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ABSTRACT

A study of Mersenne’s primes is carried out using the multiplicative group modulo 360 and a complete classification
is obtained by its residual classes. This allows the search for Mersenne’s primes to be classified into four subgroups
mutually exclusive (disjoint) and contributes to the ordered selection of exponents to be computationally tested.
According to this idea, Mersenne’s trapeze is presented with the purpose of giving a geometric representation for
this classification. Finally, from one of the theorems presented and proven for primes in modulo 360, a conjecture
is established that could be solved by computing.
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UNA CLASIFICACION COMPLETA DE LOS NUMEROS PRIMOS DE MERSENNE Y SUS IMPLICACIONES
PARA LA COMPUTACION

RESUMEN

Se realiza un estudio de los nimeros primos de Mersenne utilizando el grupo multiplicativo médulo 360 y se
obtiene una clasificacibn completa mediante sus clases residuales. Esto permite clasificar la busqueda de los
nameros primos de Mersenne en cuatro subgrupos mutuamente excluyentes (disjuntos) y contribuye a la seleccion
ordenada de exponentes a probar computacionalmente. Acorde a esta idea, el trapecio de Mersenne se presenta
con el propésito de dar una representacién geométrica para esta clasificacion. Finalmente, a partir de uno de los
teoremas presentado y demostrado para primos en médulo 360, se establece una conjetura que podria resolverse
mediante verificacion computacional.

Palabras Clave: Primos de Merssene; Clases residuales; Trapecio de Mersenne.
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A COMPLETE CLASSIFICATION OF THE MERSENNE’S PRIMES AND ITS IMPLICATIONS FOR COMPUTING

1. INTRODUCTION

A selection of problems in the theory of numbers focuses on mathematical problems within the boundaries of
geometry and arithmetic, among these the Mersenne’s primes stand out, due to their computational search
and incomprehensible randomness and the finding of even perfect number and it connection to perfect num-
bers and cryptography [1, 2, 3, 4].

A Mersenne’s prime M,, is a prime number of the form M, = 2 — 1, where p is also a prime number. The
current search for Mersenne’s primes M,, is led by the GIMPS computational project (www.mersenne.org)
and to date, only 51 of these numbers have been found. In this work, a study for the Mersenne’s primes under
the multiplicative group modulo 360 is presented with the objective of contributing to this search by improving
the selection processes of the prime exponents and provide a complete classification of these numbers. The
methods used below are proper and basic under a certain level of number theory [5].

2. CONTEXTUALIZATION
Let be M,, a Mersenne’s prime.
Definition 1 (Ova-angular residue de M,). Let be M, and p prime numbers. The solution for x,y of the

equation p = x (mod 360) and M, = y (mod 360), it will be called Ova-angular of p or M,, respectively and
will be denoted by T, = x, I‘Mp =y, such that:

r,=p—360 |-

p 360J ’ FMP =M, — 360 lMpJ’

360

Equivalent
p =T, (mod360), M, = Im, (mod 360).

Notice that I', is the residue that leaves a prime number when it is divided by some integer, in this case by
360.

Definition 2 (p frequency rotation). Let be P the set of prime numbers. If p € P, then is said that its frequency
of rotation denoted G, is given by the integer part of p when divided by 360.

_ P
9p = l360J'
From Definitions 1y 2, it is true that
VpE P, p=T,+360(G,).

Definition 3 (Ova-angular function). Let fimoa 360): P = N be such that if p € IP then f(p) = I}, + 360(G,)
and 0 < I}, < 360.

