

Revista Ingeniería Agrícola

ISSN: 2306-1545 ISSN: 2227-8761

Instituto de Investigaciones de Ingeniería Agrícola

Santander Mendoza, Sol; Gómez Jorrín, Luis; Durán Alvarez, José Luis Validación del método de Evaluación Visual de Suelos en Ferralíticos Rojos cubanos Revista Ingeniería Agrícola, vol. 13, núm. 2, e04, 2023, Abril-Junio Instituto de Investigaciones de Ingeniería Agrícola

DOI: https://doi.org/2284/v13n2e04

Disponible en: https://www.redalyc.org/articulo.oa?id=586275348004

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

SUELO

https://cu-id.com/2284/v13n2e04

Validación del método de Evaluación Visual de Suelos en Ferralíticos Rojos cubanos

Validation of the Method of Visual Evaluation of Soils in Cuban Red Ferralitic

MSc. Sol Santander Mendoza^{II}, Dr.C. Luis Gómez Jorrín^I, Ing. José Luis Durán Alvarez^{II} †.

RESUMEN. Los suelos ferralíticos de la llanura Habana-Matanzas presentan evidencias de procesos de degradación de origen natural o antropogénico, y sus efectos se encuentran entre las principales limitaciones de la actividad agrícola en esta área. En este sentido, se ha identificado la necesidad de desarrollar e implementar métodos que permitan la evaluación de la condición física del suelo de manera rápida, económica, sencilla y extensible a técnicos y productores. La Evaluación Visual de Suelos (EVS) constituye una herramienta acorde a dichos requisitos que ha sido aplicada extensivamente en suelos templados, en diferentes sistemas de producción. En este trabajo se lleva a cabo su aplicación en dos localidades con suelos ferralíticos en las provincias de Artemisa y Mayabeque, con cuatro usos diferentes del mismo; determinando también diversas variables físicas (densidad aparente, porosidad, textura, agregación) así como su descripción macromorfologica con la finalidad de validar este método en dicho agrupamiento de suelos mediante el cálculo de las correlaciones entre los métodos cuantitativos y la EVS, de tipo cualitativo.

Palabras clave: conservación de suelos, degradación física de suelos, indicadores físicos.

ABSTRACT. The Ferralitic Soils of the Havana-Matanzas plain present evidence of degradation processes of natural or anthropogenic origin, and their effects are among the main limitations of agricultural activity in this area. In this sense, the need to develop and implement methods that allow the evaluation of the physical condition of the soil in a fast, economical, simple and extensible way to technicians and producers has been identified. The Visual Evaluation of Soils (EVS) constitutes a tool according to these requirements that has been extensively applied in temperate soils, in different production systems. In this work its application is carried out in two locations with Ferralitic soils in the provinces of Artemisa and Mayabeque, with four different uses of it; also determining various physical variables (bulk density, porosity, texture, aggregation) as well as their macromorphological description in order to validate this method in said grouping of soils by calculating the correlations between the quantitative methods and the EVS, of a qualitative type.

Keywords: Conservation of Soils, Physical Degradation of Soils, Physical Indicators.

INTRODUCCIÓN

El proceso de degradación antropogénico al que han sido sometidos los suelos Ferralíticos Rojos de la llanura Habana – Matanzas es bien conocido según Hernández et al. (2006); Hernández-Jiménez et al. (2013) y Morell-Planes & Hernández-Jiménez (2008) y constituye un problema fundamental de la agricultura cubana, ya que dichos suelos presentan altos ni-

veles de fertilidad y su cercanía a la ciudad de La Habana los convierten en recursos claves en la producción de alimentos.

En particular, la degradación de los suelos Rojos se caracteriza por la disminución de la materia orgánica, el incremento del pH en agua y el aumento de los valores de compactación en capas especificas según Hernández-Jiménez

Recibido: 15/09/2022. **Aprobado:** 13/03/2023.

^I Instituto de Suelos, Boyeros, La Habana, Cuba.

II Universidad Agraria de La Habana, San José de las Lajas, Mayabeque, Cuba.

¹ Autora para correspondencia: Sol Santander Mendoza, e-mail: sol.santander@isuelos.cu ORCID iD: https://orcid.org/0000-0002-8614-1247

Santander-Mendoza et al.: Validación del método de Evaluación Visual de suelos en Ferralíticos Rojos cubanos

et al. (2013), fenómenos relacionados principalmente con la aplicación de tecnologías de preparación, labranza y fertilización inadecuadas (Hernández-Jiménez et al., 2013; Santander-Mendoza et al., 2021).

