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Methodology for Classifying the Structural State of
Uninspected Pipes in Sewer Networks Based on Support
Vector Machines

Metodologia para clasificar la condiciéon estructural de tuberias no
inspeccionadas de las redes de alcantarillado basada en maquinas de
soporte vectorial

Nathalie Hernandez®!, Miguel A. Cafién?, and Andrés Torres?

ABSTRACT

The nearly unmitigated growth of cities has placed ever-greater pressure on urban water systems regarding climate change,
environmental pollution, resource limitations, and infrastructure aging. Therefore, the development of methods to classify and assess
the structural state of urban drainage infrastructure becomes very important, given that they can be used as support tools for proactive
management plans. This paper presents a method for predicting and classifying the structural state of uninspected sewer pipes using
Support Vector Machines, based on the physical characteristics, age, and geographical location of the pipes. According to the results,
the methodology: (i) correctly classified more than 75% of uninspected pipes; (ii) identified pipes in critical structural states, with low
importance prediction error for 69% of pipes; and (iii) provided a guide for establishing the number or percentage of pipes that require
inspection or intervention.
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RESUMEN

El crecimiento casi descontrolado de las ciudades ha puesto una creciente presion en los hidrosistemas urbanos en términos de cambio
climatico, contaminacion ambiental, limitaciones presupuestales y envejecimiento de la infraestructura. Por lo tanto, la exploracion de
diferentes métodos para clasificar y evaluar la condicion estructural de los alcantarillados ha adquirido gran importancia, dado que estos
pueden ser utilizados para herramientas de apoyo para planes de gestion proactiva. Este trabajo presenta un método para predecir
e . / . ; . P :
y clasificar la condicion estructural de tuberias de alcantarillado no inspeccionadas usando Maquinas de Soporte Vectorial basado
en las caracteristicas fisicas, edad y ubicacion geogréfica de las tuberias. De acuerdo con los resultados, la metodologia: (i) clasifico
4 0, ’ . . A oL !’ ’ . . Tee
correctamente mas del 75 % de tuberias no inspeccionadas; (ii) identifico las tuberias que estaban en condiciones estructurales criticas,
con errores de prediccion de baja importancia para el 69 % de las tuberias; y (iii) proporciond una guia para establecer el nimero o
porcentaje de tuberias que requieren inspeccion o intervencion.

Palabras clave: Mdquina de Soporte Vectorial, gestion patrimonial de alcantarillados, condicion estructural, sistemas de alcantarillado
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other factors have been reported, including climate change,
land-use change, and demographic growth (Kleidorfer et al.,
2013). Numerous investigations have shown that older pipes
have been structurally under-designed and thus do not meet
the demands of urban growth. Likewise, past construction
practices have been inadequate. These two factors have led
to frequent failures in sewer pipes (Saegrov and Schilling,
2002). In short, underground urban service networks are
considered to be complex systems due to the action and
interaction of the aforementioned factors (Hao et al., 2012),
which have not been thoroughly studied (Lee et al., 2013).

In light of the above, urban system stakeholders are faced
with important challenges in order to achieve a rational,
efficient, effective, and sustainable management and
maintenance of this infrastructure, while also considering
the diversity of actors involved (budget limitations,
environmental regulations, and urban water infrastructure
benefits) (Baik et al., 2006; Cardoso et al., 2012; Younis and
Knight, 2012). Globally, some methodologies have been
proposed for managing urban drainage systems, namely
project CARE-S (Computer Aided Rehabilitation of Sewer and
Storm Water Networks), which was integrated by and for
various European cities. CARE-S entails methods and models
for three levels of long-term sewage management (Seegrov
and Schilling, 2002). Mashford et al. (2010) developed
a methodology for the city of Adelaide (Australia) using
information from CCTV inspections to classify the structural
condition of pipes via Support Vector Machines (SVMs) and
Artificial Neural Networks (ANNs). Machine learning tools
have shown promise for predicting the service condition of
sewer networks. These tools are based on a few physical
pipe characteristics (diameter, pipe age, type of road over
sewer pipelines, slope, and top of pipe level) (e.g., Mashford
et al., 2010). Moreover, various studies have shown that
classifying through SVMs is adequate, and robust variables
with non-linear processes are used. All this, in comparison
with conventional methods such as ANNs (Zhang et al.,
2009) and Kernel independent component analysis (Zhang
et al., 2008).