It is clear that the function f is well defined, in particular f is surjective.
2.1 Complete Classification

Theorem 1 (I, Mersenne’s Primes). Let p be a prime number and M, = 2P — 1 a Mersenne’s prime. If

Chersenne 1S the set formed by the Ova-angular I" of the Mersenne primes 2P — 1. Then:
CMersenne = {3,7,31,127,24‘7,271}

Proof. Let M, = 2” — 1 be a Mersenne’s prime, then there exists I' € C, such that M, = I' + 360(G). Next

we analyze which of the 99 elements I € C are possible to be Mersenne’s primes, prior to this the following
criteria will be taken into account:
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Criterion A. Given the expression I' + 360(G) = 2P —1 ithasto I' + 1 = 2P — 360(G), which indicates for
p > 3that I' + 1 must be divisible by 2, 4 and 8.
Criterion B. Given the expression (I' + 1) + 360(G) = 2” it is possible in certain cases that I + 1 is a multiple of
3 then it has the expression 3m + 360( G) = 2P. Taking common factor 3 we have that 3k = 2”, which is not
possible since it contradicts the fundamental theorem of arithmetic and also 3 does not divide any power of 2.
Consequently, this criterion affirms that I + 1 cannot be a multiple of 3.

Criterion C. Given the expression (I' + 1) + 360(G) = 2” it is possible in certain cases that I' + 1 is a multiple of
5 then it has the expression 5n + 360(G) = 2P. Taking common factor 5 we have that 5r = 2, which is not
possible since 57 ends in 5 or 0, and the powers of 2 end in 2, 4, 8, 6, that is; according to the fundamental theorem
of arithmetic, 5 does not divide any power of 2. Consequently, this criterion states that I + 1 cannot be a multiple
of 5.

Criterion D. Let I' € {103,223, 343} be, so for these values in the expression I + 1 = 2P — 360(G) it is conditioned
that 2” must end in the digit 4. Then p = 2 (mod 4), this is p = 4m + 2, then p is even which would be contradic-
tory since p is odd prime. Consequently, this criterion affirms that I' # 103,223, 343.

Criterion E. Let I' = 151 be, so for this value in equality (I' + 1) + 360(G) = 2P, we have infinite solutions to p =
3(4n — 1) with n € N. Which is contradictory to the fact that p must be prime. Consequently, this criterion affirms
that I' # 151.

According to these criteria, we get: From Criterion A, the following are discarded
{1,2,5,11,13,17,19,29,37,41,43,49,53,59,61,67,73,77,83,89,91,97,101,107,109,113,121,131,133, 137,
139,149,157,161,163,167,169,173,179,181,187,191,193,197,203,209,211,217,221,227,229, 233, 241,
251,253,257,259,263,269,277,281,288,289,293,299,301,307,313,317,323,329,331,337,
341,347,349,353}.

From Criterion B, the following are discarded {23,47,71,119,143,287,311}.

From Criterion C the following are discarded {79,199, 239, 319, 359}.

From Criterion D the following are discarded {103,223, 343}.

From Criterion E it is discarded {151}.

Then the only possible I € C for a Mersenne’s prime to be formed mustbe I' € {3,7,31,127,247,271}. =

Theorem 2 (Singular Mersenne). The number of Mersenne primes in class I3 and in class I; equals 1, i.e. the
only Mersenne’s primes with residues 3 and 7 are 22 — 1 and in 23 — 1 respectively.

Proof. For the I; of the Mersenne primes you get that 3 + 360(k) = 2P — 1 for some k integer. Suppose that there
is another prime M, # 22 — 1 with the same residue and p > 2. Then this prime must satisfy for k integer:
2P-4  20-2)q

k = = — k a pure fractional.
360 90

Note. k is a pure fractional since 2° — 1 ends in 1, 3,5, 7, so it would never be a multiple of 90.

Then k is an integer and k is a pure fractional —<«. Then the only Mersenne’s prime in the class I3 is
22-1=3.

Now, for the I class of Mersenne primes, we have to: 7 + 360(k) = 2° — 1. Suppose that there is another
prime number M,, = 23 — 1 with the same residue and p > 3. Then this prime must satisfy for k integer:

2P —8 20781
360 45
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Since k is an integer then 2778 — 1 it must end in 5 or 0, but since it never ends in 0, then the only option is that
it must end in 5, so 2?78 must end in 6. Then p —8 = 0 (mod4) —» p = 0 (mod 4), then p is an even prime
number —«. Then the only Mersenne’s prime in the class I is 23 — 1 = 7. [

Figure 1 shows all the residuals of the prime numbers greater than 5 in modulo 360 and shows the isosceles
trapeze that is formed by joining Mersenne’s residues with an exponent greater than 3. Hereafter this trapeze
will be called Mersenne’s trapeze.