Esta situación hace necesaria la evaluación y monitoreo constante de estos suelos de acuerdo con Lebedeva et al. (2005), mediante métodos sencillos y económicos, que puedan ser fácilmente aplicables por productores y técnicos. En este sentido, las observaciones visuales de la estructura del suelo *in situ* pueden ofrecer información semi- cuantitativa, de manera inmediata, fácilmente replicable y con bajo costo (Emmet-Booth et al., 2016; Guimarães et al., 2017).

En particular, el sistema Evaluación Visual de Suelos (EVS) Shepherd et al. (2008) propuesto por la FAO, permite estimar la calidad del recurso edáfico de manera rápida y sencilla, mediante resultados de fácil interpretación. Este sistema, emplea características observables en el suelo, estandarizadas en una serie de manuales para cada tipo de sistema de producción (hortalizas, cereales, pasturas, cultivos anuales).

No obstante, la aplicación de esta metodología en países de clima tropical ha sido limitada según Leônia de Araújo et al. (2013); Pulido-Moncada et al. (2014), por lo que el siguiente trabajo tiene como objetivo fundamental la aplicación de este sistema de evaluación en suelos Ferralíticos Rojos cubanos, a fin de lograr su validación mediante la comparación de los resultados obtenidos con la descripción de las características macromorfológicas del suelo y las determinaciones de los indicadores físicos en el laboratorio mediante las normas técnicas ya establecidas.

MATERIALES Y METODOS

El trabajo fue realizado en dos localidades: i) la Finca "El Mamey" (municipio San José de las Lajas, Provincia Mayabeque) y ii) la Estación Experimental del Instituto de Ingenería Agrícola (Iagric) "Pulido" (municipio Alquízar, Provincia Artemisa). La primera de ellas, está dedicada a cultivos de hortalizas, viandas y flores, mientras que la segunda posee áreas con cultivo de maíz (*Zea mays*) y frijol (*Phaseolus vulgaris*), y manejo agroforestal con cedro (*Cedrela odorata*) y café (*Coffea arabiga*). Ambos suelos corresponden a la llanura Habana—Matanzas, de origen cársico, con clima tropical subhúmedo (Figuras 1, 2 y 3).

FIGURA 1. Finca "El Mamey". Area de siembra de gladiolo (Gladiolus hybridus). Municipio San José de las Lajas, provincia Mayabeque.

En el primer caso, se escogieron cinco puntos de muestreo en función de la topografía del terreno, que presenta dos pendientes ligeras (5% y 8%). En el segundo, se realizó la evaluación en dos áreas con usos contrastantes: un área bajo manejo agroforestal (cedro y café) y otra con siembra mecanizada de maíz y frijol.

FIGURA 2. Estación Experimental "Pulido". Área bajo manejo agroforestal (Cedrela odorata y Coffea arabiga). Municipio Alquízar, provincia Artemisa.

Ingeniería Agrícola, ISSN-2306-1545, E-ISSN-2227-8761, Vol. 13, No. 2 (abril-mayo-junio pp. 21-28), 2023

En cada uno de ellos se realizó la excavación de una microcalicata (≈50 cm) para evaluar las propiedades macromorfológicas (color, estructura, textura), mediante observación y comparación con la Tabla Munsell® y método organoléptico. Se tomaron muestras no perturbadas para humedad NC: 110: (2010), densidad aparente ISO 11272: (2017), porosidad total, capilar y de aireación NC: 1045: (2014) y muestras perturbadas para determinar materia orgánica (NC: 51: (1999), composición mecánica (Bouyucos) y porcentaje de agregación (NC 1044: 2014).

FIGURA 3. Estación Experimental "Pulido". Área de siembra mecanizada frijol-maíz. Municipio Alquízar, provincia Artemisa.

Posteriormente, se procedió a la aplicación del sistema de Evaluación Visual de Suelo, donde se realizó la observación directa de diez (10) variables en el suelo: textura, estructura y consistencia, porosidad, color, moteados, lombrices, profundidad de las raíces, encharcamiento superficial, costar y cobertura superficial y erosión del suelo; a la que se asignan un valor numérico determinado de acuerdo a la guía publicada por Shepherd et al. (2008), del menos deseable al más deseable (Figura 4). Al sumarlos, se obtiene un valor global, denominado "Índice de calidad" que permite resumir la condición del suelo y realizar comparaciones. A continuación, se muestra la hoja propuesta para realizar dichos cálculos y un ejemplo de evaluación de una de las variables.

