

International journal of interdisciplinary dentistry

ISSN: 2452-5596 ISSN: 2452-5588

Sociedad de Periodoncia de Chile Implantología Rehabilitación Odontopediatria Ortodoncia

Moreno, José; Morgan, Pauline; Zeballos, Jessica; Sepúlveda, Ricardo; Matamoros, Cristian; Reyes, Christopher Extracapsular dissection and minimally invasive procedures of primary benign parotid tumours: Case series International journal of interdisciplinary dentistry, vol. 15, no. 3, 2022, pp. 227-229 Sociedad de Periodoncia de Chile Implantología Rehabilitación Odontopediatria Ortodoncia

DOI: https://doi.org/10.4067/S2452-55882022000300227

Available in: https://www.redalyc.org/articulo.oa?id=610075181013



Complete issue

More information about this article

Journal's webpage in redalyc.org



Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal

Project academic non-profit, developed under the open access initiative

DOI: 10.4067/S2452-55882022000300227

# **CLINICAL REPORT**



# Extracapsular dissection and minimally invasive procedures of primary benign parotid tumours: Case series.

José Moreno<sup>1</sup>, Pauline Morgan<sup>2</sup>, Jessica Zeballos<sup>1</sup>, Ricardo Sepúlveda<sup>1</sup>, Cristian Matamoros<sup>1</sup>, Christopher Reyes<sup>3\*</sup>

- 1. Oral and maxillofacial surgery specialist, Libertador Bernardo O'Higgins Regional Hospital, Rancagua, Chile.
- 2. Oral and maxillofacial pathology specialist, Libertador Bernardo O'Higgins Regional Hospital, Rancagua, Chile.
- 3. Oral and maxillofacial surgery resident, Facultad de Odontología, Universidad Andrés Bello, Santiago, Chile.
- \* Corresponding author: Christopher Reyes Araya | Address: Av Libertador Bernardo O'Higgins 3065, Rancagua, Chile. | Phone: +569 9322 5545 | E-mail: cgreyesaraya@gmail.com Work received on 04/12/2020. Revised work 16/05/2021 Approved for publication on 19/06/2021

#### **ABSTRACT**

Extracapsular dissection is an old technique use for the removal of benign parotid tumours, which is not generally chosen as the first treatment option due to the association of recurrences in the past but is currently considered again accord to the aesthetic requirements of the patients. The general trend in the last decade is to return to minimally invasive procedures for this type of lesions, which are mainly conditioned by the pleomorphic adenoma and its positive margins in its capsule. By this, the purpose of this case series study is to analyze those patients diagnosed with benign parotid tumors and treated by extracapsular dissection in a tertiary hospital in Chile between 2018-2020.

#### **KEY WORDS:**

Parotid neoplasms; Postoperative complications; Parotid gland; Parotid Region.

Int. J. Inter. Dent Vol. 15 (3); 227-229, 2022.

#### INTRODUCTION

Parotid neoplasms represent 2-3% of head and neck tumors(1), and 80% of them are associated with salivary glands, although they are mostly benign lesions (80%). The clinical signs include an asymptomatic, longlasting, and slow increase in volume, and the majority appear with the diagnosis of pleomorphic adenoma (PA) as the most common lesion(2). Treatment for these injuries is surgical, and within the widely used techniques, superficial parotidectomy (SP) has prevailed in last decades as the leading management. Indeed, SP (also called suprafacial or lateral parotidectomy) consists in removing the superficial parotid lobe (where the lesion is in most cases) with excellent results in terms of decreased recurrence. Nevertheless, there are postoperative complications, such as aesthetic alterations, temporary or permanent facial paralysis, local seroma, Frey's syndrome, and preauricular pain(3).

