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ABSTRACT 

 
A study of Mersenne’s primes is carried out using the multiplicative group modulo 360 and a complete classification 
is obtained by its residual classes. This allows the search for Mersenne’s primes to be classified into four subgroups 
mutually exclusive (disjoint) and contributes to the ordered selection of exponents to be computationally tested. 
According to this idea, Mersenne’s trapeze is presented with the purpose of giving a geometric representation for 
this classification. Finally, from one of the theorems presented and proven for primes in modulo 360, a conjecture 
is established that could be solved by computing. 
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UNA CLASIFICACIÓN COMPLETA DE LOS NÚMEROS PRIMOS DE MERSENNE Y SUS IMPLICACIONES 
PARA LA COMPUTACIÓN 

 

RESUMEN 

 
Se realiza un estudio de los números primos de Mersenne utilizando el grupo multiplicativo módulo 360 y se 
obtiene una clasificación completa mediante sus clases residuales. Esto permite clasificar la búsqueda de los 
números primos de Mersenne en cuatro subgrupos mutuamente excluyentes (disjuntos) y contribuye a la selección 
ordenada de exponentes a probar computacionalmente. Acorde a esta idea, el trapecio de Mersenne se presenta 
con el propósito de dar una representación geométrica para esta clasificación. Finalmente, a partir de uno de los 
teoremas presentado y demostrado para primos en módulo 360, se establece una conjetura que podría resolverse 
mediante verificación computacional. 
 
Palabras Clave: Primos de Merssene; Clases residuales; Trapecio de Mersenne. 
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1. INTRODUCTION 

A selection of problems in the theory of numbers focuses on mathematical problems within the boundaries of 
geometry and arithmetic, among these the Mersenne’s primes stand out, due to their computational search 
and incomprehensible randomness and the finding of even perfect number and it connection to perfect num-
bers and cryptography [1, 2, 3, 4]. 
 

A Mersenne’s prime 𝑀𝜌 is a prime number of the form 𝑀𝜌 = 2𝜌 − 1, where ρ is also a prime number. The 

current search for Mersenne’s primes 𝑀𝜌, is led by the GIMPS computational project (www.mersenne.org) 

and to date, only 51 of these numbers have been found. In this work, a study for the Mersenne’s primes under 
the multiplicative group modulo 360 is presented with the objective of contributing to this search by improving 
the selection processes of the prime exponents and provide a complete classification of these numbers. The 
methods used below are proper and basic under a certain level of number theory [5]. 
 

2. CONTEXTUALIZATION 

Let be 𝑀𝜌 a Mersenne’s prime.     

 

Definition 1 (Ova-angular residue de 𝑀𝜌). Let be 𝑀𝜌 and 𝜌 prime numbers. The solution for 𝑥, 𝑦  of the 

equation ρ ≅ 𝑥 (mod 360) and 𝑀ρ ≅ 𝑦  (mod 360), it will be called Ova-angular of 𝜌 or 𝑀𝜌  respectively and 

will be denoted by Γρ = 𝑥, ΓMρ
= 𝑦, such that: 

𝛤𝜌 = 𝜌 − 360 ⌊
𝜌

360
⌋ ,          𝛤𝑀𝜌

= 𝑀𝜌 − 360 ⌊
𝑀𝜌

360
⌋, 

 
Equivalent 

ρ ≅ Γρ  (mod 360),     Mρ ≅ ΓMρ
  (mod 360). 

 
Notice that 𝛤, is the residue that leaves a prime number when it is divided by some integer, in this case by 
360. 
 

Definition 2 (𝜌 frequency rotation). Let be ℙ the set of prime numbers. If 𝜌 ∈  ℙ, then is said that its frequency 

of rotation denoted  𝒢𝜌, is given by the integer part of 𝜌 when divided by 360. 

𝒢ρ = ⌊
𝜌

360
⌋. 

