Scientific article

Genetic diversity within wild species of Solanum

Diversidad genética dentro de especies silvestres de Solanum

Luis Antonio Flores-Hernández
Colegio de Postgraduados, Mexico
Ricardo Lobato-Ortiz *
Colegio de Postgraduados, Mexico
Dora María Sangerman-Jarquín
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico
J. Jesús García-Zavala
Colegio de Postgraduados, Mexico
José D. Molina-Galán
Colegio de Postgraduados, Mexico
Mario de Jesús Velasco-Alvarado
Colegio de Postgraduados, Mexico
Iván Maryn Marín-Montes
Colegio de Postgraduados, Mexico

Genetic diversity within wild species of Solanum

Revista Chapingo. Serie horticultura, vol. XXIV, no. 2, 2018

Universidad Autónoma Chapingo

Received: 18 August 2017

Accepted: 25 October 2017

Abstract: Cultivated tomato (Solanum lycopersicum L.) has undergone a reduction in its genetic base as a result of the processes of modern domestication and breeding, which has been extensively documented by molecular markers in different genotypes, both nationally and internationally. Faced with this situation, some plant breeders in Mexico have proposed making use of native Mexican germplasm, as well as of the genetic variation present in wild species related to the cultivated tomato. The aim of this study was to characterize agronomically, under greenhouse conditions, accessions of five wild relatives of the cultivated tomato for their incorporation into breeding programs of this vegetable. In addition, it is expected to reduce its vulnerability to climate change and adverse biotic and abiotic factors. The species described were Solanum pennellii L., Solanum pimpinellifollium L., Solanum peruvianum L., Solanum chilense R. and Solanum habrochaites S. The accessions were evaluated under greenhouse conditions under a completely randomized experimental design with four replications. Twelve traits of agronomic interest were evaluated to describe the variation between the accessions of each one of the evaluated species, which were studied by analysis of variance and comparison of means. The results showed high significance among the accessions of each one of the evaluated species for all the traits. The above shows that there is a high potential in each of the accessions of the species studied to exploit them genetically in the improvement of the cultivated tomato.

Keywords: Solanum pennellii L., Solanum pimpinellifollium L., Solanum peruvianum L., Solanum chilense R., Solanum habrochaites S.

Resumen: El jitomate (Solanum lycopersicum L.) ha sufrido reducción de su base genética durante los procesos de domesticación y mejoramiento genético moderno, lo que ha sido documentado ampliamente mediante marcadores moleculares en diferentes genotipos, tanto a nivel nacional como internacional. Ante esta situación, en México algunos fitomejoradores han planteado hacer uso de germoplasma nativo mexicano, así como de la variación genética presente en especies silvestres emparentadas con el jitomate cultivado. El objetivo del presente trabajo fue caracterizar agronómicamente, en condiciones de invernadero, accesiones de cinco parientes silvestres del jitomate para su incorporación en programas de mejoramiento genético de esta hortaliza. Además, con ello se espera reducir su vulnerabilidad frente al cambio climático y a factores bióticos y abióticos adversos. Las especies descritas fueron Solanum pennellii L., Solanum pimpinellifollium L., Solanum peruvianum L., Solanum chilense R. y Solanum habrochaites S. Las accesiones se evaluaron en condiciones de invernadero bajo un diseño experimental completamente al azar con cuatro repeticiones. Se evaluaron 12 variables de interés agronómico para describir la variación existente entre las accesiones de cada una de las especies evaluadas, las cuales se estudiaron mediante análisis de varianza y comparación de medias. Los resultados mostraron alta significancia entre las accesiones de cada una de las especies evaluadas para todas las variables. Lo anterior demuestra que existe un elevado potencial en cada una de las accesiones de las especies estudiadas para aprovecharlas genéticamente en el mejoramiento del jitomate cultivado.

Palabras clave: Solanum pennellii L., Solanum pimpinellifollium L., Solanum peruvianum L., Solanum chilense R., Solanum habrochaites S.

Introduction

The wild relatives of the cultivated tomato (Solanum lycopersicum L.) are distributed in Ecuador, Peru, northern Chile and the Galapagos Islands (Peralta & Spooner, 2001), but Mexico is considered as its center of domestication (Jenkins, 1948; Peralta & Spooner, 2007; Rick & Fobes, 1975; Rodríguez et al., 2011). Wild tomatoes grow in diverse habitats, from those found at sea level to almost 3,300 masl (Rick, 1973; Taylor, 1986).

