisions between
these time periods will be called t0, t1, t2.

Figure 1. Election timeline.
Source: Author.

Step 1 (Creating the election): An election is created from any node in the network. The
election is a 6-tuple e:

e = ⟨q, t0, t1, t2, f , bs⟩

The first element is the question q. The question q represents the question that is to be answered
by the election. Examples of questions are ”Which party should run the student center?” or ”Should
the United Kingdom leave the European Union?”. The second is a future timestamp t0, which
indicates a maximum deadline for nodes to submit proposals. The third is a future timestamp t1,
which indicates the start of receiving votes. The fourth is another future timestamp t2, indicating a
maximum time limit for votes to be received. Although this is a distributed system, it is not necessary
to use a Lamport’s (1978), logical clock scheme because there is a tolerable clock synchronization
difference such that using NTP is sufficient. The fifth element is the function f w : V −→ P that
defines the winning proposal based on the set of votes. For example, let A be the set of votes on a
proposal pn. That is, v ∈ A if f v(v) = pn. If it is decided that the winning proposal is the one with
a simple majority, then f w(V) = pn, if |A| > 0.5|V |. The sixth element is a parameter bs ∈ N e
bs < |E|, where E is the set of voters, which indicates the size of the disclosure blocks. Hosts must
disclose votes in groups to balance secrecy and verifiability. This process is detailed in Section 3.3.2.

The initiating node must make e public to the other nodes. To ensure the authenticity of the
proposal, the node must sign the message.

Step 2 (Proposal and Host Registration): Upon learning of an election e, any node n can
issue a proposal and become a candidate before time t0. To do this, in addition to proposition pn, it
must define a host address hn from which it will receive and store votes. The candidate must then
make public pn and hn and sign the message containing both values to guarantee its origin. Others
interested in maintaining a storage node (i.e., host) can also perform the same process, but without
generating the proposal.

3.3 Phase two: voting and storing
Step 1 (ID Generation): With the arrival of t0, the first phase is closed and, at this point, a voter
node n has the information about the election with a copy of the structure e, a list of proposals
p1, p2...pn and a list of host addresses h1, h1...hk , so that n ≤ k . The voter then needs to generate
a temporary ID that meets the following requirements:

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 9/15

Figure 2. Step 1: Sending the temporary keys to the CA.
Source: Author.

• it must be possible for the CA to verify that the ID was generated by a valid voter and that this
ID is the only one generated by that voter for that election. That is, each voter must have one
and only one ID;

• It should not be possible for other participants in the election to associate an ID with a voter;
• Anyone should be able to verify whether an ID is valid for that election.

To comply with the third requirement, the voter must generate a pair of keys I = (TPKn, TPRn)
that will serve as a temporary identification and register it with the CA TPKn, (message 1 in Figure 2).
The CA must check if any identification of that voter already exists for that election and respond to
the voter if the registration was done successfully (message 2 in Figure 2).

Figure 3. Step 2: message exchange sequence for vote submission.
Source: Author.

Step 2 (Sending the vote): After time t1, the voter can cast his vote v , encrypted, and
following the requirements described at the beginning of this section. To do so, he must use a time-
based encryption scheme, grounded in the work of Liu et al. (2018). The cipher cv represents the
cipher of the vote after encryption.

The voter must send cv , signed with I, to a host hi any of the election (message 1 in Figure 3).
The host should check with CA whether the public key of I is valid (message 2 in Figure 3). If it is

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 10/15

not, the message should be ignored. If it is valid, the host must share the signed cipher cv with all
other hosts, using a consensus algorithm (message 4 in Figure 3).

3.3.1 Consensus
As discussed at the beginning of this section, the consensus between hosts needs to be Byzantine
fault tolerant with authentication. In addition, the requirements that the algorithm must meet in the
context of distributed election will be defined.

The first requirement is that if the voter sends a signed cipher cv to a host hi , it must receive
confirmation of receipt by another host hj,j ̸=i . This is done to assure the voter that there has been
a consensus and that the message has been distributed. The second requirement is that each time
a host receives a signed cipher cv , it must verify the validity of the signature’s public key with CA.
In addition, the host needs to verify whether this is the first vote of the voter or if there is already
another vote agreed upon consensus. This requirement serves as host verification that the message
originated from a valid voter. Any consensus algorithm that meets these requirements, for example
PBFT, can be used in this phase.