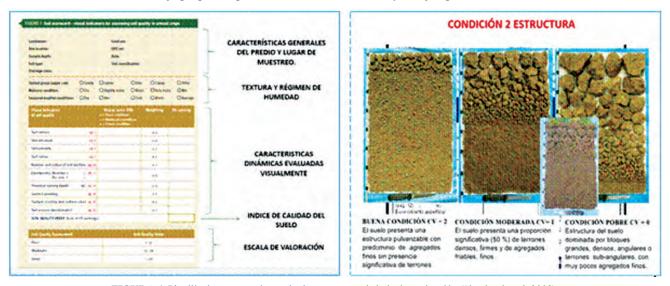


FIGURA 4. Planilla de resumen de resultados y muestra de hoja de evaluación (Shepherd et al. 2008).

Una vez obtenidos estos resultados, se procedió a calcular las correlaciones estadísticas existentes entre las variables evaluadas en EVS y los indicadores físicos determinados en laboratorio, con la finalidad de conocer los valores de los coeficientes de correlación lineal (R²). Para ello, se empleó el programa XLSTAT en su versión 2010.

RESULTADOS Y DISCUSIÓN

Observación de Microcalicatas

En cada punto muestral se excavó una microcalicata, donde se distinguieron dos capas. El resumen de los resultados obtenidos se muestra en la Tabla 1:

TABLA 1. Aspectos macromorfológicos en los puntos evaluados

Lugar	Area	Textura	Color	Estructura	Otras características
Finca "El	Area de cultivo de flores.	Arcillosa	7.5 YR 3/4	Granular, moderada.	Hidromorfía acentuada a los 17 cm presencia de moteados de color amarillo, naranja y algunos de color gris, $\approx 10\%$).
Mamey"			(húmedo)		Presencia de capa compactada (piso de arado) a los 24 cm. Presencia de moteados.
	Area de cultivos varios.	Arcillosa	10 R 3/4	Blocosa.	Presencia de capa compactada (piso de arado) a los 20 cm.
			(húmedo)		Presencia de perdigones de color negro, ocupando ≈5% de la masa. Presencia de caras deslizantes ("slikensides")
Estación Experimental	Area de Bosque	Arcillosa	2.5 YR 3/6 en seco 2.5 YR 3/4 en húmedo	Granular de mediana a fina.	Escasas raíces de diámetro fino (pasto estrella) de crecimiento predominantemente horizontal. Se evidencia compactación.Pequeñas caras deslizantes ("slinckensides") desde los 15 cm
"Pulido"	Area cultivada con frijol (labranza y riego mecanizada)		2.5 YR 3/6 rojo oscuro	Granular fina (5 – 10 mm) hasta los 10 cm, luego granular media (gruesa (20 – 50 mm)	Capa compactada de origen agrogénico entre los 10 a 18cm. Presencia de caras de deslizamiento (slinckensides"). Sin evidencia de actividades

En todas las microcalicatas se evidencia el proceso de ferralitización, evidente en los tonos rojizos del suelo. Estos se relacionan con procesos de evolución de los materiales parentales bajo altas temperaturas y elevada humedad, con rápida incorporación de materia orgánica y alta liberación de Fe⁺³ de las rocas (Ovalles, 2003). En tres de los cuatros suelos evaluados se observó estructura granular, con tamaños variables, que corresponde al predominio de la arcilla sobre la materia orgánica en el proceso de floculación. Por su parte, uno de los suelos de la finca "El Mamey" presenta estructura blocosa, la cual dificulta la permeabilidad del agua a través del mismo.

Por otra parte, se observaron capas compactadas, conocidas como "pisos de arado". Las mismas están acompañadas de moteados de color naranja y gris, que evidencian la deficiencia de drenaje por efecto de la pérdida de espacios porosos. De acuerdo a Hernández-Jiménez et al. (2013) tales características son evidencia de la degradación en los suelos ferralíticos rojos como consecuencia de un manejo agrícola inadecuado. Según estos autores, la formación de pisos de arado es resultado de la destrucción de la estructura del suelo y el aumento del contenido de arcillas dispersas en el horizonte superior.

En este comportamiento, encontramos que en la actualidad, la génesis de muchos suelos está regulada más por los efectos humanos que por los factores formadores naturales. Tal es la magnitud de tales transformaciones que algunos autores hablan de, evolución agrogénica de los suelos (Lebedeva et al., 2005).