The species evaluated in this work have a wide distribution. Solanum pennellii L. grows in western Peru; its habitats are not evenly dispersed, but they are grouped along streams in the west of the country, usually between 500 and 1,500 masl (Rick, 1973). Solanum pimpinellifollium L. is distributed along the coasts of Peru and Ecuador and has been used frequently in tomato breeding. The natural distribution area of Solanum peruvianum L. is mainly Peru, where it ranges from the west coast in the Andes to northern Chile (Chetelat, Pertuze, Faundez, Graham, & Jone, 2009). Solanum chilense R. is found mainly in southern Peru to the north of Chile, from 0 to 3,000 masl. The last species studied, Solanum habrochaites S., is located from southwestern Ecuador to the southern part of Peru, between 500 and 3,300 masl (Spooner, Peralta, & Knapp, 2005).

The evolution of the wild relatives of the tomato to the cultivated one resulted in an increase in productivity, but at the same time to a reduced genetic base of the present varieties (Ladizinsky, 1998); therefore, cultivated varieties have been negatively affected by biotic and abiotic factors. To counteract this situation, the use of native germplasm or wild relatives is required for the introgression of new allelic combinations of tomatoes to increase their productivity, quality, resistance or tolerance to biotic and abiotic factors (Cervantes-Moreno, Rodríguez-Pérez, Carrillo-Fonseca, Sahagún-Castellanos & Rodríguez-Guzmán, 2014; Fernie, Tadmor, & Zamir, 2006; Foolad, 2007; Gur & Zamir, 2004; Hernández-Bautista, Lobato-Ortiz, Cruz-Izquierdo, García-Zavala, & Chávez-Servia, 2014; Hernández-Bautista et al., 2015; Marín-Montes, Rodríguez-Pérez, Sahagún-Castellanos, Hernández-Ibañez, & Velasco-García, 2016).

Some authors indicate that the genetic diversity obtained from the tomato’s wild relatives is 95 %, while in the cultivated tomato only 5 % is obtained (Miller & Tanksley, 1990). Currently, one of the strategies in tomato breeding is to use the diversity that was lost during the domestication processes of the current varieties (Zamir, 2001); this diversity must be found in its wild relatives. Therefore, the aim of this work was to characterize agronomically, under greenhouse conditions, accessions of five wild relatives of the tomato for their incorporation into breeding programs of this vegetable.

Materials and methods

This research was carried out at the Colegio de Postgraduados, Montecillo Campus, Texcoco, State of Mexico (19° 27’ North latitude and 98º 54’ West longitude, 2,246 masl), in the greenhouses of the graduate school’s Program for the Conservation and Improvement of the Genetic Resources of the Tomato in Mexico. In total, 39 accessions of five wild species related to the cultivated tomato (Figures 1, 2, 3, 4 and 5, Table 1), provided by the Tomato Genetics Resource Center (TGRC) of the University of California, Davis, USA, were evaluated.

S. pimpinellifollium L. accession LA0373
Figure 1
S. pimpinellifollium L. accession LA0373

S. peruvianum L. accession LA1365
Figure 2
S. peruvianum L. accession LA1365

S. habrochaites S. accession LA2409
Figure 3
S. habrochaites S. accession LA2409

S. pennellii L. accession LA1272
Figure 4
S. pennellii L. accession LA1272

S. chilense R. accession LA2759
Figure 5
S. chilense R. accession LA2759

Table 1
Species, accessions and origin of collections evaluated in this research.
SpeciesAccessionOrigin of the collectionAccessionOrigin of the collection
S. pennellii L.LA2580Valle de Casma, Ancash, PerúLA1272Pisaquera, Lima, Perú
LA0716Atico, Arequipa, PerúLA1277Trapiche, Lima, Perú
LA1367Santa Eulalia, Lima, Perú
S. pimpinellifollium L. LA1584Jayanca de La Vina, Lambayeque, PerúLA0373Culebras núm. 1, Ancash, Perú
LA1689Castilla núm. 1, Piura, PerúLA0442Sechin, Ancash, Perú
LA1237Atacames, Esmeraldas, EcuadorLA1576Manchay, Alta Lima, Perú
LA1593Puente Chao, La Libertad, Perú
S. peruvianum L.LA2172Cuyca, Cajamarca, PerúLA0446Atiquipa, Arequipa, Perú
LA1982Huallanca, Ancash, PerúLA1346Casmiche, La Libertad, Perú
LA1677Fundo Huadquina, Topara, Ica, PerúLA1336Atico, Arequipa, Perú
LA1973Yura, Arequipa, PerúLA1274Pacaibamba, Lima, Perú
LA1360Pariacoto, Ancash, PerúLA1365Caranquilloc, Ancash, Peru
LA0103Cajamarquilla, Lima, PerúLA2152San Juan #1, Cajamarca, Perú
S. habrochaites S.LA2409Miraflores, Lima, PerúLA1223Alausi, Chimborazo, Ecuador
LA1731Río San Juan, Huancavelica, PerúLA1777Rio Casma, Ancash, Perú
LA2650Ayabaca, Piura, PerúGH0810
LA2158Río Chotano, Cajamarca, PerúLA2167Cimentario, Cajamarca, Perú
S. chilense R.LA2930Guatacondo, Tarapaca, ChileLA1958Pampa de la Clemesi, Moquegua, Perú
LA2750La Despreciada, Antofagasta, ChileLA2778Chapiquina, Tarapaca, Chile
LA1960Río Osmore, Moquegua, PerúLA2748Soledad, Tarapaca, Chile
LA2759Tarapaca, Chile