On the other hand, extracapsular dissection (ECD), a minimally invasive approach for benign parotid lesions, shows excellent results in terms of aesthetics. Developed in 1940-1960, this technique consists in a "meticulous dissection just outside the tumour capsule where an excision plane is generally found"(4). Furthermore, has been considered for its limited temporal paresthesia since facial nerve dissection is not necessary<sup>(5)</sup>. This surgical procedure is recommended for primary, superficial lesions with diameters not exceeding 4 cm. As they increase in size, a more extensive resection like superficial parotidectomy (as SP), is necessary. The search for a "gold standard" technique persists for benign parotid tumours(6), especially those without prior intervention. By this, the main objective of this series case study is to analyze and classify subjects diagnosed with primary benign parotid tumour (PBPT) and treated with ECD by the maxillofacial surgery department at Libertador Bernardo O'Higgins Regional Hospital (LBORH), in Rancagua (Chile), between the years 2018 and 2020.

## **MATERIAL AND METHODS**

This study followed the Declaration of Helsinki on Medical Protocols and Ethics, and the LBORH Regional Ethical Review Board approved the study. The inclusion criteria were the availability of physical and electronic clinical records of patients admitted to the LBORH, diagnosis with superficial PBPT, and removal by ECD between January 2018 and January 2020.

## Presurgical planning

The care protocol for patients began with a fine needle aspiration biopsy made by a head and neck surgery specialist and the benign tumour confirmation was analyzed through a specialist in oral and maxillofacial pathology. Then, a referral to one of the four specialists in maxillofacial

surgery in the dental-maxillofacial department is made for the verification of data in clinical records, updating of physical examinations, and request complementary examinations (primary-secondary hemostasis, biochemical profile, baseline blood glucose and electrocardiogram).

For imaging analysis, a CT of the head-neck region with contrast is the "gold standard" along with parotid ultrasound. Magnetic resonance imaging is also required by the specialist to rule out a compromise of the deep parotid portion. A registered nurse Romina Figueroa then conducts an interview, verifies documents, and delivers oral and written indications before the intervention, which are confirmed by telephone one day before surgery. The nurse is in charge of managing the preparation with the central ward unit.

#### Anaesthesia and surgical protocol

All procedures are under general anaesthesia with orotracheal intubation. The first option for antibiotic prophylaxis is intravenous cefazolin (1 g) or clindamycin (600 mg) in the case of penicillin allergy. In all procedures participated the surgeon with the most experiences and one of the three maxillofacial specialists from the team as an assistant surgeon. The approach used in all cases was the modified Blair incision, which consists of an incision through preauricular area extends to the mastoid process and posterior border of ramus, or the submandibular region in major lesions<sup>(7)</sup>. Posteriorly, the dissection through ECD is without the use of an intraoperative nerve-monitoring system. After ensuring hemostasis using a Valsalva manoeuvre, the parotid capsule is closed, followed by plane closure with polyglycolic acid 4-0. For the surface plane, Nylon 5-0 is the first option in a transdermal technique (figures 1-4).

The post-surgical pharmacological treatment consisted of cefazolin (1 g), metamizole (1 g), and ketorolac (30 mg) every 8 hours intravenously for two or three days. For lengthy procedures (2 hours or more), dexamethasone (4 mg) was added every 8 hours for the first 24 hours after the operation. Finally, the discharged of patients are in 72 hours with clinical monitoring at 3, 7, and 14 days, followed by 1, 2, and 6 months, and then every year for discharge or the planning of subsequent monitoring if necessary.

### **RESULTS**

A total of 18 patients (13 women and 5 men) treated between 2018 and 2020 met the inclusion criteria. The age range was 20-72 years. The dimensions of the lesions were within the range of 11 to 50 mm. The primary lesion was PA (n: 9). The side most frequently affected was left in 12 cases. The capsules were kept unscathed in 14 cases. Complications were observed in three patients and included oedema, a sialocele, and hypoesthesia of the area accompanied by recurrence (Table 1).



Figure 1. The lesion is reached by access through a modified Blair incision.



Figure 2. Visualization of the tumour through the parotid capsule.




Figure 3. Exeresis of the lesion (area of prehension with instruments with perforation of tumour capsule).



Figure 4. Closure of the parotid capsule, with subsequent repositioning of flaps by planes.