In many countries, including Colombia, stakeholders have
traditionally addressed the maintenance and operation of
assets with a reactive focus (that is, acting after the failure).
However, reactive maintenance can be significantly costlier
than proactive maintenance (Rodriguez et al., 2012).
Wirahadikusumah et al. (2001) identify the primary reason
for relying on a reactive approach: the lack of monitoring
data. For example, in cities such as Bogota and Medellin,
more than 90% of the structural and operational sewer
assets are unknown (Hernandez et al., 2020). This lack limits
the development of predictive models and assessments of
the effects of changes in maintenance policies (Rodriguez et
al., 2012). Despite the diversity of support models for the
proactive maintenance of sewer systems worldwide (Saegrov
and Schilling, 2002; Mashford et al., 2010), the majority
assume complete and timely information and, therefore,
have only limited applicability in Colombia, given the scarcity
and low coverage of sewer inspections, as well as the
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unsecured quality of any inspections performed (Rodriguez
et al., 2012). Thanks to the great advantages of predicting
through SVMs reported by the literature and the need to
know the structural condition of the whole sewer network,
this paper proposes a methodology based on Support Vector
Machines to predict the structural condition of uninspected
sewer assets. The methodology aims to provide support
tools to the stakeholders’ decision-making in order to plan
rehabilitation and investment strategies. This contributes to
developing more rational plans to invest in and rehabilitate
the sewer network, leaving reactive maintenance aside and
seeking to achieve sewer asset management (proactive
maintenance).

Materials and methods

In 2001, a Colombian standard (EAAB, 2001) was developed
to evaluate already inspected sewer networks via CCTV for
the city of Bogota. This standard assesses structural and
operational conditions based on the failure types, as well
as their severity, that are found during the inspections, thus
assigning a defined score. According to the assessment
of structural conditions, all failure scores are added
and categorized into a grade for every single pipe. This
categorization could be used for decision-making related to
rehabilitation and preventive actions (Table 1).

Table 1. Structural states based on structural score NS 058 and
description

Score | Condition Description
<<10 1 Without structural failures
10-39 2 Failures of low importance
40-79 3 Fallures. that can generate structural and
hydraulic problems
Failures of high importance; preventive and/
80-164 4 . .
or corrective steps required
Collapsed or nearly collapsed pipes;
165+ 5 - .
emergency decisions required

Source: Adapted from EAAB (2001)

The CCTV data are related to inspections carried out between
2007 and 2011 by Bogota’s water and sewerage systems
company, (Empresa de Acueducto y Alcantarillado de
Bogotd, EAB) (Figure 1). This database contains the following
information on the pipe: physical characteristics, location,
score (assessment), and structural condition (grade). In
total, 3563 inspections of waste and storm water pipes (local
and main network) were included in the database.

According to data from the database and the literature
(Davis et al., 2001; Kleidorfer et al., 2013), the following
variables may be related to the structural condition of pipes:
(i) slope, (ii) diameter, (iii) material type, (iv) age, (v) ground
level at the beginning of the pipe, (vi) ground level at the
end of the pipe, (vii) depth at the beginning of the pipe, (viii)
depth at the end of the pipe, (ix) surface type at ground level,
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(x) sewerage, and (xi) geographical coordinates (longitude,
latitude). An exploratory statistical analysis of the inspected
pipe data was performed to determine the relationship
between these variables and the structural condition variable
(Kruskal-Wallis test). The variables chosen were categorized
to perform statistical tests (e.g., the Wilcoxon test), which
require categorical variables. Thus, each variable was
categorized according to the 33 and 67 percentiles.
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Figure 1. Map of sewer pipes in Bogotd D.C.
Source: Authors

The data did not have a normal distribution or variance
homogeneity according to the Shapiro-Wilk and Bartlett
tests, respectively. Therefore, the Kruskal-Wallis test was
performed. Kruskal-Wallis is a nonparametric alternative
to ANOVA and was used to determine which variables
significantly influence the structural score of the pipes.
According to this test, the variables with significant
influence (p-value<0,05) on structural score variability were
age, material, slope, diameter, surface type, depth 2, pipe
type, longitude, latitude, ground level 1, and ground level 2.
With these results, the Wilcoxon test was applied for each
chosen variable in order to determine significance difference
(p-value<0,05) between variable factors and structural
score (Table 2): (i) slope, with significantly lower scores
for low slopes (<0,4113); (ii) diameter, with significantly
higher scores for pipes with small diameters (< 0,2m) and
significantly lower for pipes with large diameter (> 2,4m);
(iii) ground level 1 and 2, with significantly higher scores for

category “2_medium” ground levels (between 2555-2606 m
above sea level); (iv) depth 2, with significantly lower scores
for shallow pipes (<1,13 m); (v) age, with significantly higher
scores for category “2_medium” (between 30 and 50 years)
and significantly lower for category “3_new” (<30 years);
(vi) longitude, with significantly higher scores for the city’s
west side (74,06-74,02°); (vii) latitude, with significantly
higher scores for the city center (4,62-4,696°); (viii) surface
type, with significantly higher scores for pipes under asphalt
pavement; (ix) sewerage, with significantly higher scores
for higher local wastewater pipes; and (x) material, with
significantly higher scores for vitrified clay.