A completely randomized experimental design was used with four replicates of ten plants each. Sowing was carried out on May 28, 2014, and the transplant (to 12-L polyethylene bags), 36 days after sowing. As substrate, volcanic sand (red tezontle) was used. The plants were irrigated with the nutrient solution proposed by Steiner (1984) at 25 % during the vegetative stage, at 50 % in flowering and at 100 % during fruit ripening. Additionally, Confidor® (imidacloprid) and Ampligo® (50 lambda cyhalothrin + 100 chlorantraniliprole) were used for the control of whitefly (Bemisia tabaci Gennadius), Captan® 50 plus (carboxamide) and Ridomil Gold® (metalaxyl-m + chlorothalonil) for late blight (Phytophthora infestans), and Amistar® (azoxystrobin) for early blight (Altenaria solani).

According to the tomato descriptors manual of the International Plant Genetic Resources Institute (IPGRI, 1996), 12 traits were evaluated: days to flowering (DF), days to maturity (DM), leaf length (LL, cm), leaf width (LW, cm), stem diameter (SD, cm), number of flowers per cluster (FC), cluster length (CL, cm), fruit weight (FW, g), fruit length (FL, cm), fruit width (FWi, cm), total soluble solids (TSS, °Brix) and number of seeds per fruit (SF). For the measurement of SD, FL and FWi, a Truper® digital standard and millimeter Vernier caliper was used. The LL, LW, CL traits were measured with a Truper® model FH-3M flexometer. The FW was obtained with an Ohaus® model SP2001 digital scale. An ATAGO® model PAL-1 digital refractometer with a range of 0.0 to 53.0 °Brix was used to evaluate TSS.

Average, range, coefficients of variation and standard deviation were calculated for each variable. Likewise, analysis of variance and Tukey’s range test (P ≤ 0.05) were performed with the Statistical Analysis System package (SAS Institute Inc., 2002). These tests were carried out in order to determine if there are significant statistical differences within the species evaluated and identify those accessions that had the highest and lowest parameters.

Results and discussion

The traits with the greatest variation among species were DF, FW and SF, with 45.57, 62.30 and 62.57 %, respectively. By contrast, those with the smallest variation were DM, FL, FWi and TSS with 14.70, 16.78, 18.07 and 17.82 %, respectively (Table 2).

Table 2
Descriptive statistics among and within species for the traits evaluated.
DF1DMLLLWSDFCCLFWFLFWiTSSSF
Generalm26.9682.6424.6314.540.9518.9723.092.531.341.577.1494.52
sd12.2912.157.484.190.195.628.221.570.220.281.2759.14
r42.0050.0032.0017.700.9822.0034.407.101.231.404.80217.30
cv45.5714.7030.3628.8119.8829.6035.6062.3016.7818.0717.8262.57
S. pennellii L.m33.3088.8020.5412.421.1913.7825.322.581.341.768.10197.00
sd1.378.532.440.810.072.181.170.720.050.051.4931.95
r3.6020.005.601.900.175.803.002.000.100.103.2084.00
cv4.139.6011.876.505.4815.844.6327.874.093.1118.4216.22
S. pimpinellifollium L.m13.8662.5719.2711.790.9815.8614.211.401.211.347.1126.44
sd1.8613.292.071.980.153.725.340.270.070.161.068.91
r5.0032.005.405.500.3610.0014.000.700.200.402.8022.00
cv13.4521.2410.7416.8115.2823.4337.5719.345.6812.0514.8433.71
S. habrochaites S.m43.0092.8836.4920.760.9721.7516.882.941.431.717.9184.25
sd7.254.796.434.250.073.242.801.760.210.281.4129.97
r25.0015.0018.4012.000.238.007.505.400.700.903.8080.00
cv16.865.1617.6120.487.1614.9016.5959.9414.8916.3517.8435.57
S. peruvianum L.m19.0883.1721.7712.500.8019.2528.573.431.431.636.62123.33
sd6.933.333.351.660.116.808.741.990.300.270.9032.40
r26.0011.0012.305.800.3722.0030.807.001.100.803.2089.00
cv36.344.0015.3713.2613.5635.3130.5857.8221.1116.3713.6726.27
S. chilense R.m30.7185.7124.2715.211.0022.1428.061.591.201.376.4751.71
sd9.203.155.092.760.275.463.580.200.150.291.0917.90
r25.009.0015.107.600.8213.0010.400.600.430.703.0061.00
cv29.943.6720.9618.1327.0424.6612.7612.3112.4421.3516.8534.60

