Durán, Gerardo; Sampaio, Camila; Romero, Victor; Gresnigt, Marco M.M.

Midline diastema closure using a lithium disilicate glass ceramic fragment: increased long-term color stability

International journal of interdisciplinary dentistry, vol. 15, no. 1, 2022, pp. 97-100

DOI: https://doi.org/10.4067/S2452-55882022000100097

Available in: https://www.redalyc.org/articulo.oa?id=610071148021
Midline diastema closure using a lithium disilicate glass ceramic fragment: increased long-term color stability”.

Gerardo Durán1,2*, Camila Sampaio3, Victor Romero4, Marco M.M. Gresnigt1,5

ABSTRACT

Nowadays, maxillary midline diastema (MMD) can be treated with different multidisciplinary approaches. When restorative dentistry is needed, glass-matrix ceramic materials is one of the best choices, since they present good optical behavior and high survival rates in the anterior dentition. To obtain an adequate interphase, and color integration are one of the main restorative goals, and for that purpose, specific finishing and polishing procedures must be employed to avoid staining and ensure the restoration’s color stability. In the case report presented in this article, a single lithium disilicate ceramic fragment was performed to close a MMD produced by the shape alteration of one of the maxillary central incisors. Also, the finishing and polishing procedure is discussed.

KEY WORDS:
Ceramic; Midline diastema closure; Ceramic fragment; Lithium disilicate; Partial laminate veneer.

INTRODUCTION

Closing a maxillary midline diastema are commonly asked for in the dental office by patients who seek for esthetic treatments. Different options are offered to close the diastema: direct and indirect restorations, ceramic laminate veneers, or partial laminate veneers, also called sectional veneers or ceramic fragments. To correctly treat a MMD, clinicians must be aware of its etiological causes, as well as the multidisciplinary approaches that can be performed1,2,3,4.

The progress in dental materials and the knowledge of bonding to dental substrates have made possible to restore MMDs using glass-matrix ceramics with little to no tooth preparation, conserving sufficient dental structure and thus ensuring optimal bonding to enamel, as well as allowing for long-lasting results5. For this purpose, ceramic laminate veneers have demonstrated strength, longevity, biocompatibility, and esthetics, and are also conservative. When a choice is given to the patient, most of them will choose the least amount of tooth structure removal. Patients are highly motivated to have no dental reduction while achieving as many of his treatment goals as possible4,5.

No-prep veneers is a trendy option due to its tooth structure minimum wear or maximum preservation, however, it has been frequently criticized for some potential limitations including esthetic outcomes and periodontal complications5,6. Non-prep partial laminate veneers, also called sectional or partial veneers, are a small fragment of glass type ceramic indicated for the treatment and reconstruction of teeth fractures, closing diastemas, re-anatomization of conoid teeth, restoring canine guidance and correcting tooth morphology7. High-quality no-prep veneers or ceramic partial laminate veneers also, can be more challenging to perform than conventional veneers, and a combination of good case selection, margins’ position, adhesive principles, clinical, and technician experience is paramount for a long-term result4,5.

As ceramic partial laminate veneer restorations do not need for a classical finishing line, the existing adhesive interface may be of concern since there is no clearly visible adaptation between the tooth substrate and the ceramic fragment, leading to possible biofilm accumulation and color pigmentations within the interface5.

Since there is a lack of evidence documented regarding this type of procedure, the following case report describes a step-by-step technique in which a MMD was restored using a lithium disilicate partial laminate veneer in a single maxillary central incisor.

CASE REPORT

A 27-year-old female patient presented with a chief esthetics complaint produced by the presence of maxillary midline diastema between both upper central incisors. After anamnesis, clinical examination, radiographs, photographs and study stone models, it was concluded by a digital analysis tool the alteration in shape and size of tooth 11 (Fig. 1). After explaining the patient about the advantages and disadvantages of every treatment alternative, it was decided to perform a single ceramic partial laminate veneer to restore tooth 11 in order to close the MMD.

A die model was obtained by a one-step impression with polyvinyl siloxane with two consistencies (Elite HD Putty Soft and Elite HD Light Body, Ivoclar Vivadent). In which a lithium disilicate partial laminate veneer (IPS e.max Ceram, Ivoclar Vivadent) was made using an A1 HT ingot and characterized by cut-back technique with a nano-fluorapatite ceramic (Power Enamel, IPS e.max Ceram, Ivoclar Vivadent) (Fig. 2).