Table 2. Variable relationships that show significance differences
(p-value < 0,05) in the Wilcoxon test.

Structural Scores Variable

Low slopes (slope <0.4113)
Low Long pipes (> 2.4 m)
Shallow pipes (depths < 1.13 m)

Small pipes (diameter < 0.2 m)

Intermediate ground levels (2555 — 2606 msl)
Medium ages (30 years — 50 years)

) City’s west side (longitude: 74,06°-74.02°)
High City center (latitude: 4.62° - 4.696°)
Pipes under asphalt pave (Surface type)

Local wastewater pipes (Sewerage)

Vitrified clay pipes (Material)

Source: Authors

These results confirm the findings of other studies that
estimated variables directly influencing the structural state of
pipes. For example, vitrified clay pipes with small diameters
had greater structural scores, which is consistent with findings
reported in Nifo et al. (2012). Similarly, slope and ground level
were the variables most closely associated with the structural
state of pipes (Lopez-Kleine et al., 2016). Nevertheless, certain
tendencies were identified: the cause-effect rules given by the
multivariate and nonlinear nature of structural scores cannot be
formulated. Thus, tools that account for these characteristics
must be utilized, such as SVMs.

SVMs are based on a supervised statistical learning method
within the kernel family. This family consists of a class of
algorithms for pattern analysis that finds and analyzes
general types of relations (e.g., clusters, ranges, principal
component correlations, and classifications) in databases
(Shawe-Taylor and Cristianini, 2004). With the application of
kernel functions, SVMs increase the data dimensionality to
find a hyperplane that could separate them correctly (Jahed
et al., 2020; Hernandez et al., 2021). SVMs are used to
solve nonlinear classification problems by means of pattern
recognition and function estimation. The principal problem
addressed using SVMs is the fit of a function describing
a relation between an object X and response Y. Initially,
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SVMs are used for two-category classifications, where
Y is the categorical vector (or binary variable), by using S
(the dataset). If the objects are within the P dimension, the
relationship is described by Equation (1):

y=f(x)=wx+b (1

The hyperplane equation is defined by Equation (2):

\b+w’x =1 )

where b is the bias, w a weight vector, and x the support
vectors. The distance between x and the hyperparameter is
defined by Equation (3), and the hyperparameter margin is
defined by Equation (4):

_ 1
14

|b +wx

18]

M=2

18]

The minimization function that maximizes the
hyperparameter margin is defined by Equation (5):

minL(f)= %"/3"2 depending of y, (w’xi +b) >1vi  (5)

w,b

where v is each category, and Lagrange multipliers are used
to find the values w and b (Duda et al., 2012; Huang et al.,
2018).

SVMs allow for classifications and regressions with
parametric and nonparametric data (Lopez-Kleine and
Torres, 2014). The kernlab library (Karatzoglou et al.,
2004) was used with R (R Core team, 2019) to build the
SVM models. This library has a function that optimizes the
hyperparameters of the kernel functions automatically, and
the soft margin parameter C is taken as the value default (1).

After statistically analyzing the database, an SVM was
used to classify pipes based on variables identified by the
Kruskal-Wallis method. Independent variables (slope,
age, etc.) of the SVM model must be numerical, and the
dependent variable must be categorical (structural state).
Still, given that some independent variables are categorical
(material and road type), it is necessary to develop analysis
alternatives that can be included in the model. These
alternatives are the combination of the categorical variables
for all variables, so that the database can be divided, that is,
two categorical variables (material and road type). In turn,
these are constituted by two factors for each one (concrete
and vitrified clay pipes for the material; concrete and asphalt
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pavement for surface type). By using pairwise combination
of material and surface type, four possible alternatives were
created: (i) vitrified clay pipes under concrete pavement; (ii)
vitrified clay pipes under asphalt pavement; (iii) concrete
pipes under concrete pavement; and (iv) concrete pipes
under asphalt pavement. Doing so guaranteed that there
were independent numerical variables and a categorical
dependent variable for each alternative.