In Solanum pennellii L. the traits with the greatest variation were FW, TSS, SF and FC with 27.87, 18.42, 16.22 and 15.48 %, respectively (Table 2). Likewise, significant statistical differences were observed (P ≤ 0.05) among accessions in DM, LL, SD, FW, SF and TSS (Table 3). These differences are the product of the ecological niche and adaptability of the accessions to each of the environments. In spite of the above, the accessions of S. pennellii were the ones with the least variation with respect to the other species, which agrees with the findings reported by Rick and Tanksley (1981), who found that S. pennellii L. has stable and less variable characteristics between individuals and accessions.

Table 3
Comparison of means among accessions of Solanum pennellii L. for 12 traits.
AccessionDF1DMLLLWSDFCCLFWFLFWiTSSSF
LA258033.3 az86 b22.6ab13.1 a1.22 ab16.9 a26 a1.7 c1.4 a1.7 a6.6 b192 ab
LA071634.6 a97 a18 b11.2 a1.25 a14.8 a25.4 a3.7 a1.4 a1.8 a6.5 b149 b
LA127231 a98 a18.8 ab13 a1.21 ab13.2 a24.6 a2.6 b1.3 a1.8 a9.3 a233 a
LA136734 a78 c19.7 ab12 a1.19 ab12.9 a23.8 a2.5 bc1.3 a1.8 a9.7 a218 a
LA127733.6 a85 b23.6 a12.8 a1.08 b11.1 a26.8 a2.4 bc1.3 a1.7 a8.4 a193 ab
DMSH6.36.44.94.30.156.280.70.350.231.444

Accessions LA2580 and LA0716 showed self-compatibility by presenting less variability with respect to the rest of the evaluated accessions, which presented self-incompatibility, in DF (2.7 %), SD (1.7 %), CL (1.6 %) and TSS (1 %) (Table 3). This agrees with what was reported by Mercer and Perales (2010), who indicate that the genetic variation of individuals is influenced by the type of reproduction, since individuals who have autogamy (self-compatibility) systems have less variation within the population and more between populations.

As for the quality of the fruit, Fernie et al. (2006) indicate that the increase in TSS in S. pennellii L. is the result of an increase in sucrose and glucose. The comparison of means showed that LA1272 and LA1367 have the highest amount of TSS (9.3 and 9.7, respectively) (Table 3). Therefore, these accessions can be used to improve the fruit quality of the elite tomato varieties.

On the other hand, among accessions of Solanum pimpinellifollium L., the traits with the greatest variation were DM (21.24 %), FC (23.43 %), CL (37.57 %) and SF (33.71 %) (Table 2). Likewise, there were significant differences (P ≤ 0.05) between the means of collections, with the exception of DF and FW (Table 4). Rick and Chetelat (1995) indicate that in S. pimpinellifollium L. the type of inflorescence, stem diameter, and days to flowering and maturity are very similar to those of the cultivated tomato, which makes this wild species the most used in tomato hybridization. In addition, both species are self-compatible and have red fruit, with the shape and size of the fruits being a relevant factor in genetic improvement (Rick & Forbes, 1975).

Table 4
Comparison of means among accessions of S. pimpinellifollium L. for 12 traits.
AccessionDF1DMLLLWSDFCCLFWFLFWiTSSSF
LA158416 az81 a22 a13.1 ab1.1 a15 a-c21.4 a1.3 a1.2 ab1.2 b6.5 c37.3 a
LA168915 a82 a21 ab13.2 ab1.1 a15 a-c21.6 a1.2 a1.2 ab1.2 b6.6 bc37. 7 a
LA123715 a54 cd20 ab14.5 a1.2 a12 c7.6 c1.8 a1.2 ab1.6 a6.5 c17.7 de
LA159313 a57 bc16.7 b9 b0.85 b13 bc10.7 bc1.1 a1.1 b1.2 b6.7 bc15.7 e
LA157615 a60 b16.6 b9.7 ab0.84 b20 ab13.3 b1.2 a1.2 ab1.3 b9.3 a21.7 cd
LA037312 a50 d18.6 ab11.2 ab0.94 b22 a13.4 b1.7 a1.3 a1.5 ab7.7 b24.7 bc
LA044211 a54 cd20 ab11.8 ab0.84 b14 a-c11.5 bc1.5 a1.3 ab1.4 ab6.5 c30.3 b
LSD5.44.74.24.80.186.65.70.830.250.281.26