Evaluación Visual de Suelos

La Tabla 2 muestra una variación significativa en los valores calculados para los índices de calidad de la Finca "El Mamey" entre el área de siembra de flores (P1, P2, P3) y el área de cultivos varios, siendo más elevado en la primera de ellas. Las mayores variaciones se encontraron en los parámetros "textura", "estructura", "porosidad" y "color", lo que asocia la disminución de la calidad de los suelos con la degradación

de las condiciones físicas y la disminución del contenido de materia orgánica. Por otra parte, existe una variación menos pronunciada entre los valores de los índices de calidad correspondientes a la misma área, que puede deberse a que los puntos de muestreo se encuentran distribuidos a lo largo de ligeras pendientes en ambos casos.

TABLA 2. Evaluación Visual de Suelos. Finca "El Mamey"

		Are: siem flore	bra d	Area de cultivos varios		
Indicador	Factor de ponderación	P1	P2	Р3	P1	P2
Textura	X 3	1,5	4,5	4,5	1,5	1,5
Estructura	X 3	3	3	0	6	0
Porosidad	X 3	3	6	0	0	0
Color	X 2	4	4	4	2	2
Moteados	X 2	2	4	4	2	4
Lombrices	X 3	0	0	0	0	0
Profundidad radical	X 3	1,5	1,5	1,5	0	1,5
Costras superficiales y cobertura	X 2	0	0	0	0	0
Escorrentía	X 1	2	2	2	2	2
Erosión	X 2	4	4	4	4	4
INDICE DE CALIDAD		21	29	20	17,5	15

En cuanto a los resultados expresados en la Tabla 3, correspondientes a la Estación Experimental "Pulido", encontramos también que existe una marcada diferencia entre el área sometida a manejo agroforestal y el área bajo siembra mecanizada, encontrándose un valor mayor de índice de calidad en la primera de ellas. No obstante, a diferencia del caso anterior, en este caso

Ingeniería Agrícola, ISSN-2306-1545, E-ISSN-2227-8761, Vol. 13, No. 2 (abril-mayo-junio pp. 21-28), 2023

no se muestran diferencias entre los valores correspondientes a una misma área, lo que puede deberse a que estos se encuentran distribuidos de manera uniforme en un área con la misma pendiente.

Tal como se expresó en el capítulo correspondiente a materiales y métodos, en la Evaluación Visual de Suelos se consideran diez indicadores observables. Con la excepción de la "textura", los nueve restantes son muy dinámicos, así que permiten registrar los cambios en el suelo, efecto de su manejo.

TABLA 3. Evaluación Visual de Suelos. Estación Experimental "Pulido"

		Area bajo manejo agroforestal				Area bajo siembra mecanizada			
Indicador	Factor de ponderación	P1	P2	Р3	P4	P1	P2	Р3	P4
Textura	X 3	3	3	3	3	1,5	1,5	1,5	1,5
Estructura	X 3	3	3	3	3	0	0	0	0
Porosidad	X 3	3	3	3	3	3	3	0	0
Color	X 2	4	4	4	4	4	4	4	4
Moteados	X 2	2	2	2	2	4	4	4	4
Lombrices	X 3	0	0	0	0	0	0	0	0
Profundidad radical	X 3	6	6	6	6	4,5	4,5	4,5	4,5
Costras superficiales y cobertura	X 2	3	3	3	3	3	3	3	3
Escorrentía	X 1	2	2	2	2	2	2	2	2
Erosión	X 2	4	4	4	4	2	2	2	2
INDICE DE CALIDAD		30	30	30	30	24	24	24	24

En todos los puntos muestrales, la pérdida de "estructura" está relacionada con la disminución de la materia orgánica, la cual actúa como el principal agente cementante en la formación de los agregados. Según De Orellana (2009) la capacidad de formación de los complejos órgano-minerales es bastante reducida en los suelos ferralíticos rojos, lo cual provoca que las fracciones húmicas se degraden rápidamente, debilitándose aún más con un laboreo continuo e intensivo que acelera la oxidación de los residuos orgánicos. Por estas razones la capacidad de las partículas < 0,002 mm para formar microagregados estables de primer orden es muy limitada, incrementándose la dispersión de las arcillas.

En relación a la "porosidad", sus menores valores se encuentran en los puntos cuya calidad estructural es menor, de tal modo que queda evidenciada como la disminución de la agregación, afecta a ambas propiedades, estrechamente relacionadas, puesto que la pérdida de estructura disminuye los espacios porosos. Cabe destacar que los poros evaluados mediante esta metodología corresponden a los observables a simple vista o mediante el empleo de una lupa 10X.