Furthermore, various structural grades were grouped into
categories in line with the research done by Lépez-Kleine
et al. (2016). For example, one way of grouping structural
grades into two categories would be: Category 1 with grades
1, 2, and 3 representing piped with acceptable structural
conditions; and Category 2 with grades 4 and 5, meaning
pipes with critical structural conditions. These categories
correspond to the dependent variable vector for calibrating
SVM models.

Once the previously described four alternatives were
defined, each database was randomly divided into data for
calibrating each SVM model (2/3 of total data) and data for
validation (1/3 of total data). With calibration data for each
alternative, SVM classification algorithms were employed
with kernel functions whose application is associated with
database characteristics. For this study, the characteristics
found were as follows: insufficient a priori information for
the data (Gaussian and Laplace kernel functions), binary
categorization of input data (Vanilla linear function), and a
classification that approximates neural networks taken from
Mashford et al., (2010).

To arrive at the best classification model for each alternative,
two approaches were used: (i) leave-one-out cross validation
technique (Greisser, 1993) and (ii) Cohen’s kappa coefficient
(Carletta, 1996). The first approach was used to train the
model with the calibration data, and the second one was
used to evaluate the performance of the trained model with
the validation data.

With the purpose of evaluating the performance of
the prediction, comparing the estimated and observed
categories, the authors suggest to classify the correct and
wrong predictions by colors, as well as the Prediction Error
Importance (Table 3). The latter (PEI) gives information
about the severity of a wrong estimation compared to the
observed information. According to Table 2, the percentages
that are in ‘GREEN’ and Null-PEI are the percentage of pipes
that were estimated correctly. The percentages in ‘YELLOW'
and Low-PEl show the percentage of pipes where the model
underestimated the structural condition (it means that
the model estimated the condition of the pipe in worse
structural conditions than they really were). The percentages
in ‘'ORANGE’ and Medium-PEl represent the percentage
of pipes where the model overestimated the structural
condition, it means that the model estimated the condition
of the pipe in better conditions than what they actually were.
Finally, the percentage in ‘RED’ and High-PEl represents
those pipes whose estimation was highly overestimated;



HERNANDEZ, CANON, AND TORRES

it means that the model estimated those pipes to be in
excellent conditions while they were actually collapsed.
Table 3 illustrates the possible error importance and the
corresponding table of colors if the analysis is divided into
three categories (e.g., if C1 corresponds to good structural
conditions, C2 to regular structural conditions, and C3 to
poor structural conditions).

Table 3. Description of the Prediction Error Importance levels and their

corresponding color.

Estimated Observed Color Prediction Error
Category Category Importance (PEI)
C1 C3 RED High
C1 C2
Cc2 C3 ORANGE Medium
C3 C1
C3 C2
YELLOW Low
C2 C1
Pipes with the same
estimated and observed GREEN Null
category

Source: Authors

In light of the possible or inevitable financial limitations
faced by the company in charge of sewer management, a
minimum number or percentage of pipes classified by the
tool was established in order to determine which of those
were in critical structural conditions and required inspection
or action. To this effect, a methodology was proposed to
determine the percentage of pipes randomly selected over
the total of those classified in a particular category by the
tool to ensure that the expected percentage of proper
classifications had a relatively acceptable uncertainty (e.g.,
less than 15%). The methodology consists of randomly
selecting a certain percentage of pipes (between 1 and 100%)
from those that received a given classification (e.g., good
conditions or critical conditions) to apply the proposed tool
and calculate the percentage of successful classifications
using the inspection database. This process is repeated a
given number of times for the same percentage of pipes,
and the percentage of successful classifications is calculated
each time. It is expected, then, that the dispersion of results
obtained (percentage of successful classifications) is high
for initial percentages, and that it gradually diminishes as
more pipes are selected to finally achieve a null dispersion
for 100%.

Results and discussion

Table 4 shows the functions selected for each analysis
alternative according to Cohen’s kappa coefficient, which
was obtained using leave-one-out cross-validation (CV).
This Table also includes category division for alternatives
with the highest predictability (higher Cohen’s kappa
coefficient obtained for the proposed CV). As the Table
demonstrates, there are two or three categories for which

predictability increases were observed, thus implying that
the results are useful for classifying sections in three ways:
(i) “excellent conditions” and “not excellent conditions”
(C1 and C2, respectively, in alternatives 1 and 2, Table 4);
(i) “critical condition” and “not critical condition” (C2 and
C1, respectively, in alternatives 4 and 5); and (iii) “excellent
condition”, “critical condition” and “nor excellent nor critical
condition” (C1, C3, and C2, respectively, in alternative 3,
Table 4). Furthermore, the Kernel functions that offer the
best results in terms of predicting the classification of the
categories of the pipe’s structural states were RBF, Laplace,
and Vanilla, which implies that the three functions rely on
binary classification regardless of whether the function in
the characteristic space is linear (Vanilla) or nonlinear (RBF
and Laplace).