 
From Definitions 1 y 2, it is true that 
 

                               ∀ρ ∈  ℙ,                𝜌 = 𝛤𝜌 + 360(𝒢𝜌).                                        
 

Definition 3 (Ova-angular function). Let 𝑓(mod 360): ℙ → ℕ be such that if 𝜌 ∈ ℙ then 𝑓(𝜌) = 𝛤𝜌 + 360(𝒢𝜌) 

and 0 < 𝛤𝜌 < 360. 
 

It is clear that the function 𝑓 is well defined, in particular 𝑓 is surjective. 
 

2.1 Complete Classification 
 

Theorem 1 (𝛤𝜌 Mersenne’s Primes). Let 𝜌 be a prime number and 𝑀𝜌 = 2𝜌 − 1 a Mersenne’s prime. If 

𝐶𝑀𝑒𝑟𝑠𝑒𝑛𝑛𝑒 is the set formed by the Ova-angular 𝛤 of the Mersenne primes 2𝜌 − 1. Then: 

𝐶𝑀𝑒𝑟𝑠𝑒𝑛𝑛𝑒 = {3,7,31,127,247,271} 
 

Proof. Let 𝑀𝜌 = 2𝜌 − 1 be a Mersenne’s prime, then there exists 𝛤 ∈ 𝐶, such that 𝑀𝜌 = 𝛤 + 360(𝒢). Next 

we analyze which of the 99 elements 𝛤 ∈ 𝐶 are possible to be Mersenne’s primes, prior to this the following 
criteria will be taken into account: 
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Criterion A. Given the expression 𝛤 + 360(𝒢) = 2𝜌 − 1  it has to 𝛤 + 1 = 2𝜌 − 360(𝒢), which indicates for 

𝜌 > 3 that  𝛤 + 1 must be divisible by 2, 4 and 8. 

Criterion B. Given the expression (𝛤 + 1) + 360(𝒢) = 2𝜌 it is possible in certain cases that 𝛤 + 1 is a multiple of 

3 then it has the expression 3𝑚 + 360( 𝒢) = 2𝜌. Taking common factor 3 we have that 3𝑘 = 2𝜌, which is not 
possible since it contradicts the fundamental theorem of arithmetic and also 3 does not divide any power of 2. 

Consequently, this criterion affirms that 𝛤 + 1 cannot be a multiple of 3. 
 

Criterion C. Given the expression (𝛤 + 1) + 360(𝒢) = 2𝜌 it is possible in certain cases that 𝛤 + 1 is a multiple of 

5 then it has the expression 5𝑛 + 360(𝒢) = 2𝜌. Taking common factor 5 we have that 5𝑟 = 2𝜌, which is not 

possible since 5𝑟 ends in 5 or 0, and the powers of 2 end in 2, 4, 8, 6, that is; according to the fundamental theorem 

of arithmetic, 5 does not divide any power of 2. Consequently, this criterion states that 𝛤 + 1 cannot be a multiple 
of 5. 
 

Criterion D. Let 𝛤 ∈ {103,223, 343} be, so for these values in the expression 𝛤 + 1 = 2𝜌 − 360(𝒢) it is conditioned 

that 2𝜌 must end in the digit 4. Then 𝜌 ≅ 2 (mod 4), this is 𝜌 = 4𝑚 + 2, then ρ is even which would be contradic-

tory since ρ is odd prime. Consequently, this criterion affirms that 𝛤 ≠ 103, 223, 343. 
 

Criterion E. Let 𝛤 = 151 be, so for this value in equality (Γ + 1) + 360(𝒢) = 2ρ, we have infinite solutions to ρ =
3(4𝑛 − 1) with 𝑛 ∈ ℕ. Which is contradictory to the fact that 𝜌 must be prime. Consequently, this criterion affirms 
that 𝛤 ≠ 151. 
 
According to these criteria, we get: From Criterion A, the following are discarded 

{1, 2, 5, 11, 13, 17, 19, 29, 37, 41,43, 49, 53, 59, 61, 67, 73, 77, 83, 89, 91, 97, 101, 107, 109, 113, 121, 131, 133, 137, 
139, 149,157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 203, 209, 211,217, 221, 227, 229, 233, 241, 
 251, 253, 257, 259, 263, 269, 277, 281, 288, 289, 293, 299, 301, 307, 313, 317, 323, 329, 331, 337, 

 341, 347, 349, 353}. 
 