En cuanto al "color", este método evalúa mediante la comparación de una zona no (o poco) perturbada y la zona en cuestión, refiriéndose a un aclaramiento del mismo por efecto del lavado de nutrientes o descenso del contenido de materia orgánica. En este caso, en la Finca "El Mamey" no hubo variaciones muy notorias en los puntos correspondientes al área 1 (1.1, 1.2 y 1.3), mientras que en el área 2 (2.1 y 2.2) la variación observada fue leve, correspondiendo a la calificación de "moderado". Por su parte, en la Estación Experimental "Pulido" no se encontró diferencia significativa entre ambas áreas, lo cual puede deberse a la incorporación

de residuos de cosecha que se lleva a cabo como estrategia de manejo en el área cultivada.

Muy asociado a este indicador, se encuentra el siguiente, correspondiente a la presencia o no de "moteados". Estas manchas de color diferente al de la matriz del suelo, se encontraron en la Finca "El Mamey" en los puntos muestrales 1.1 y 1.3 en un porcentaje que se encuentra entre 10% y 25%, lo cual corresponde a la condición "moderada". Por su parte, en la Estación Experimental "Pulido", los moteados se presentan sólo en el área bajo manejo agrícola. Dichos moteados, tal como se explicó con anterioridad, responden a la oxidación consecuencia de las deficiencias locales del drenaje, generalmente como consecuencia de la compactación. De acuerdo a Shepherd et al. (2008) los moteados constituyen también una "alerta temprana" a la declinación de la estructura del suelo debido a la sobre explotación o el laboreo intensivo.

El siguiente indicador intenta resaltar la importancia de la biota del suelo, en relación al taxón más destacado de la macrobiota: las lombrices de tierra. En este caso, resulta muy resaltante observar que sólo en el área bajo manejo agroforestal de la Estación Experimental "Pulido" se observó la presencia de estos organismos. Es conocido que tanto la magnitud como la diversidad de la macrofauna edáfica está relacionada con los atributos físicos y químicos del suelo, que a la vez manifiestan la productividad del ecosistema. Las lombrices de tierra, que, por ser de cuerpo blando y limitada movilidad, son afectadas por factores como el clima, la alimentación, la humedad, la textura y las condiciones químicas del suelo; por lo que manifiestan cambios de composición y abundancia en una corta escala de tiempo (Cabrera-Dávila et al., 2022). Las

lombrices de tierra tienden a prevalecer en ambientes edáficos húmedos, no compactados y con alto contenido de materia orgánica (Cabrera et al., 2011).

En cuanto a la profundidad radical, en las áreas bajo siembra esta fue determinada empleando las pocas plantas arvenses que permanecían en el campo tras el laboreo, encontrándose un valor "moderado" para la misma. El mismo responde principalmente a la existencia de las capas compactadas de origen agrogénico, que actúan como limitación al desarrollo de las raíces. El área bajo manejo agroforestal en la Estación Experimental "Pulido", sin labranza desde hace 30 años presenta valores más elevados de este indicador.

Por otra parte; en la Finca "El Mamey", los tres indicadores restantes: existencia de cobertura vegetal o costras superficiales, escorrentía y signos de erosión superficial, mostraron valores moderados, iguales para todos los puntos de muestreo. En el primer caso, debido a que el suelo de toda la parcela se encontraba descubierto al momento de la evaluación, un período intercosecha. La escorrentía y la erosión superficial fueron moderados en ambos casos debido a la escasa pendiente de la misma. En la Estación Experimental "Pulido", también se presentaron valores moderados, con signos superficiales de erosión más pronunciados en el área bajo manejo agroforestal.

Los valores de los Índices de Calidad fueron obtenidos tras ponderar los valores de los indicadores y proceder a sumarlos. Observamos que el área bajo manejo agroforestal de la Estación Experimental "Pulido" fue el que obtuvo el índice de calidad más elevado, seguido del área de siembra de flores en la Finca "El Mamey", y el área bajo cultivos varios de ésta finca con el menor valor. La estructura, la porosidad y la existencia de moteados se evidencian como los indicadores que diferencian entre un punto y otro, lo que revela a los procesos de compactación, tanto pedológica como agrogénica como el factor fundamental de la degradación de los suelos ferralíticos rojos.

Es importante mencionar que el método de evaluación visual (EVS) fue coherente con los resultados obtenidos mediante la observación de las microcalicatas en todos los casos.

Resultados de Indicadores Físico-Químicos

Al ser evaluados en el laboratorio, los suelos de la finca "El Mamey" (Tabla 4) presentan valores elevados de densidad aparente, con compactación de ligera a moderada, así como bajos valores de materia orgánica y agregación, con valores acordes a los expresados por Morell-Planes & Hernández-Jiménez (2008) como normales, para este tipo de suelo. Por su parte, en la Estación Experimental "Pulido" (Tabla 5) el área bajo manejo agroforestal también presenta compactación moderada mientras que el área bajo manejo agrícola evidencia el efecto de la labranza en la disminución de los valores de la densidad aparente. En general, la materia orgánica presenta valores más elevados que en la Finca "El Mamey, siendo superiores en el área bajo manejo agroforestal que en el área bajo manejo agrícola. El porcentaje de agregación siguió un comportamiento similar.