Figure 1. Mersenne’s trapeze.

Theorem 3. Let n € N be, then Mersenne’s primes in the class I3, are in the sequence:
31+ 360K, =2Pr -1,

where
_ 212n-10_52

K, = and p,=12n—-7=12(n—-1)+5.

325

Proof. Since 2”7 — 1 = 31 + 360(k) then we have that p = log,(32 + 360k), now since p is a natural num-
ber, then it is convenient analyze the values of k for which log, (32 + 360k) intersects with some natural. Let
it be
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212n-10_»2

k=Kn— 325 )

then it is clear that
n-10_52

12
pn = 10g,(32 + 360K,,) = log, (32 + 360 — =

———)=12n-7,

sequence in which we have the only integer solutions of the required logarithm. =

Note. It's clear that if 31 + 360K, is prime then it is also a Mersenne’s prime and according to Dirichlet’s
theorem, if there are infinite values of K,, that make prime numbers, then there are infinite Mersenne’s primes.

Corollary 1. For the class [3; of Mersenne’s primes, the only [, for the prime exponent p are:
5,17,29,41,53,77,89,101,113,137,149,161,173,197,209, 221, 233,257,269, 281, 293,317,329, 341, 353.

Proof. Since p, = 12n—7 thenT + 360G = 12n—7, also (I' + 7) = 12(2 — 30G). This conditions that
12| (k +7) and so the only possible Ova-angular I’ €C for the exponent are:
5,17,29,41,53,77,89,101,113,137,149,161,173,197,209, 221, 233,257, 269, 281, 293,317,329, 341,
353. =

Theorem 4. Let m € N be, then Mersenne’s primes in the class I3,; are in the sequence:
127 4+ 360K,,, = 2Pm — 1,

where
2121’71—8 _24-

Ky = and p,=12m-5=12(m—-1)+7.

325
Proof. Similar to the proof of the previous Theorem (3). =

Corollary 2. For the class [;,; of Mersenne’s primes, the only I;, for the prime exponent p are:
7,19,31,43,67,79,91,103,127,139,151,163,187,199, 211, 223,247, 259,271, 283,307,319, 331, 343.

Proof. Analogous to the previous Corollary (1) proof, only that 12| (k + 5). =

Note. It's clear that if 127 + 360K, is prime then it is also a Mersenne’s prime, and according to Dirichlet’s
theorem, if there are infinite values of K,,, that make prime numbers, then there are infinite Mersenne’s primes.

Theorem 5. Let r € N be, the Mersenne’s primes in the class I, are in the sequence:
247 + 360K, = 2°Pr — 1,
where
2127‘—4_31

K,==—0%— and p,=12r—1=12(r-1) +11L

Proof. Similar to the proof of the previous Theorem (3). =

Corollary 3. For the class I34; of Mersenne’s primes, the only I', for the prime exponent p are:
11,23,47,59,71,83,107,119,131,143,167,179,191, 203,227,239, 251,263, 287,299,311, 323,347, 359.

Proof. Analogous to the previous Corollary (1) proof, only that 12| (k + 1). =

Note. It’s clear that if 247 + 360K, is prime then it is also a Mersenne’s prime, and according to Dirichlet’s
theorem, if there are infinite values of K, that make prime numbers, then there are infinite Mersenne’s primes.

Theorem 6. Let s € N be, then Mersenne’s primes in the class I, are in the sequence:

271 4+ 360K, = 2Ps — 1,
where
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A COMPLETE CLASSIFICATION OF THE MERSENNE’S PRIMES AND ITS IMPLICATIONS FOR COMPUTING

_ 2125—14_34

K, = and pg=12s—11=12(s—1) + 11.