#### DISCUSSION

In the last decade, ECD begins to settle as a valuable technique for PBPT as an essentially conservative approach(8-10). As an option for SP, it shows high effectiveness, especially in superficial, mobile and isolated lesions. Indeed, in a retrospective series of 377 patients (Erlangen, Germany)(11), only 2% of patients developed permanent facial nerve injury. This approach applies to deep lobes lesions (Osaka, Japan) even without recurrence or permanent nerve lesion in a media of 61 months of control(12). In specific tumours like solitary cystadenolymphomas, similar data is appreciable in a retrospective report of 327 patients treated with ECD. The occurrence rate of ipsilateral metachronous tumours was 3.1% from the previous study, with a mean follow-up of 108.4 months<sup>(13)</sup>. Regardless of recurrence, authors report that it is similar to SP, even with trials without reappearance like in Guy's Hospital (London, England), with 156 treated patients and a range size lesions from 0.5 to 7.5 cm<sup>(14)</sup>. The main recommendation for this technique is adequate prior training. The four maxillofacial specialists in the hospital respected this consideration.

Regarding the use of intraoperative continuous facial nerve monitoring (IFNM), immediate and late nerve dysfunction incidences are similar in patients treated with or without this system in the SP technique(15). On the other hand, all the ECD techniques investigations included here used IFNM(8-14), unlike this series case. Still, the complications were similar in comparison to the retrospective study with the largest population (n: 1359) and 16 years of experience, with reports of 68 temporary postoperative paralyses (5%), Frey's syndrome (2.3%), recurrence (0.8%) and permanent facial palsy (0.3%). In this study, one patient (5%) developed a sialocele, and another (5%) oedema and temporal hypoesthesia. Both patients had total recovery in the first month. However, a third patient developed a recurrence associated with a dermoid cyst in the fourth month, highlighting that the capsule unscathed at the time of its removal. Fortunately, was programmed a new intervention with excellent results until the last follow-up. On the other hand, due to the lack of subject and a limited follow-up period (30.8 months), continuously control is necessary to establish a successful treatment considering a minimum follow-up of 10 years for patients.

#### CONCLUSIONS

In trained surgeons, ECD is a favourable indication in superficial and solitary deep PBPT for size lesions up to 50 mm accord to our results and publications available, with minimal complications of recurrence and hypoesthesia, even without IFNM. Additionally, a long-term follow-up control is necessary for patients treated.

#### INTEREST CONFLICT

The authors have no conflict of interest.

Table 1: Resume of patients treated between 2018-2020

| Genre | Age | Diameter      | Histopathological diagnostic | Side  | Capsule alterations | Complications                 | Control (months) |
|-------|-----|---------------|------------------------------|-------|---------------------|-------------------------------|------------------|
| М     | 65  | Not specified | Cystadenoma                  | Left  | -                   | -                             | 37               |
| F     | 20  | 45 mm         | Pleomorphic adenoma          | Left  | Perforated          | -                             | 37               |
| М     | 41  | 50 mm         | Pleomorphic adenoma          | Left  | Perforated          | Sialocele                     | 36               |
| F     | 35  | 35 mm         | Pleomorphic adenoma          | Right | Perforated          | -                             | 36               |
| F     | 58  | 40 mm         | Pleomorphic adenoma          | Left  | -                   | -                             | 35               |
| М     | 63  | 30 mm         | Cystic hygroma               | Left  | -                   | -                             | 34               |
| F     | 68  | 40 mm         | Cystadenoma                  | Left  | -                   | -                             | 33               |
| F     | 47  | 25 mm         | Basal cell adenoma           | Left  | -                   | -                             | 33               |
| F     | 37  | 25 mm         | Pleomorphic adenoma          | Left  | -                   | -                             | 33               |
| М     | 66  | 40 mm         | Whartin's Tumor              | Right | -                   | -                             | 32               |
| F     | 40  | 11 mm         | Pleomorphic adenoma          | Left  | -                   | -                             | 32               |
| F     | 53  | 30 mm         | Whartin's Tumor              | Left  | -                   | -                             | 30               |
| F     | 48  | 30 mm         | Pleomorphic adenoma          | Left  | Perforated          | -                             | 28               |
| М     | 69  | Not specified | Pleomorphic adenoma          | Right | -                   | Edema, hypoesthesia           | 27               |
| F     | 45  | Not specified | Dermoid cyst                 | Right | -                   | -                             | 27               |
| F     | 48  | 28 mm         | Pleomorphic adenoma          | Left  | -                   | -                             | 26               |
| F     | 47  | 30 mm         | Ancient schwannoma           | Left  | -                   | -                             | 20               |
| F     | 72  | 30 mm         | Dermoid cyst                 | Right | -                   | Recurrence (the fourth month) | 19               |