Area	Muestra	Dv (kg/ m3)	%Pt	%Pc	%Pnc	%MO	%Ag
Area de cultivo	P1	1,37	48,31	26,82	21,49	1,41	33,24
de flores	P2	1,25	52,64	31,00	21,64	1,70	36,70
	P3	1,26	52,26	36,40	15,86	1,84	38,25
Area de cultivos	P1	1,34	49,24	19,39	29,85	1,81	34,77
varios	P2	1,45	45,09	19,20	25,89	1,51	32,47

TABLA 4. Indicadores Físico - Químicos. Finca "El Mamey"

TABLA 5. Indicadores Físico - Químicos. Estación Experimental "Pulido"

Area	Muestra	Dv (kg/ m³)	%Pt	%Pc	%Pnc	%MO	%Ag
Area bajo manejo agroforestal	P1	1,32	50,13	9,30	40,82	3,16	64,67
	P2	1,31	50,48	7,95	42,52	3,58	73,98
	P3	1,34	49,51	9,16	40,35	2,95	62,93
	P4	1,38	48,01	7,76	7,76	3,22	78,18
	P1	1,22	54,06	13,83	40,21	2,68	48,71
Area bajo siembra mecanizada	P2	1,22	53,89	13,47	40,41	2,94	50,77
	Р3	1,21	54,18	13,89	40,29	2,87	43,16
	P4	1,22	53,96	13,67	40,29	2,99	54,31

Correlaciones de los indicadores de Evaluación Visual de Suelos (EVS) y los Indicadores Fisico-Químicos

A continuación, en la Figura 5 se muestran las correlaciones lineales existentes entre los indicadores "estructura", "porosidad", "moteados", "profundidad de raíz" y "color" y las variables físicas porcentaje de agregación, porosidad total, porosidad capilar, densidad volumétrica y porcentaje de materia orgánica, respectivamente.

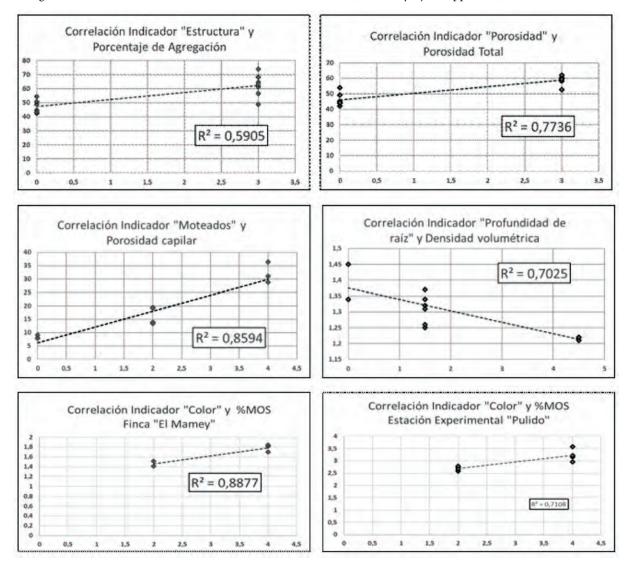


FIGURA 5. Correlaciones lineales entre algunos indicadores del sistema Evaluación Visual de Suelos (EVS) y propiedades físicas relacionadas determinadas en el laboratorio.

En los cinco casos el coeficiente de correlación lineal (r²) es superior a 0,59, siendo éste el menor valor (correlación "estructura" y porcentaje de agregación) y 0,86 el mayor (correlación "moteados" y porosidad capilar). Tales valores, corresponden a una elevada asociación entre los indicadores del sistema de Evaluación Visual (EVS), de tipo cualitativo y donde se emplea una escala ordinal, con las variables físicas determinadas en el laboratorio, de tipo cuantitativo y una escala continua. Tales resultados coinciden con los obtenidos por Pulido-Moncada et al. (2014) en suelos venezolanos y Guimarães et al. (2017) en Brasil, así como por Sonneveld et al. (2014) en suelos de diversas localidades europeas.