Galiana-Balaguer, Roselló, and Nuez (2006) concluded that the TSS content in S. pimpinellifollium L. is high. In general, all the accessions of S. pimpinellifollium L. evaluated in the present work had higher TSS than those commonly presented by 'Saladette'-type hybrids, which oscillate between 3.9 and 5.2 °Brix (Bonilla-Barrientos et al., 2014; Hernández-Leal et al., 2013). Rodríguez, Pratta, Zorzoli, and Picardi (2006), when studying a population of recombinant lines derived from the cross between S. lycopersicum cv. Caimanta and the accession LA722 of S. pimpinellifollium L., found an increase of 1.6 °Brix and 19 days of shelf life with respect to the female parent. Therefore, accession LA1576, which presented 9.3 °Brix (Table 4), can be an alternative to improve the internal quality of tomato fruits.

With respect to Solanum peruvianum L., the traits with the greatest variability were DF, FC, CL, FW, SF and FL, with 36.34, 35.31, 30.58, 57.82, 21.11 and 26.27 %, respectively (Table 2). This variability is due to its reproduction system (allogamy). Given that cross-pollination is required in individuals, due to their self-incompatibility, they have greater variation compared to those with autogamy (Rick, 1988). The above can be observed in Table 2, where, with the exception of DM, the traits have coefficients of variation greater than 13 %. Accession LA1982 had later flowering (40 days) and ripening (89 days), greater leaf length (30.2 cm) and width (16 cm), and greater stem diameter (0.99 mm) and cluster length (41 cm) (Table 5); this suggests that LA1982 can be exploited in breeding programs of cultivated tomatoes.

Table 5
Comparison of means among accessions of S. peruvianum L. for 12 traits.
AccessionDF1DMLLLWSDFCCLFWFLFWiTSSSF
LA217216 cdz82 b-d19.4 ef11.9 a0.89 a-c9 e11.2 d1.2 e1.2 f1.3 d8.8 a83 c
LA198240 a89 a30.2 a16 a0.99 a20 bc41 a2.5 c-e1.2 d-f1.5 cd7.1 bc129 b
LA167718 b-d80 cd18.3 f11.6 a0.79 c-f31 a22.1 c8.2 a2.2 a1.9 ab6.7 b-d126 b
LA197318 b-d85 ab21.3 c-e13.4 a0.82 b-e18 b-e27 c1.8 de1.2 f1.4 cd6 de77 c
LA136021 b80 cd23.2 bc13.4 a0.92 ab25 ab39 ab2.5 c-e1.1 f1.4 cd7.5 b137 ab
LA010321 bc81 b-d23 b-d14.2 a0.79 c-f17 b-e26.8 c2.7 c-e1.5 b-e1.4 cd6.3 c-e79 c
LA044614 d83 bc20.7 e12.1 a0.71 e-g15 c-e24.5 c3.9 c1.5 b-d1.7 bc7.1 bc90 c
LA134615 d88 a20 ef10.6 a0.72 e-g20 bc28 c3.1 cd1.5 bc1.9 ab6.5 c-e152 ab
LA133615 d78 d21.2 c-e11. 6 a0.62 g19 b-d25.8 c6.1 b1.7 b2.1 a5.9 de155 ab
LA127417 b-d82 b-d21 de11.4 a0.67 fg17 b-e31 bc3.6 c1.4 c-f1.7 bc6.1 de166 a
LA136517 b-d85 ab25 b13.6 a0.86 b-d30 a42 a3.9 c1.5 b-e1.9 ab5.8 de148 ab
LA215217 b-d85 ab17.9 f10.2 a0.76 d-f10 de24.5 c1.7 de1.2 ef1.4 d5.6 e138 ab
LSD 64.72.260.139.29.21.60.260.290.930

Chetelat et al. (2009) reported that the number of seeds of the evaluated accessions of S. peruvianum L. varies between 22.5 and 50 seeds per fruit. These values are much lower compared to those obtained in this research, which varied between 77 and 166.

Most of the traits evaluated in the Solanum habrochaites S. accessions had coefficients of variation greater than 14 % (Table 2). The traits with the greatest variation were FW (59.9 %), SF (35.37 %) and LW (20.48 %). Among accessions there were significant statistical differences (P ≤ 0.05) in the traits evaluated, except for FC (Table 6). Five accessions of this species were characterized as self-compatible, while the other three were self-incompatible, so their propagation is through cross-pollination; this generates greater diversity (Peralta & Spooner, 2001). Only LA1223 produced fruit without the need to manually pollinate.