3.3.2 Confirmation and display of votes
After the consensus is performed, some host hj ̸=i must send a confirmation of receipt to the voter.
When the voter receives the confirmation from a host hj ̸=i , the vote submission operation is completed.

After a certain bs amount of vote ciphers are received, the hosts must publicly disclose these ciphers
in a table, along with the accompanying TPK public key values. The key and cipher values cannot
be linked with each other and therefore the order of the columns must be random (see Figure 4).
The disclosure of these tables in this way is done for two reasons that seek to meet the verifiability
principle. The first is that the ciphers must be public before they are opened. Moments before the
cipher is decrypted, everyone will have a copy of the vote set. The second reason is that if the cipher
set is accompanied by a set of temporary public keys, even if in random order, it is possible for anyone
to check with the CA whether the keys are valid.

3.3.3 Phase summary
The complete sequence of actions for this phase is:
1. The voter generates I = (TPKn, TPRn);
2. The voter sends a registration message from I to CA;
3. CA sends a confirmation message to the voter;
4. The voter sends the cv message, signed with I to a host hi ;
5. The host checks with CA whether TPKn belongs to a valid identity;
6. If the answer is positive, the host sends in groupcast cv to the other hosts;
7. All other hosts hj ̸=i perform the verification of TPKn with CA;
8. At least one host hj ̸=i sends the acknowledgement to the voter and to hi ;
9. The voter waits to receive confirmation from at least one host by a fixed timeout or as a parameter

specified at election creation. If this does not occur, the voter repeats the send to a host hj ̸=i
10. hi waits to receive confirmation from at least one hj ̸=i by the specified timeout to accept the vote.

If this does not occur, the vote is discarded.
11. For any host, after a number of bs votes accepted, a table is published with a column of TPK

and a column of cv , both in random order.

3.4 Phase three: counting the votes
After timestamp t2 arrives, vote collection must be terminated. At this point, each host has already
released tables with the consensus vote figures, and all interested parties can access them. If t2
arrives and the number of votes is less than bs , the hosts release a smaller table. Following what
was proposed at the beginning of this section, after time t2, the ciphers are undone, and the winning
proposal can be extracted from the set of votes using the f w : V −→ P function defined at the time
of election creation. Therefore, the counting is not the responsibility of only one actor, the verification

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 11/15

Figure 4. Phase 2: Randomization of the voting cipher table
Source: Author.

and counting of the votes can and should be performed by multiple entities.

4 Final considerations
A proposed architecture for a distributed electronic election was presented in Section 3. The goal of
this architecture is to study the feasibility of a system with reduced central entity responsibility and
the technological requirements needed for this.

In the work by Hjálmarsson et al. (2018), the voter can retrieve his vote using an identifier, which
makes the system more adjustable. The present work has shown that the literature does not consider
this action recommendable, as it makes one of the principles of secure election completely impossible
and allows the voter to be coerced (see Section 2.1.3). It is also discussed in this paper how the vote
can be secretly stored until the time the election is over, which was not presented in Hjálmarsson
et al. (2018).

The proposal of this paper also has an advantage in protection against coercion over the architec-
ture of Hardwick et al. (2018). The author presents a system where, in order to evade coercion, the
voter may change his vote after posting. This does not guarantee voter security and goes against the
recommendation in the literature.

4.1 Problems and possible solutions
When distributing the election process, advantages are gained but new problems arise. In this section,
some of these problems are described and possible solutions discussed.

4.1.1 Malicious CA
The potentially dangerous dependence on a central entity was one of the motivations for this work.
The central entity was therefore reduced to a Certificate Authority, responsible only for managing
the identities of the participants. Even so, if the CA is compromised, the entire election can become
untrusted. If the CA is malicious and wants to benefit a specific host, the moment the host queries
the CA about the validity of a temporary public key it may return the voter’s original identity. Also,
if the host sends the tables with the non-randomized columns to CA, it can relate a table to a vote.