From Criterion B, the following are discarded {23, 47, 71, 119, 143, 287, 311}. 
 

From Criterion C the following are discarded {79, 199, 239, 319, 359}. 
 

From Criterion D the following are discarded {103, 223, 343}. 
 

From Criterion E it is discarded {151}. 
 

Then the only possible 𝛤 ∈ 𝐶 for a Mersenne’s prime to be formed must be 𝛤 ∈  {3, 7, 31, 127, 247, 271}.   ∎ 

 

Theorem 2 (Singular Mersenne). The number of Mersenne primes in class 𝛤3 and in class 𝛤7 equals 1, i.e. the 

only Mersenne’s primes with residues 3 and 7 are 22 − 1 and in 23 − 1 respectively. 
 

Proof. For the 𝛤3 of the Mersenne primes you get that 3 + 360(𝑘) = 2𝜌 − 1 for some 𝑘 integer. Suppose that there 

is another prime 𝑀𝜌 ≠ 22 − 1 with the same residue and 𝜌 > 2. Then this prime must satisfy for 𝑘 integer: 

 𝑘 =
2𝜌−4

360
=

2(𝜌−2)−1

90
 → 𝑘  a pure fractional. 

 

Note. 𝑘 is a pure fractional since 2𝜌 − 1 ends in 1, 3, 5, 7, so it would never be a multiple of 90. 
 

Then 𝑘 is an integer and 𝑘 is a pure fractional →←. Then the only Mersenne’s prime in the class 𝛤3 is              

22 − 1 = 3. 
 

Now, for the 𝛤7 class of Mersenne primes, we have to: 7 + 360(𝑘) = 2𝜌 − 1. Suppose that there is another 

prime number 𝑀𝜌 = 23 − 1 with the same residue and 𝜌 > 3. Then this prime must satisfy for 𝑘 integer: 

𝑘 =
2𝜌 − 8

360
=

2(𝜌−8) − 1

45
 , 
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Since 𝑘 is an integer then 2𝜌−8 − 1 it must end in 5  or 0, but since it never ends in 0, then the only option is that 

it must end in 5, so 2𝜌−8 must end in 6. Then 𝜌 − 8 ≅ 0 (mod 4)  →   𝜌 ≅ 0 (mod 4), then 𝜌 is an even prime 

number →←. Then the only Mersenne’s prime in the class 𝛤7 is 23 − 1 = 7.       ∎ 
 

Figure 1 shows all the residuals of the prime numbers greater than 5 in modulo 360 and shows the isosceles 

trapeze that is formed by joining Mersenne’s residues with an exponent greater than 3. Hereafter this trapeze 
will be called Mersenne’s trapeze. 
 

 
Figure 1. Mersenne’s trapeze. 

 

Theorem 3. Let 𝑛 ∈ ℕ be, then Mersenne’s primes in the class 𝛤31 are in the sequence: 

31 + 360𝐾𝑛 = 2𝜌𝑛 − 1 , 
where 

𝐾𝑛 =
212𝑛−10−22

325
        and      𝜌𝑛 = 12𝑛 − 7 = 12(𝑛 − 1) + 5. 

 

Proof. Since 2𝜌 − 1 = 31 + 360(𝑘) then we have that  𝜌 = log2(32 + 360𝑘), now since 𝜌 is a natural num-

ber, then it is convenient analyze the values of 𝑘 for which log2(32 + 360𝑘) intersects with some natural. Let 
it be 
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𝑘 = 𝐾𝑛 =
212𝑛−10−22

325
 , 

 
then it is clear that 

𝜌𝑛 = log2(32 + 360𝐾𝑛) = log2 (32 + 360
212𝑛−10−22

325
) = 12𝑛 − 7, 

 
sequence in which we have the only integer solutions of the required logarithm.  ∎ 
 

Note. It’s clear that if 31 + 360𝐾𝑛 is prime then it is also a Mersenne’s prime and according to Dirichlet’s 

theorem, if there are infinite values of 𝐾𝑛 that make prime numbers, then there are infinite Mersenne’s primes. 
 