325
Proof. Similar to the proof of the previous Theorem (3). =

Corollary 4. For the class I3;; of Mersenne’s primes, the only I}, for the prime exponent p are:
1,13,37,49,61,73,97,109,121,133,157,169,181,193,217, 229,241, 253,277,289,301,313,337,349.

Proof. Analogous to the previous Corollary (1) proof, only that 12| (k + 11). m

Note. It's clear that if 271 4+ 360K is prime then it is also a Mersenne’s prime, and according to Dirichlet’s
theorem, if there are infinite values of K, that make prime numbers, then there are infinite Mersenne’s primes.

All established subgroups I" for each Mersenne’s prime family Cy.r-senne @re disjoint. This result is consistent
with the one presented in [6].

The reader is invited to articulate the previous result in a computational way, with the Lucas-Lehmer test or
use the Elliptic curve test method presented in [7], to find a new Mersenne prime M, > My3 112,609 S€arching
and testing primes in each of the subgroups presented.

2.2 On residues modulo 360

Theorem 7 (Ova-Ova-Prime-Ova). Let be p € IP a prime number, let be C a completed set of residues of P
mod 360, letbe p; = I}, +360(G,,) Y p2 = I, + 360(G,,); p1, p, arbitrary prime numbers. Be also,
I Ty Do Ty - € € @Nd p3, py, ps, ps, ... Prime numbers such that

o, +1p, + 2= 1p, = ps,
oy 42~ Ty = ps,
by + Iy + 21 = s,
oy + Ty + 2T, =

b 2 =
".+...+2—...=...'
".+...+2—...=...'

then, at least one of the following is true

i) I, +360(G,, +G,,) = pa is aprime number.
i) I, +360(G,, +Gp,) = pp is a prime number.
iii) I, + 360(G,, + Gp,) = pc is a prime number.
iv) I, +360(G,, +Gp,) = pa is aprime number.

) et =-
) et =
w) e = -+ is a prime number.

Proof. (by reduction to absurdity). Let be p € IP a prime number, let be C a completed set of residues of P
mod 360, letbe p; =1}, +360(G,,) Y p2 =1, + 360(G,,); p1, p arbitrary prime numbers. Be also,
Lo Ty Do Ty - € € @Nd p3, py, ps, ps, ... prime numbers such that
1;71+rﬂz+2_[ba = P3;
1—b1+rﬂz+2_[bb = P
1;71+I;)2 +2_1—bc = Ps,
rﬂ1+l;)2 +2_1—;7d = Pe,
b — e =
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it is clear that p3, p4, ps, ... E w € P, where w is a finite set. Suppose that none of the following is true

(Denial of thesis):

i) I, +360(G,, +G,,)=pa isaprime number.
ii) I, +360(G,, +Gp,) = pp is a prime number.
i), + 360(gp1 + gpz) = p. is aprime number.
w)l,, + 360(gp1 + gpz) = pq is aprime number.

) et

) et =

) e+ = --- is a prime number.
This is

i) I, +360(G,, +G,,) = pg itis nota prime number.
it) I, +360(G,, +G,,) = pp itis nota prime number.
iii) I, + 360(G,, + G,,) = pc itis nota prime number.
iv) I, + 360(G,, +Gp,) = pa itis nota prime number.
L) o -

L) e
L) e

it is not a prime number.

As p; =TI, +360(G,,) and p, = I, +360(G),,), then

1—;71 =P 360(gP1) and [l"z =p2— 360(gpz)’
with p,, p, arbitrary prime numbers.