In this case, the threat mitigation is similar to that of a central entity in a traditional election.
Voters and parties should be guaranteed to participate in CA audit processes and all actions that
cannot compromise the identity of voters should be monitored and logs generated. More specifically,
it must be guaranteed that communication from the CA to the hosts must be only those described
in the architecture and that there will be no parallel communication channels.

One possibility is to have a distributed CA through a consensus algorithm in such a way that the
commitment of a small portion, which depends on the consensus algorithm, of the set of CAs would
not invalidate the election, similarly to what happens with a blockchain network (DZIEMBOWSKI
et al., 2015; GAŽI; KIAYIAS; ZINDROS, 2019; NAKAMOTO, 2008).

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 12/15

4.1.2 Coercivity in online election
In the presentation of the principle of Incoherence, it is said that the secrecy of voting must be
provided even outside the system. Gritzalis (2002) states that an inherent problem with electronic
voting systems where the vote can be cast over the Internet is that there is no guarantee that the
voter will not be coerced at the time of casting. That is, even if a perfect electronic system exists,
the voter can be coerced out of it.

The solution to this problem is also the same as in traditional electoral systems: a physical
structure with a voting booth that isolates the voter at the moment of casting the vote. In the
context of smaller elections, where the outcome of the election is not as impactful or the power of
coercion of the stakeholders is reduced, this issue can be relaxed. However, it is important to note
that this will always be a point of failure.

4.1.3 Consensus in two-party systems and coalitions
One of the crucial issues in distributed systems without central authority is consensus. The Practical
Byzantine Fault Tolerance (PBFT) algorithm by Castro, Liskov, et al. (1999) guarantees consensus
on up to n−33 malicious nodes, where n is the total number of nodes. In other words, for a network
to tolerate at least one malicious node using PBFT, it needs at least four nodes in the network.
Proof-of-Work in Bitcoin guarantees consensus as long as one entity does not control more than 50%
of the computational power of the network. For this algorithm, a network with two nodes is possible,
but they need to maintain a constant balance of computational power, which is highly unlikely when
the nodes are adversarial.

These limits make consensus impossible for completely bipartisan systems. Furthermore, suppose
(a completely possible scenario) that in a multi-party system the parties can make alliances so that
if a party realizes that it has no chance of winning, it will offer support to another party with better
chances. Inevitably the two parties most likely to win will form two large coalitions, reducing the
problem to a two-party system. Consensus in this case is only possible if it is guaranteed that there
will be completely impartial entities in the network.

4.1.4 Solution complexity
The use of asymmetric encryption, time-based encryption, consensus algorithms and moderately hard
functions makes understanding the architecture non-trivial. This is against the principle of Simplicity
(Section 2.1.12). On the other hand, security mechanisms are inevitably complex (STALLINGS, 2017).
This problem can be minimized by manuals and descriptive texts that present an overview of election
processes. Also, due to the inherent complexity, one possibility is to have specialists from society and
audit/comptrollership institutions acting as surrogates, just as it happens in the Brazilian electoral
system where institutions such as universities, specialists, Federal Police, Federal Prosecution Service,
National Congress, and political parties audit the electoral system.

4.2 Future work
The first step is part of the requirements listed in Section 2.1. To meet the principles of Transparency
(Section 2.1.10), Security (Section 2.1.13), and Verifiability (Section 2.1.11), it is necessary that
professionals in the field and other researchers perform critical and independent analysis of this work,
uncovering possible unmapped flaws and validating processes and technologies.

The second step is to implement a system based on the proposed architecture and conduct per-
formance and security analyses. Other researchers should also audit the implementation. Also in this
implementation, the feasibility of the time-based encryption proposed by Liu et al. (2018) should be
analyzed.

Another future work is to study to see if there is a better way to anonymize the voter. In the ideal
scenario, an identifier needs to be generated that simultaneously meets the following requirements:
• The identifier was generated from the set of valid voters, without specifying which voter;
• A voter cannot generate two identifiers.

It should be studied if it is possible to meet both requirements simultaneously.