Corollary 1. For the class 𝛤31 of Mersenne’s primes, the only 𝛤𝜌 for the prime exponent 𝜌 are: 

5, 17, 29, 41, 53, 77, 89, 101, 113, 137, 149, 161, 173, 197,209, 221, 233, 257, 269, 281, 293, 317, 329, 341, 353. 
 

Proof. Since 𝜌𝑛  =  12𝑛 − 7 then 𝛤 + 360𝒢 =  12𝑛 − 7, also (𝛤 + 7) = 12(2 − 30𝒢). This conditions that 

12| (𝑘 +  7) and so the only possible Ova-angular 𝛤 ∈ 𝐶 for the exponent are: 

5, 17, 29, 41, 53, 77, 89, 101, 113, 137, 149, 161, 173, 197,209, 221, 233, 257, 269, 281, 293, 317, 329, 341,  
353.    ∎ 
 

Theorem 4. Let 𝑚 ∈ ℕ be, then Mersenne’s primes in the class 𝛤127 are in the sequence: 

127 + 360𝐾𝑚 = 2𝜌𝑚 − 1,  
where 

𝐾𝑚 =
212𝑚−8−24

325
        and      𝜌𝑚 = 12𝑚 − 5 = 12(𝑚 − 1) + 7. 

 

Proof. Similar to the proof of the previous Theorem (3).   ∎ 
 

Corollary 2. For the class 𝛤127 of Mersenne’s primes, the only 𝛤𝜌  for the prime exponent 𝜌 are: 

7, 19, 31, 43, 67, 79, 91, 103, 127, 139, 151, 163, 187, 199, 211, 223, 247, 259, 271, 283, 307, 319, 331, 343. 
 

Proof. Analogous to the previous Corollary (1) proof, only that 12| (𝑘 +  5).   ∎ 
 

Note. It’s clear that if 127 + 360𝐾𝑚 is prime then it is also a Mersenne’s prime, and according to Dirichlet’s 

theorem, if there are infinite values of 𝐾𝑚 that make prime numbers, then there are infinite Mersenne’s primes. 
 

Theorem 5. Let 𝑟 ∈ ℕ be, the Mersenne’s primes in the class 𝛤247 are in the sequence: 

247 + 360𝐾𝑟 = 2𝜌𝑟 − 1,  
where 

𝐾𝑟 =
212𝑟−4−31

325
        and      𝜌𝑟 = 12𝑟 − 1 = 12(𝑟 − 1) + 11. 

 

Proof. Similar to the proof of the previous Theorem (3).    ∎ 
 

Corollary 3. For the class 𝛤247 of Mersenne’s primes, the only  𝛤𝜌 for the prime exponent 𝜌 are: 

11, 23, 47, 59, 71, 83, 107, 119, 131, 143, 167, 179, 191, 203, 227, 239, 251, 263, 287, 299, 311, 323, 347, 359. 

 
Proof. Analogous to the previous Corollary (1) proof, only that 12| (𝑘 +  1).   ∎ 
 

Note. It’s clear that if 247 + 360𝐾𝑟 is prime then it is also a Mersenne’s prime, and according to Dirichlet’s 

theorem, if there are infinite values of 𝐾𝑟 that make prime numbers, then there are infinite Mersenne’s primes. 
 

Theorem 6. Let 𝑠 ∈ ℕ be, then Mersenne’s primes in the class 𝛤271 are in the sequence: 
 

271 + 360𝐾𝑠 = 2𝜌𝑠 − 1,  
where 
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𝐾𝑠 =
212𝑠−14−34

325
        and      𝜌𝑠 = 12𝑠 − 11 = 12(𝑠 − 1) + 11. 