Table 6
Comparison of means among accessions of S. habrochaites S. for 12 traits.
AccessionDF1DMLLLWSDFCCLFWFLFWiTSSSF
LA240944 bcz85 e30.4 cd16.7 de1.01 ab26 a20.9 a1.9 d1.4 b-d1.5 de8.6 b74 cd
LA173146 a93 cd39 b22.9 a-c0.95 ab25 a14 cd2.5 cd1.5 b1.8 b8.5 b56 de
LA265047 b92 cd47.1 a25.9 ab0.98 ab18 a13.4 d2.8 bc1.4 bc1.8 b6.5 c57 de
LA215828 d90 d30.1 cd18.3 c-e0.87 b20 a14.8 b-d7.1 a1.9 a2.3 a9.1 b129 a
LA216753 a95 bc36.1 bc21.1 b-d0.94 b20 a18.7 a-c1.7 d1.3 d1.4 e6.6 c109 b
LA122343 bc90 d28.7 d14.7 e0.98 ab25 a15.6 b-d2 d1.3 cd1.5 de10.3 a88 c
LA177744 bc100 a39 b19.8 c-e0.91 b18 a17.9 a-d3.3 b1.4 bc1.7 bc7 c112 ab
GH081039 c98 ab41.5 ab26.7 a1.1 a22 a19.7 ab2.2 cd1.2 d1.7 cd6.7 c49 e
LSD4.73.86.55.60.1510.75.10.80.170.141.118

Carter, Gianiagna, and Sacalis (1989), in a study of tolerance to the Colorado beetle (Leptinotarsa decemlineata Say), concluded that the leaves of S. habrochaites S. contain zingiberene, a compound that promotes partial tolerance to this insect. In the accessions evaluated in the present work, LA2650 had the largest leaves, so this represents an alternative for tolerance to this pest, by associating leaf size with greater zingiberene production.

On the other hand, accession LA1777 has been widely used in tomato breeding, since it has alleles that increase fruit yield and TSS, detected on chromosomes 1 and 4, respectively (Bernacchi et al., 1998; Monforte & Tansksley, 2000). However, it was found that LA2158 had greater weight and size, statistically different from those of LA1777, so it could be a better alternative for the breeding program’s objectives.

Among the seven accessions of Solanum chilense R., it was found that the traits with the greatest variation were DF, LL, SD, FC, FWi and SF (Table 2) with significant differences (P ≤ 0.05) in most of them, except in FW (Table 7). LA1960 presented the highest value in number of seeds per fruit (82), while LA2748 and LA2759 were superior in the number of flowers per cluster (28). These traits are important for determining gene flow, and therefore the genetic and evolutionary structure of the species (Barrett, 2008).

Table 7
Comparison of means among accessions of S. chilense R. for 12 traits.
Accession DF1DMLLLWSDFCCLFWFLFWiTSSSF
LA293040 az86 a23.3 bc14.8 ab0.88 bc15 d34. 4 a1.6 a1.1 cd0.9 b5.5 c21 c
LA196040 a88 a23.6 bc10.6 b1 b19 b-d24 b1.7 a1.4 a1.6 a8.5 a82 a
LA275929 b87 a15.1 a-c12.7 ab0.96 bc28 a30 ab1.7 a1.3 ab1.5 a7.2 ab56 b
LA195837 a87 a27.7 a-c18.2 a0.9 bc25 ab29 ab1.2 a0.97 d1 b6.7 bc50 b
LA277830 b85 a30.2 a16.6 ab0.78 c24 a-c24.7 b1.6 a1.2 bc1.5 a6.1 bc53 b
LA274824 b88 a28.3 ab17.8 ab0.91 bc28 a28.3 ab1.8 a1.1 cd1.5 a5.7 c46 b
LA275015 c79 b21.7 c15.8 ab1.6 a16 cd26 b1.5 a1.3 bc1.6 a5.6 c54 b
LSD5.63.46.57.20.287.10.80.170.151.314

The species S. chilense R. is self-incompatible (Breto, Asins & Carbonell, 1993), which promotes cross-pollination, giving rise to a wide genetic diversity among and within the accessions. This explains the fact that the evaluated accessions of this species have eight traits with a coefficient of variation greater than 20 %; on the contrary, a self-compatible species such as S. pimpinellifollium L. presented only four traits with coefficients of variation greater than 20 %. Rick (1988) indicates that S. chilense R. has a wide diversity, since cross-pollination is required; therefore, these accessions represent an ample source of genes, not only for the traits evaluated, but also in the resistance to viral diseases (Griffiths & Scott, 2001, Stamova & Chetelat, 2000).

On the other hand, Chetelat et al. (2009) found 20 to 50 seeds in collections of S. chilense, S. peruvianum and S. pennellii made in the Atacama Desert in northern Chile, a range in which the values of the species evaluated here are found.

Conclusions

The accessions within species showed wide variation, which makes them a promising germplasm to be used in the development of breeding programs. In this sense, the accessions with better characteristics were LA1272, LA1367, LA1576 and LA177, which can be a source of new allelic versions to improve the fruit, while LA1982 and LA2650 can help improve the archetype of the cultivated tomato.