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 13/15

5 Conclusion
More theoretical studies on the development of distributed e-voting systems should still be done before
an implementation. In particular, better solutions related to vote secrecy and incoercibility should be
proposed. Despite the division of responsibilities, the election can still be manipulated if the central
entity is malicious.

Time-based encryption presents potential as a solution for distributed vote storage, however, more
studies on feasibility and performance need to be done.

The literature on distributed consensus is already established, yet it should be noted that in
two-party systems consensus is impaired, both in more traditional solutions and in blockchain-based
consensus algorithms. Despite the potential of distributed architecture, much work still needs to be
done.

References
ARANHA, Diego F.; GRAAF, Jeroen van de. The Good, the Bad, and the Ugly: Two Decades of E-Voting in
Brazil. IEEE Security Privacy, v. 16, n. 6, p. 22–30, 2018. DOI: 10.1109/MSEC.2018.2875318.

BONEH, Dan; BOYEN, Xavier; GOH, Eu-Jin. Hierarchical identity based encryption with constant size
ciphertext. In: SPRINGER. ANNUAL International Conference on the Theory and Applications of
Cryptographic Techniques. [S.l.: s.n.], 2005. P. 440–456.

BONEH, Dan; NAOR, Moni. Timed Commitments. Advances in Cryptology — CRYPTO 2000, p. 236–254,
2000. Available from: <https://doi.org/10.1007/3-540-44598-6_15>.

CASTRO, Miguel; LISKOV, Barbara, et al. Practical byzantine fault tolerance. In: 1999. OSDI. [S.l.: s.n.],
1999. v. 99, p. 173–186.

CHEON, Jung Hee et al. Provably Secure Timed-Release Public Key Encryption. ACM Trans. Inf. Syst.
Secur., Association for Computing Machinery, New York, NY, USA, v. 11, n. 2, May 2008. ISSN 1094-9224.
DOI: 10.1145/1330332.1330336. Available from: <https://doi.org/10.1145/1330332.1330336>.

DACHSELT, F.; SCHWARZ, W. Chaos and cryptography. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, v. 48, n. 12, p. 1498–1509, 2001. DOI: 10.1109/TCSI.2001.972857.

DWORK, Cynthia; NAOR, Moni. Pricing via Processing or Combatting Junk Mail. Advances in Cryptology -
CRYPT0 ’92, p. 139–147, 1993. Available from: <https://doi.org/10.1007/3-540-48071-4_10>.

DZIEMBOWSKI, Stefan et al. Proofs of space. In: SPRINGER. ANNUAL Cryptology Conference. [S.l.: s.n.],
2015. P. 585–605.

GARG, Sanjam et al. Witness encryption and its applications. In: PROCEEDINGS of the forty-fifth annual
ACM symposium on Theory of computing. [S.l.: s.n.], 2013. P. 467–476.

GAŽI, Peter; KIAYIAS, Aggelos; ZINDROS, Dionysis. Proof-of-stake sidechains. In: IEEE. 2019 IEEE
Symposium on Security and Privacy (SP). [S.l.: s.n.], 2019. P. 139–156.

GRITZALIS, Dimitris A. Principles and requirements for a secure e-voting system. Computers & Security,
Elsevier, v. 21, p. 539–556, 2002. Available from: <https://doi.org/10.1016/S0167-4048(02)01014-3>.

HARDWICK, Freya Sheer et al. E-Voting With Blockchain: An E-Voting Protocol with Decentralisation and
Voter Privacy. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). [S.l.]: IEEE, 2018. Available from:
<https://doi.org/10.1109/Cybermatics_2018.2018.00262>.

HJÁLMARSSON, Friorik et al. Blockchain-Based E-Voting System. In: IEEE 11th International Conference
on Cloud Computing(CLOUD). [S.l.]: IEE, 2018. Available from:
<https://doi.org/10.1109/CLOUD.2018.00151>.

KATZ, Jonathan; LINDELL, Yehuda. Introduction to modern cryptography. [S.l.]: CRC press, 2020.