Como puede verse, los resultados encontrados sugieren que el sistema de Evaluación Visual de Suelos (EVS) según Shepherd et al. (2008), puede ser empleado como alternativa rápida, sencilla, económica y altamente replicable para la evaluación de la condición física de los suelos ferralíticos rojos cubanos, ya que existe una alta correlación entre los valores obtenidos en las determinaciones analíticas en el laboratorio y los provenientes de la aplicación de la metodología EVS, los

cuales coinciden además, con las observaciones macromorfológicas en las calicatas.

CONCLUSIONES

Los resultados encontrados muestran la existencia de correlaciones altas entre los indicadores visuales (cualitativos) y los valores de propiedades físicas (cuantitativas) relacionadas, lo cual favorece la validación del método de Evaluación Visual de Suelos, y su uso como una estrategia de monitoreo del estado físico de los suelos *in situ*, de fácil introducción entre productores líderes y personal técnico. Para ello, es necesario extender este proceso de validación a otros escenarios, con representación de la diversidad de suelos de la zona e incluir otras propiedades del suelo que puedan ser cuantificadas, con la finalidad de establecer correlaciones con otros indicadores del método EVS. Se requieren investigaciones posteriores en relación a la influencia de la textura, procedimientos de muestreo y una mayor integralidad en la evaluación de la estructura.

REFERENCIAS BIBLIOGRÁFICAS

- Cabrera, G., Robaina, N., & Ponce de León, D. (2011). Riqueza y abundancia de la macrofauna edáfica en cuatro usos de la tierra en las provincias de Artemisa y Mayabeque, Cuba. *Pastos y forrajes*, 34(3), 313-330, Publisher: EEPFIH 2007, ISSN: 0864-0394.
- Cabrera-Dávila, G. de la C., Sánchez-Rendón, J. A., & Ponce de León-Lima, D. (2022). Macrofauna edáfica: Composición, variación y utilización como bioindicador según el impacto del uso y calidad del suelo. *Acta Botánica Cubana*, 221, ISSN: 2519-7754.
- De Orellana, J. (2009). La estructura en suelos de tierra fina. FAVE: Sección Ciencias Agrarias, 8(2), 61-109, Publisher: Universidad Nacional del Litoral, ISSN 1666-7719, e-ISSN: 2346-9129:
- Emmet-Booth, J., Forristal, P., Fenton, O., Ball, B., & Holden, N. (2016). A review of visual soil evaluation techniques for soil structure. *Soil Use and Management*, 32(4), 623-634, Publisher: Wiley Online Library, ISSN: 0266-0032,ISSN (Online): 1475-2743.
- Guimarães, R. M. L., Lamandé, M., Munkholm, L. J., Ball, B. C., & Keller, T. (2017). Opportunities and future directions for visual soil evaluation methods in soil structure research. *Soil and Tillage Research*, 173, 104-113, Publisher: Elsevier, ISSN: 0167-1987.
- Hernández, A., Morell, F., Morales, M., Borges, Y., & Ascanio, O. (2006). Cambios globales en los suelos Ferralíticos Rojos Lixiviados (Nitisoles ferrálicos, ródicos, éutricos) de Cuba. *Cultivos Tropicales*, 4087(2), 41-50, ISSN-0258-5936, e-ISSN: 1819-4087.
- Hernández-Jiménez, A., Cabrera-Rodríguez, A., Borges-Benítez, Y., Vargas-Blandino, D., Bernal-Fundora, A., Morales-Díaz, M., & Ascanio-García, M. O. (2013). Degradación de los suelos Ferralíticos Rojos Lixiviados y sus indicadores de la Llanura Roja de La Habana. *Cultivos Tropicales*, 34(3), 45-51, Publisher: Ediciones INCA, ISSN 1819-4087, e-ISSN: 0258-5936.
- ISO 11272: 2017. (2017). Soil quality—Determination of dry bulk density [ISO-NC]. International Standard Organization (ISO), Oficina Nacional de Normalización, La Habana, Cuba, Publisher: Comité Técnico de Normalización.
- Lebedeva, I., Tonkonogov, V., & Gerasimova, M. (2005). Anthropogenic pedogenesis and the new classification system of Russian soils. *Eurasian Soil Science C/C of Pochvovedenie*, 38(10), 1026, Publisher: Scripta Technica, Inc., ISSN: 1064-2293, e-ISSN: 1556-195X.
- Leônia de Araújo, A., Teixeira de Oliveira, R., Osório-Ferreira, T., Espíndola-Romero, R., & Senna de Oliveira, T. (2013). Evaluation of soil structure using participatory methods in the semiarid region of Brazil. *Revista Ciência Agronômica*, 44, 411-418, Publisher: SciELO Brasil, ISSN 1806-6690, e-ISSN: 0045-6888.
- Morell-Planes, F., & Hernández-Jiménez, A. (2008). Degradación de las propiedades agrobiológicas de los suelos Ferralíticos rojos lixiviados por la influencia antrópica y su respuesta agroproductiva al mejoramiento. *Agronomía Tropical*, 58(4), 33-343, Publisher: Instituto Nacional de Investigaciones Agrícolas (INIA), ISSN: 0002-192X.
- NC: 51: 1999. (1999). Calidad del suelo. Análisis químico. Determinación del porciento de materia orgánica [Norma cubana]. Oficina Nacional de Normalización, La Habana, Cuba, Publisher: Comité Técnico de Normalización.
- NC: 110: 2010. (2010). Calidad del suelo. Determinación de la humedad [Norma cubana]. Oficina Nacional de Normalización, La Habana, Cuba, Publisher: Comité Técnico de Normalización.
- NC 1044: 2014. (2014). Calidad del Suelo. Determinación de la estabilidad estructural. Oficina Nacional de Normalización, La Habana, Cuba, Publisher: Comité Técnico de Normalización.
- NC: 1045: 2014. (2014). Calidad del Suelo. Determinación de la porosidad [Norma cubana]. Oficina Nacional de Normalización, La Habana, Cuba, Publisher: Comité Técnico de Normalización.
- Ovalles, F. (2003). El Color del Suelo: Definiciones e interpretación. Revista Digital del Centro Nacional de Investigaciones Agropecuarias de Venezuela, CENIAP Hoy, 3, 12-21, ISSN: 1690-4117.
- Pulido-Moncada, M., Helwig-Penning, L., Timm, L. C., Gabriels, D., & Cornelis, W. M. (2014). Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land uses. *Soil and Tillage Research*, *140*, 20-28, Publisher: Elsevier, ISSN: 1671987.
- Santander-Mendoza, S. D., Falcón-Acosta, M. del C., Acevedo-Darias, M., & Durán-Álvarez, J. L. (2021). Degradación de estructura en un suelo agrogénico: Análisis de factores incidentes, medidas de conservación asociadas. *Revista Ciencias Técnicas Agropecuarias*, 30(4), 21-31, Publisher: 1986, Universidad Agraria de La Habana, ISSN: 1010-2760, e-ISSN: 2071-0054.
- Shepherd, T., Stagnari, F., Pisante, M., & Benites, J. (2008). *Visual Soil Assesment (VSA): Field Guides*. FAO, Rome, Italy, ISBN 978-92-5-105937-1. Sonneveld, M., Heuvelink, G., & Moolenaar, S. (2014). Application of a visual soil examination and evaluation technique at site and farm level. *Soil use and management*, 30(2), 263-271, Publisher: Wiley Online Library, ISSN: ISSN (Online): 1475-2743, ISSN (Online): 1475-2743.