On the other hand, it is true that:
1.101+1—bz+2_p3=1—ba’
1.101+[.'02+2_p4=er’
1.101+[.'02+2_p5=FPC’
Loy + Ipy +2 = pe, = I,

1

)

’

Yo+
++ +

Substituting (3) in (1) we have that

) (I, +1,, +2—p3)+ 360(gp1 + g,,z) = pq itis not a prime number.

i) (Ip, +Ip, + 2 —py) + 360(gp1 + g,,z) = pp itis nota prime number.
iii) (I,, + I, + 2 — ps) + 360(G,, +G,,) = p. itis nota prime number.
iv) (I, + I, + 2 — pg) +360(G,, +G,,) = pa itis nota prime number.

) et
) et =Ll
) et = ..+ itis not a prime number.

where 2, p1, P2, P3, P4, Ps, Pe, --- @re prime numbers and ps, py, Ps, ... € W.

€y

(2)

(3)

4)

So, substituting (2) in (4) and after associating and canceling some terms, we have to
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i) p1+py+2—p3=p,itisnotaprime number.
ii) p1 + py, +2—p, = pp itis nota prime number.

iii) p1 + p + 2 — ps = p. itis not a prime number. (5)
iv) p1 + py +2—pg = py itisnota prime number.

we) et o4 e — .o = itis not a prime number.

we) et o4 e — o = itis not a prime number.

) et o4 e — o = jtis not a prime number.

== (Contradiction).

The expression (5), would be equivalent to affirming that for every combination p;, p, of arbitrary prime
numbers, there is no prime that is the result of p; + p, + 2 minus another prime number, which is contra-
dictory

with the theorem proven by Harald Helfgott in [8], for example, there are the contradictions: 5+ 7 + 2 —
11=3,127+47 + 2 —37 = 139,1564643 + 293 + 2 — 971 = 1563967, ... Thus, it is true that since

p1, P2 are arbitrary prime numbers, in one or some cases the primary arithmetic sum p; + p, +2 — p; = py
will also be a prime number.

Thus, we arrive at this contradiction for having denied the thesis, then the assumption initial is false. =
Example Theorem 7 (Ova-Ova-Prime-Ova)

-- Let be p; = 15486059 = 299 + 360(43016), p, = 32452451 = 251 + 360(90145)both prime numbers,
where G, =43016, G,, =90145, I'pl =299 and sz =251, for the latter there are [,€
{5,11,31,43,49,53,61,73,89,91,103,109,113,119,121,131,133,143,151,163,169,173,179, 193, 203,
221,239,241,259,269,271,281,283,289,301,311,313,319,323,329,341,353,359} such that I, + I, +
2 — I}, = py is a prime number.

Then by Theorem (7), it happens that at least for one of the I, that I}, + 360(gp1 + gpz) = p is a prime
number. Indeed, it happens that:

103 + 360(43016 + 90145) = 47938063 is a prime number.
163 + 360(43016 + 90145) = 47938123 is a prime number.
173 + 360(43016 + 90145) = 47938133 is a prime number.
179 + 360(43016 + 90145) = 47938139 s a prime number.
283 4+ 360(43016 + 90145) = 47938243 is a prime number.
341 + 360(43016 + 90145) = 47938301 is a prime number.
353 + 360(43016 + 90145) = 47938313 is a prime number.

Theorem (7) establishes that at least one occurs, in this case as it was chosen at random, seven numbers
have turned out, it is fully fulfilled.

Conjecture 1 (The number of primes in the Ova-Ova-Prime-Ova combination). Although the number of prime
numbers resulting from theorem (7) is at least one, at most, it should be 13.

The reader is invited to verify or solve the previous conjecture in a computational way.

3. CONCLUSIONS

A complete classification of the Mersenne’s primes was presented through the multiplicative group modulo
360. A geometric representation of the residual classes generating these numbers was obtained. It is possible
to continue this work analyzing other applications that this theory presents using the geometric properties for
different prime numbers, also is possible articulated through computational methods this theory with different
primality tests for these numbers finding a new Mersenne’s primes (Lucas-Lehmer test or the Elliptic curve
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test method). The conjecture about primes in this residual classes was established and the reader is invited
to verify or solve the proposed conjecture in a computational way.
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