KSHEMKALYANI, Ajay D.; SINGHAL, Mukesh. Distributed Computing: Principles, Algorithms, and
Systems. 1. ed. USA: Cambridge University Press, 2008. ISBN 0521876346.

LAMPORT, Leslie. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM, v. 21, p. 558–565, 1978. Available from: <https://doi.org/10.1007/s10623-018-0461-x>.

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 14/15

https://doi.org/10.1109/MSEC.2018.2875318
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1145/1330332.1330336
https://doi.org/10.1145/1330332.1330336
https://doi.org/10.1109/TCSI.2001.972857
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1016/S0167-4048(02)01014-3
https://doi.org/10.1109/Cybermatics_2018.2018.00262
https://doi.org/10.1109/CLOUD.2018.00151
https://doi.org/10.1007/s10623-018-0461-x

LAMPORT, Leslie. The weak Byzantine generals problem. Journal of the ACM (JACM), ACM New York,
NY, USA, v. 30, n. 3, p. 668–676, 1983.

LAUER, Thomas W. The risk of e-voting. Electronic Journal of E-government, Citeseer, v. 2, n. 3,
p. 177–186, 2004.

LIU, Jia et al. How to build time-lock encryption. Designs, Codes and Cryptography, v. 86, p. 2549–2586,
2018. Available from: <https://doi.org/10.1007/s10623-018-0461-x>.

NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. Available from:
<https://bitcoin.org/bitcoin.pdf>.

PHILLIPS, Deborah M.; SPAKOVSKY, Hans A. von. Gauging the Risks of Internet Elections.
Communications of the ACM, ACM, v. 44, p. 73–85, 2001. Available from:
<https://dl.acm.org/doi/10.1145/357489.357512>.

RIVEST, Ronald L; SHAMIR, Adi; WAGNER, David A. Time-lock puzzles and timed-release crypto.
Massachusetts Institute of Technology. Laboratory for Computer Science, 1996.

SAMPIGETHAYA, Krishna; POOVENDRAN, Radha. A framework and taxonomy for comparison of
electronic voting schemes. Computers & Security, Elsevier, v. 25, p. 137–153, 2006.

SPRINGALL, Drew et al. Security Analysis of the Estonian Internet Voting System. In: PROCEEDINGS of
the 2014 ACM SIGSAC Conference on Computer and Communications Security. Scottsdale, Arizona, USA:
Association for Computing Machinery, 2014. (CCS ’14), p. 703–715. ISBN 9781450329576. DOI:
10.1145/2660267.2660315. Available from: <https://doi.org/10.1145/2660267.2660315>.

STALLINGS, Willian. Cryptography and Network Security: Principles and Practice. Global Edition.
Edinburgh Gate, Harlow, Essex CM20 2JE, England: Pearson, 2017.

UNRUH, Dominique. Revocable quantum timed-release encryption. Journal of the ACM (JACM), ACM New
York, NY, USA, v. 62, n. 6, p. 1–76, 2015.

ZHENG, Zibin et al. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends.
IEEE International Congress on Big Data (BigData Congress), p. 557–564, 2017. Available from:
<https://doi.org/10.1109/BigDataCongress.2017.85>.

ZISSIS, Dimitrios; LEKKAS, Dimitrios. Securing e-Government and e-Voting with an open cloud computing
architecture. Government Information Quarterly, Elsevier, v. 28, p. 239–251, 2011. Available from:
<https://doi.org/10.1016/j.giq.2010.05.010>.

Author contributions
João Marcos Soares: Conceptualization, Data curation, Investigation, Methodology, Validation, Writing – original
draft, Writing – review and editing; Rafael Oliveira Vasconcelos: Methodology, Project administration, Supervision,
Resources, Validation, Writing – original draft, Writing – review and editing.

Soares and Vasconcelos | Texto Livre | Belo Horizonte | v.16 | e42204 | 2023 15/15

https://doi.org/10.1007/s10623-018-0461-x
https://bitcoin.org/bitcoin.pdf
https://dl.acm.org/doi/10.1145/357489.357512
https://doi.org/10.1145/2660267.2660315
https://doi.org/10.1145/2660267.2660315
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1016/j.giq.2010.05.010