The traits with the greatest variation among species were DF, FW and SF, while those with the smallest variation were DM, FL, FWi and TSS. The species with the greatest differentiation were S. peruvianum L., S. chilense R. and S. habrochaites S., because they had higher coefficients of variation compared to the rest of the species evaluated.

Solanum pennellii L. presented the lowest coefficients of variation among accessions in most of the variables evaluated.

References

Barrett, S. C. H. (2008). Major evolutionary transitions in flowering plant reproduction: an overview. International Journal of Plant Sciences, 169(1), 1-5. doi: 10.1086/522511

Bernacchi, D., Beck-Bunn, T., Emmaty, D., Eshed, Y., Inai, S., Lopez, J.,… Tanksley, S. (1998). Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theoretical and Applied Genetics, 97(7), 170-180. doi: 10.1007/s001220051009

Bonilla-Barrientos, O., Lobato-Ortiz, R., García-Zavala, J. J., Cruz-Izquierdo, S., Reyes-López, D., Hernández-Leal, E., & Hernández-Bautista, A. (2014). Diversidad agronómica y morfológica de tomates arriñonados y tipo pimiento de uso local en puebla y Oaxaca, México. Revista Fitotecnia Mexicana, 37(2), 129-139. Retrieved from http://www.revistafitotecniamexicana.org/documentos/37-2/4a.pdf

Breto, M. P., Asins, M. J., & Carbonell, E. A. (1993). Genetic variability in Lycopersicon species and their genetic relationships. Theoretical and Applied Genetics, 86(1), 113-120. doi: 10.1007/BF00223815

Carter, C. D., Gianiagna, T. J., & Sacalis, J. N. (1989). Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. Journal of Agriculture and Food Chemistry, 37(5), 1425-1428. doi: 10.1021/jf00089a048

Cervantes-Moreno, R., Rodríguez-Pérez, J. E., Carrillo-Fonseca, C., Sahagún-Castellanos, J., & Rodríguez-Guzmán, E. (2014). Tolerancia de 26 colectas de tomate nativos de México al nematodo Meloidogyne incognita (KOFOID Y WHITE) chitwood. Revista Chapingo Serie Horticultura, 20(1), 5-18. doi: 10.5154/r.rchsh.2012.12.071

Chetelat, R. T., Pertuze, R. A., Faundez, L., Graham, E. B., & Jones, C. M. (2009). Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica, 167(1), 77-93. doi: 10.1007/s10681-008-9863-6

Fernie, A. R., Tadmor, Y., & Zamir, D. (2006). Natural genetic variation for improving crop quality. Current Opinion in Plant Biology, 9(2), 196-202. doi: 10.1016/j.pbi.2006.01.010

Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 1-52. doi: 10.1155/2007/64358

Galiana-Balaguer, L., Roselló, L., & Nuez, F. (2006). Characterization and selection of balanced sources of variability for breeding tomato (Lycopersicon) internal quality. Genetic Resources and Crop Evolution, 53(5), 907-923. doi: 10.1007/s10722-004-6696-6

Griffiths, P. D., & Scott, J. W. (2001). Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA1932. Journal of the American Society for Horticultural Science, 126(4), 462-467. Retrieved from http://journal.ashspublications.org/content/126/4/462.full.pdf+html

Gur, A., & Zamir, D. (2004) Unused natural variation can lift yield barriers in plant breeding. Plos Biology, 2(10), 1610-1615. doi: 10.1371/journal.pbio.0020245

Hernández-Bautista, A., Lobato-Ortiz, R., Cruz-Izquierdo, S., García-Zavala, J. J., & Chávez-Servia, J. L. (2014). Variación fenotípica, heterosis y heredabilidad de una cruza interespecífica de jitomate. Interciencia, 39(5), 327-332. Retrieved from http://uacm.kirj.redalyc.redalyc.org/articulo.oa?id=33930879011

Hernández-Bautista, A., Lobato-Ortiz, R., Cruz-Izquierdo, S., García-Zavala, J. J., Chávez-Servia, J. L., Hernández-Leal, E., & Bonilla-Barrientos, O. (2015). Fruit size QTLs affect in a major proportion the yield in tomato. Chilean Journal of Agricultural Research, 75(4), 402-409. doi: 10.4067/S0718-58392015000500004

Hernández-Leal, E., Lobato-Ortiz, R., García-Zavala, J. J., Reyes-López, D., Méndez-López, A., Bonilla-Barrientos, O., & Hernández-Bautista, A. (2013). Comportamiento agronómico de poblaciones F2 de híbridos de tomate (Solanum lycopersicum L.). Revista Fitotecnia Mexicana, 36(3), 209-215. Retrieved from http://www.revistafitotecniamexicana.org/documentos/36-3/3a.pdf

International Plant Genetic Resources Institute (IPGRI). (1996). Descriptores para el tomate Lycopersicon spp. Roma, Italia: Instituto Internacional de Recursos Fitogenéticos.

Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2(4), 379-392. Retrieved from http://www.jstor.org/stable/4251913

Ladizinsky, G. (1998). Plant evolution under domestication. Netherlands: Springer. doi: 10.1007/978-94-011-4429-2

Marín-Montes, I. M., Rodríguez-Pérez, J. E., Sahagún-Castellanos, J., Hernández-Ibáñez, L., & Velasco-García, A. M. (2016). Morphological and molecular variation in 55 native tomato collections from Mexico. Revista Chapingo Serie Horticultura, 22(2), 117-131. doi: 10.5154/r.rchsh.2016.03.008

Mercer, K. L., & Perales, H. R. (2010). Evolutionary response of landraces to climate change in centers of crop diversity. Evolutionary Applications, 3(5-6), 480-493. doi: 10.1111/j.1752-4571.2010.00137.x

Miller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80(4), 437-448. doi: 10.1007/BF00226743

Monforte, A., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi: 10.1139/g00-043

Peralta, E. I., & Spooner, D. M. (2001). Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] wettst. subsection Lycopersicon). American Journal of Botany, 88(10), 1888-1902. Retrieved from http://www.amjbot.org/content/88/10/1888.full.pdf+html

Peralta, I. E., & Spooner, D. M. (2007). History, origin and early cultiva tion of tomato (Solanaceae). In: Razdan, M. K., & Mat too, A. K. (Eds), Genetic improvement of So lanaceous crop, vol. 2: tomato (pp. 1-24.). Enfield, New Hampshire, USA: Science Publishers.

Rick, C. M. (1973). Potential genetic resources in tomato species: clues from observations in native habitats. In: Srb, A. M. (Ed.), Genes, enzymes, and populations (pp. 255-269). New York: Plenum Press.

Rick, C. M. (1988). Tomato-like nightshades: affinities, auto-ecology, and breeders’ opportunities. Economic Botany, 42(2), 145-154. Retrieved from http://www.jstor.org/stable/4255061

Rick, C. M., & Chetelat, R. T. (1995). Utilization of related wild species for tomato improvement. Acta Horticulturae, 412, 21-38. doi: 10.17660/ActaHortic.1995.412.1

Rick, C. M., & Forbes, J. F. (1975). Allozyme variation in the cultivated tomato and closely related species. Bulletin of the Torrey Botanical Club, 102(6), 376-384. doi: 10.2307/2484764

Rick, C. M., & Tanksley, S. D. (1981). Genetic variation in Solanum pennellii: Comparisons with two other sympatric tomato species. Plant Systematics and Evolution, 139(1-2), 11-45. doi: 10.1007/BF00983920

Rodríguez, G. R., Muños, S., Anderson, C., Sim, S. C., Michel, A., Causse, M., … van der Knaap, E. (2011). Distribution of SUN, OVATE and FAS in the tomato germplasm and the relationship. Plant Physiology, 156(1), 275-285. doi: 10.1104/pp.110.167577

Rodríguez, R. G., Pratta, G. R., Zorzoli, R., & Picardi, A. L. (2006). Evaluation of plant and fruit traits in recombinant inbred lines of tomato obtained from a cross between Lycopersicon esculentum and L. pimpinellifolium. Ciencia e Investigación Agraria, 33(2), 111-118. doi: 10.7764/rcia.v33i2.344

Spooner, D. M., Peralta, I. E., & Knapp, S. (2005). Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [ Solanum L. section Lycopersicon (Mill.) Wettst. ] ;. Taxon, 54(1), 43-61. doi: 10.2307/25065301

Stamova, B. S., & Chetelat, R. T. (2000). Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theoretical and Applied Genetics, 101(4), 527-537. doi: 10.1007/s001220051512

Statistical Analysis System (SAS Institute Inc.). (2002). User’s guide of Statistical Analysis System. N. C. USA: SAS Institute Inc. Cary.

Steiner, A. A. (1984) The universal nutrient solution. In: International Society for Soilless Culture (Ed.), Proceedings 6th International Congress on Soilless Culture (pp. 633-650). The Netherlands.

Taylor, I. B. (1986). Biosystematic of the tomato. In: Atherton I. G., & Rudich, I. (Eds.), The tomato crop: a scientific basis for improvement (pp. 1-34). London: Chapman and Hall.

Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nature Reviews Genetics, 2(12), 983-989. doi: 10.1038/35103590

Author notes

*Corresponding author: rlobato@colpos.mx, tel. (595) 20 200 ext. 1534.

HTML generated from XML JATS4R by