The fitting and adjustment of the ceramic restoration was proved clinically using a translucent try-in paste (Vanolink Esthetic Try-In Paste Neutral, Ivoclar

Figure 1. A: Initial situation. The patient presented with a maxillary midline diastema. B: Digital planning results showed shape alteration in tooth 11. Restoring tooth 11 was planned with a ceramic fragment to close diastema between both upper central incisors.

Vivadent), in which a lithium disilicate partial laminate veneer (IPS e.max PRESS, Ivoclar Vivadent) was made using an A1 HT ingot and characterized by cut-back technique with a nano-fluorapatite ceramic (Power Enamel, IPS e.max Ceram, Ivoclar Vivadent) (Fig. 2).
Vivadent) which also allowed the verification of color integration between the restoration and the tooth enamel surface (Fig. 3A).

Bonding procedure was performed under rubber dam isolation (Fig. 3). Enamel surface was first cleaned with airborne-particle abrasion (Aquacare, Velopex). 35% phosphoric acid was then applied for 30 seconds (Ultra-etch, Ultradent Products Inc.), rinsed-off with water for the same time, and air-dried. A thin layer of a 2-step adhesive system (Optibond S, Kerr) was softly applied and gently air-dried to evaporate the solvents (Fig. 3B). No light curing was performed at this time, leaving the adhesive uncured.

The inner surface of the ceramic restoration was conditioned with 9.5% hydrofluoric acid for 20 seconds (Porcelain Etchant, Bisco), and cleaned with 97% alcohol under ultrasonic bath for 5 minutes. Silane coupling agent was applied and heated at 100°C for 60 seconds (Monobond Plus, Ivoclar Vivadent), a thin layer of ceramic bonding was applied (Hellobond, Ivoclar Vivadent) and a small amount of resin cement was charged into the conditioned surface (Variolink Esthetic LC Neutral, Ivoclar Vivadent). No light curing was performed at this stage.

Once the teeth surface and the ceramic restoration were conditioned, the restoration was positioned over the tooth using light finger pressure (Fig. 3C). The excesses of resin cement were eliminated using a clean brush. 30 seconds of light curing at low power mode (650 mW/cm² of intensity, Bluephase, Ivoclar Vivadent, Liechtenstein) was performed to ensure the maintenance of the correct positioning of the restoration, and then a final 60 seconds of high power program (1200 mW/cm², Bluephase, Ivoclar Vivadent, Liechtenstein) was done to ensure the correct degree of conversion of monomers of the resin cement (Fig. 3D). Resin cement excesses were cleaned with a brush and patient was supposed to be back after a week for polishing, however she did not show up for the control session.

After 3 months of the adhesive luting procedure, ceramic partial laminate veneer margins and the tooth was presented with staining on its surface (Fig. 4), thus, finishing and polishing procedures needed to be performed to bring back the quality and esthetic of the restoration. The finishing procedure started using a diamond bur at high speed to reduce vestibular volume of the restoration (Fig. 5), verifying the maintenance of tooth shape (Komet 8850.314.016), being careful for not touching sound enamel. A coarse diamond wheel for ceramics was used to smoothen the fragment restoration and the interface surface at low speed using soft pressure (Blue Coarse Twist, Diapol® Twist RA, EVE, Germany) (Fig.6A), followed by a medium diamond cup (Medium cup Diapol®, EVE Germany) (Fig.6B) and a fine diamond wheel for surface gloss of the interface (Yellow Coarse Twist, Diapol® Twist RA, EVE, Germany) (Fig.6C). A final image was taken after 18-months for controlling the restoration, showing esthetic margins and perfect color stability (Fig. 7).

DISCUSSION

Maxillary midline diastemas can be treated with different restorative approaches. The present clinical case described the use of a glass-matrix...


Figure 7. 18-month control. Final result.

CONCLUSION

Ceramic partial laminate veneers, sectional veneers or ceramic fragments are a suitable option to restore maxillary midline diastema with optimal esthetic results when indicated. Bonding procedures must be highly respected to increase survival rates, and polishing procedures must be performed using the correct polishing system indicated for the specific ceramic type selected. The authors strongly indicated that, when performing ceramic fragments, appropriate polishing must be performed in the interface after cementation, and periodic controls and proper maintenance of the restorations must be performed for assurance of long lasting results.

DISCLOSURE

The authors do not have any financial interest in any of the companies whose products are included in this article.

ACKNOWLEDGEMENTS

None.

References