 

Proof. Similar to the proof of the previous Theorem (3).    ∎ 
 

Corollary 4. For the class 𝛤271  of Mersenne’s primes, the only 𝛤𝜌  for the prime exponent 𝜌 are: 

1, 13, 37, 49, 61, 73, 97, 109, 121, 133, 157, 169, 181, 193, 217, 229, 241, 253, 277, 289, 301, 313, 337, 349. 

 
Proof. Analogous to the previous Corollary (1) proof, only that 12| (𝑘 +  11).   ∎ 
 

Note. It’s clear that if 271 + 360𝐾𝑠 is prime then it is also a Mersenne’s prime, and according to Dirichlet’s 

theorem, if there are infinite values of 𝐾𝑠 that make prime numbers, then there are infinite Mersenne’s primes. 
 

All established subgroups 𝛤 for each Mersenne’s prime family 𝐶𝑀𝑒𝑟𝑠𝑒𝑛𝑛𝑒 are disjoint. This result is consistent 
with the one presented in [6]. 
 
The reader is invited to articulate the previous result in a computational way, with the Lucas-Lehmer test or 

use the Elliptic curve test method presented in [7], to find a new Mersenne prime 𝑀𝜌  >  𝑀43.112.609 searching 

and testing primes in each of the subgroups presented. 
 
2.2 On residues modulo 360 

Theorem 7 (Ova-Ova-Prime-Ova). Let be 𝜌 ∈ ℙ a prime number, let be 𝐶 a completed set of residues of ℙ 
mod 360,  let be 𝜌1 = 𝛤𝜌1

+ 360(𝒢𝜌1
) y 𝜌2 = 𝛤𝜌2

+ 360(𝒢𝜌2
); 𝜌1, 𝜌2 arbitrary prime numbers. Be also, 

𝛤𝜌𝑎
, 𝛤𝜌𝑏

, 𝛤𝜌𝑐
, 𝛤𝜌𝑑

, … ∈ 𝐶 and 𝜌3, 𝜌4, 𝜌5, 𝜌5, … prime numbers such that 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑎
= 𝜌3, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑏
= 𝜌4, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑐
= 𝜌5, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑑
= 𝜌6, 

… + ⋯ + 2 − ⋯ = ⋯, 
… + ⋯ + 2 − ⋯ = ⋯, 
… + ⋯ + 2 − ⋯ = ⋯, 

 
then, at least one of the following is true 

𝑖)    𝛤𝜌𝑎
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑎  is a prime number. 

𝑖𝑖)  𝛤𝜌𝑏
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑏  is a prime number. 

𝑖𝑖𝑖) 𝛤𝜌𝑐
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑐  is a prime number. 

𝑖𝑣) 𝛤𝜌𝑑
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑑  is a prime number. 

… )  … +            …               = ⋯    … 
… )  … +            …               = ⋯    … 

… )  … +            …               = ⋯    is a prime number. 
 
Proof. (by reduction to absurdity).  Let be 𝜌 ∈ ℙ a prime number, let be 𝐶 a completed set of residues of ℙ 
mod 360,  let be 𝜌1 = 𝛤𝜌1

+ 360(𝒢𝜌1
) y 𝜌2 = 𝛤𝜌2

+ 360(𝒢𝜌2
); 𝜌1, 𝜌2 arbitrary prime numbers. Be also, 

𝛤𝜌𝑎
, 𝛤𝜌𝑏

, 𝛤𝜌𝑐
, 𝛤𝜌𝑑

, … ∈ 𝐶 and 𝜌3, 𝜌4, 𝜌5, 𝜌5, … prime numbers such that 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑎
= 𝜌3, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑏
= 𝜌4, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑐
= 𝜌5, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝛤𝜌𝑑
= 𝜌6, 

   … + ⋯ + ⋯ − ⋯   = ⋯, 
     … + ⋯ + ⋯ − ⋯   = ⋯, 
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it is clear that 𝜌3, 𝜌4, 𝜌5, … ∈ 𝑤 ⊂  ℙ, where 𝑤 is a finite set. Suppose that none of the following is true 

(Denial of thesis): 
 

𝑖)    𝛤𝜌𝑎
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑎  is a prime number. 