Abbreviations: M (male), F (female), mm (millimeters).

Foot-notes: Not specified (Not describes in the histopathological inform).

#### Reference

- 1. Lin CC, Tsai MH, Huang CC, et al. Parotid tumors: a 10 year experience. Am J Otolaryngol. 2008;29:94-100.
- 2. Nagler RM, Laufer D. Tumors of the major and minor salivary glands: review of 25 years of experience. Anticancer Res. 1997;17:701-7.
- 3. Ghanem T. Parotid defects. Facial Plast Surg Clin North Am. 2009;17:263-9.
- 4. Gleave EN, Whittaker JS, Nicholson A. Salivary tumours--experience over thirty years. Clin Otolaryngol Allied Sci. 1979;4:247-57.
- 5. Leverstein H, van der Wal JE, Tiwari RM, van der Waal I, Snow GB. Surgical management of 246 previously untreated pleomorphic adenomas of the parotid gland. Br J Surg. 1997;84:399-403.
- 6. Martin H, Jayasinghe J, Lowe T. Superficial parotidectomy versus extracapsular dissection: literature review and search for a gold standard technique. Int J Oral Maxillofac Surg. 2020;49:192-9.
- 7. Mahmmood VH. Buccal branch as a guide for superficial parotidectomy. J Craniofac Surg. 2012;23:447-9.
- 8. Mantsopoulos K, Koch M, Klintworth N, Zenk J, Iro H. Evolution and changing trends in surgery for benign parotid tumors. Laryngoscope. 2015;125:122-7
- 9. Mantsopoulos K, Scherl C, Iro H. Investigation of arguments against properly indicated extracapsular dissection in the parotid gland. Head Neck. 2017;39:498-502.

- 10. Schapher M, Koch M, Agaimy A, Goncalves M, Mantsopoulos K, Iro H. Parotid pleomorphic adenomas: Factors influencing surgical techniques, morbidity, and long-term outcome relative to the new ESGS classification in a retrospective study. J Craniomaxillofac Surg. 2019;47:1356-62.
- 11. Klintworth N, Zenk J, Koch M, Iro H. Postoperative complications after extracapsular dissection of benign parotid lesions with particular reference to facial nerve function. Laryngoscope. 2010;120:484-90.
- 12. Fukushima M, Miyaguchi M, Kitahara T. Extracapsular dissection: minimally invasive surgery applied to patients with parotid pleomorphic adenoma. Acta Otolaryngol. 2011;131:653-9.
- 13. Mantsopoulos K, Goncalves M, Koch M, Iro H. Extracapsular dissection for warthin tumors despite the risk of ipsilateral metachronous occurrence. Laryngoscope. 2018;128:2521-4.
- 14. George KS, McGurk M. Extracapsular dissection--minimal resection for benign parotid tumours. Br J Oral Maxillofac Surg. 2011;49:451-4.
- 15. Graciano AJ, Fischer CA, Coelho GV, Steck JH, Paschoal JR, Chone CT. Facial nerve dysfunction after superficial parotidectomy with or without continuous intraoperative electromyographic neuromonitoring: a prospective randomized pilot study. Eur Arch Otorhinolaryngol. 2018;275:2861-8.