Sol Santander-Mendoza, Investigadora, Licenciada en Biología, MSc., en Agroecología, Esp. Recuperación de Suelos, Instituto de Suelos. Boyeros, La Habana, Cuba, e-mail: sol.santander@isuelos.cu ORCID iD: https://orcid.org/0000-0002-8614-1247

Luis Gómez Jorrín, Dr.C. en Ciencias Agrícolas, Lic. en Microbiología, Instituto de Suelos, Ministerio de la Agricultura (MINAG), Boyeros, La Habana, Cuba, sol.santander@isuelos.cu ORCID iD: https://orcid.org/0000-0001-6364-4004

José Luis Durán-Alvarez †, Ing. Agrónomo. Profesor Emérito Universidad Agraria de La Habana, San José de las Lajas, Mayabeque, Cuba, e-mail: sol.santan-der@isuelos.cu ORCID iD: https://orcid.org/0000-0001-6251-8348

CONTRIBUCIONES DE AUTOR:

Conceptualización: S Santander-Mendoza, Curación de datos: S Santander-Mendoza, Análisis formal: S Santander-Mendoza y LA Gómez-Jorrín. Duarte. Investigación: S Santander-Mendoza y JL Durán. Metodología:. S Santander-Mendoza y JL Durán Supervisión: S Santander-Mendoza y JL Durán. Validación: S Santander-Mendoza, JL Durán y LA Gómez-Jorrín. Redacción-borrador original: S Santander-Mendoza, JL Durán y LA Gómez-Jorrín. Redacción-revisión y edición: S Santander-Mendoza y LA Gómez-Jorrín. Los autores de este trabajo declaran no presentar conflicto de intereses.

Este artículo se encuentra sujeto a la Licencia de Reconocimiento-NoComercial de Creative Commons 4.0 Internacional (CC BY-NC 4.0).

La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.