𝑖𝑖)  𝛤𝜌𝑏
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑏  is a prime number. 

𝑖𝑖𝑖) 𝛤𝜌𝑐
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑐  is a prime number. 

𝑖𝑣) 𝛤𝜌𝑑
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑑  is a prime number. 

… )  … +            …               = ⋯    … 

… )  … +            …               = ⋯    … 
… )  … +            …               = ⋯    is a prime number. 
 
This is 
 

𝑖)    𝛤𝜌𝑎
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑎 it is not a prime number. 

𝑖𝑖)  𝛤𝜌𝑏
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑏  it is not a prime number. 

𝑖𝑖𝑖) 𝛤𝜌𝑐
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑐  it is not a prime number.                                            (1)     

𝑖𝑣) 𝛤𝜌𝑑
+ 360(𝒢𝜌1

+ 𝒢𝜌2
) = 𝜌𝑑  it is not a prime number. 

… )  … +            …               = ⋯    … 
… )  … +            …               = ⋯    … 

… )  … +            …               = ⋯    it is not a prime number. 
 

 

As 𝜌1 = 𝛤𝜌1
+ 360(𝒢𝜌1

) and 𝜌2 = 𝛤𝜌2
+ 360(𝒢𝜌2

), then 

𝛤𝜌1
= 𝜌1 − 360(𝒢𝜌1

)      and      𝛤𝜌2
= 𝜌2 − 360(𝒢𝜌2

),                (2) 

with 𝜌1, 𝜌2 arbitrary prime numbers.            
 
On the other hand, it is true that: 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌3 = 𝛤𝜌𝑎
, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌4 = 𝛤𝜌𝑏
, 

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌5 = 𝛤𝜌𝑐
,                                              (3)     

𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌6, = 𝛤𝜌𝑑
 

… + ⋯ + ⋯ − ⋯ = ⋯, 
… + ⋯ + ⋯ − ⋯ = ⋯, 
… + ⋯ + ⋯ − ⋯ = ⋯. 
 
Substituting (3) in (1) we have that 

 

𝑖)   ( 𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌3) + 360(𝒢𝜌1
+ 𝒢𝜌2

) = 𝜌𝑎 it is not a prime number. 

𝑖𝑖)  (𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌4) + 360(𝒢𝜌1
+ 𝒢𝜌2

) = 𝜌𝑏  it is not a prime number. 

𝑖𝑖𝑖) (𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌5) + 360(𝒢𝜌1
+ 𝒢𝜌2

) = 𝜌𝑐  it is not a prime number.               (4)     

𝑖𝑣) (𝛤𝜌1
+ 𝛤𝜌2

+ 2 − 𝜌6) + 360(𝒢𝜌1
+ 𝒢𝜌2

) = 𝜌𝑑  it is not a prime number. 

… )  … +            …               = ⋯   … 
… )  … +            …               = ⋯  … 

… )  … +            …               = ⋯  it is not a prime number. 
 
where 2, 𝜌1, 𝜌2, 𝜌3, 𝜌4, 𝜌5, 𝜌6, … are prime numbers and 𝜌3, 𝜌4, 𝜌5, … ∈ 𝑤. 
 
So, substituting (2) in (4) and after associating and canceling some terms, we have to 

 
 



 A COMPLETE CLASSIFICATION OF THE MERSENNE’S PRIMES AND ITS IMPLICATIONS FOR COMPUTING 

  
118    

𝑖)   𝜌1 + 𝜌2 + 2 − 𝜌3 = 𝜌𝑎 it is not a prime number. 

𝑖𝑖)  𝜌1 + 𝜌2 + 2 − 𝜌4 = 𝜌𝑏  it is not a prime number. 
𝑖𝑖𝑖) 𝜌1 + 𝜌2 + 2 − 𝜌5 = 𝜌𝑐  it is not a prime number.                                                    (5)     

𝑖𝑣) 𝜌1 + 𝜌2 + 2 − 𝜌6 = 𝜌𝑑  it is not a prime number. 
… ) … + ⋯ + ⋯ − ⋯ = ⋯  it is not a prime number. 

… ) … + ⋯ + ⋯ − ⋯ = ⋯  it is not a prime number. 
… ) … + ⋯ + ⋯ − ⋯ = ⋯  it is not a prime number. 
 

⟹⟸ (𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛). 
 
The expression (5), would be equivalent to affirming that for every combination 𝜌1, 𝜌2 of arbitrary prime 

numbers, there is no prime that is the result of  𝜌1 + 𝜌2 + 2 minus another prime number, which is contra-
dictory 

with the theorem proven by Harald Helfgott in [8], for example, there are the contradictions: 5 + 7 + 2 −
11 = 3, 127 + 47 + 2 − 37 = 139, 1564643 + 293 + 2 − 971 = 1563967, … Thus, it is true that since 

𝜌1, 𝜌2 are arbitrary prime numbers, in one or some cases the primary arithmetic sum 𝜌1 + 𝜌2 + 2 − 𝜌𝑗 = 𝜌𝑘 

will also be a prime number. 

 
Thus, we arrive at this contradiction for having denied the thesis, then the assumption initial is false.    ∎ 
 
Example Theorem 7 (Ova-Ova-Prime-Ova) 
 

-- Let be 𝜌1 = 15486059 = 299 + 360(43016), ρ2 = 32452451 = 251 + 360(90145)both prime numbers, 

where 𝒢𝜌1
= 43016, 𝒢𝜌2

= 90145, Γρ1
= 299 and Γρ2

= 251, for the latter there are Γρ ∈

{5, 11, 31, 43, 49, 53, 61, 73, 89, 91, 103, 109, 113, 119, 121, 131, 133, 143, 151, 163, 169, 173, 179, 193, 203,  
221, 239, 241, 259, 269, 271, 281, 283, 289, 301, 311, 313, 319, 323, 329, 341, 353, 359} such that 𝛤𝜌1

+ 𝛤𝜌2
+

2 − 𝛤𝜌 = 𝜌𝑛 is a prime number. 

 

Then by Theorem (7), it happens that at least for one of the 𝛤𝜌 that 𝛤𝜌 + 360(𝒢𝜌1
+ 𝒢𝜌2

) = 𝜌 is a prime 

number. Indeed, it happens that: 
 

103 + 360(43016 + 90145) = 47938063 is a prime number. 

163 + 360(43016 + 90145) = 47938123 is a prime number. 

173 + 360(43016 + 90145) = 47938133  is a prime number. 

179 + 360(43016 + 90145) = 47938139  is a prime number. 

283 + 360(43016 + 90145) = 47938243  is a prime number. 

341 + 360(43016 + 90145) = 47938301  is a prime number. 

353 + 360(43016 + 90145) = 47938313  is a prime number. 

 

Theorem (7) establishes that at least one occurs, in this case as it was chosen at random, seven numbers 
have turned out, it is fully fulfilled. 
 
Conjecture 1 (The number of primes in the Ova-Ova-Prime-Ova combination). Although the number of prime 

numbers resulting from theorem (7) is at least one, at most, it should be 13. 
 
The reader is invited to verify or solve the previous conjecture in a computational way. 
 

3. CONCLUSIONS 

A complete classification of the Mersenne’s primes was presented through the multiplicative group modulo 
360. A geometric representation of the residual classes generating these numbers was obtained. It is possible 
to continue this work analyzing other applications that this theory presents using the geometric properties for 
different prime numbers, also is possible articulated through computational methods this theory with different 
primality tests for these numbers finding a new Mersenne’s primes (Lucas-Lehmer test or the Elliptic curve 
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test method). The conjecture about primes in this residual classes was established and the reader is invited 
to verify or solve the proposed conjecture in a computational way.  
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