Table 4. Selected SVM models for each alternative

Alternatives Categories Function | K-cv
_ C1: Grade 1
1.Concrete — Asphalt RBF 0,305
Pavement C2: Grades 2, 3, 4 and 5
_ C1: Grade 1
2. Concrete Laplace | 0,415
Concrete Pavement | 2. Grades 2,3,4and 5
3. Vitrified Clav Pi C1: Grade 1
. Vitrified Clay Pipes
- Asphalt Pavement | C2: Grades 2, 3 and 4 RBF 0,071
C3: Grade 5
4. Vitrified Clay Pipes | C1: Grades 1, 2, 3 and 4 .
— Concrete Pavement | C2: Grade 5 Vanilla | 0,213

Source: Authors

According to the confusion matrices (calibration and
validation data) of the four analysis alternatives, it was found
that:

i.  For the first two analysis alternatives (Concrete-Asphalt
pavement and Concrete pavement), the calibration
data’s confusion matrices had similar prediction
results (classifying more than 81% of pipes correctly in
category C1 and more than 79% in category C2), while
the validation data’s confusion matrices differ (60 and
68% of pipes were properly classified in C1 and C2,
respectively, for the first analysis alternative; and 38
and 80% were properly classified in C1 and C2 for the
second analysis alternative). However, the results from
the calibration and validation data for the first analysis
alternative (Concrete-Asphalt Pavement) are consistent.

ii. For the third analysis alternative (Vitrified clay pipes-
Asphalt pavement), according to the calibration data
from the confusion matrix, the model correctly classified
between 58 and 65% of the three categories; whereas, in
the validation data, the best classified category was C3
(50% match), followed by C2 (18%) and C1 (0%). This
means that the model overestimated pipes in category
C3 (classifying all pipes in excellent condition when, in
reality, they were in critical structural conditions), and
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underestimated pipes in category C1 (the pipes were
worse than they actually were).

iii. For the last analysis alternative (Vitrified clay-Concrete
pavement), the results were similar to those of the first
analysis alternative (Concrete-Asphalt pavement). The
model classified approximately 70% of pipes in C1 and
C2 in calibration and validation results.

In Figures 2, 3, and 4, maps of the pipes inspected in Bogota
are shown. In these Figures, the observed categories are
compared to those obtained using SVM models.

OBSERVED STATE PROPOSED STATE

@
5@@

Legend

== C1-Degree1
Good Structural State

Districts
O Similriies | 1. usaquén 4.5, Critébal 7.Bosa 10, Engatva 13, Teusauilo 16. PleAtanda 19, G, Bolvar
2.Chapinero 5.Usme 8 Kennedy 11.Suba  14.Los Martires 17.La Candelaria 20. Sumapaz

- Others structural states isrc
02 Others structural staes [ Diswts | 3 0P A 9. Fonibén 12. B. Unidos 15.A. Nariio 18, Rafael Uribe

Figure 2. Category classification maps for inspected sewer pipes in
Bogota for alternatives (i) concrete pipes-asphalt pavement and (ii)
concrete pipes—concrete pavement. Left: classification map of observed
condition. Right: classification map of results when using the proposed
methodology.

Source: Authors

Figure 2 demonstrates that, for these two alternatives, the
structural condition of several pipes was underestimated
by the proposed methodology. However, in certain parts
of Bogota (namely in the districts of Suba, Usaquén,
Teusaquillo, Kennedy, Puente Aranda, and Bosa), the
sewer’s SVM-estimated overall condition matched the
observed state. Moreover, in general terms, there were
greater matches for categories classified as C1 by the
proposed SVM. This finding suggests that the proposed
methodology has potential applications for sewer system
management in that it indicates which pipes are in excellent
structural condition (category C1, corresponding to grade
1 in the NS-058 standard) because management efforts
(inspection, rehabilitation, replacement, etc.) can be carried
out only on pipes that are not classified as C1 by the SVM
models. A similar behavior was observed for the proposed
SVM models for vitrified clay pipes (Figures 3 and 4).

In Figure 5, the prediction error importance is seen to be
generally null or low (green and yellow pipes). In other
words, for the majority of pipes, the categories obtained
using the proposed methodology matched the categories
observed (green), or the methodology underestimated the
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condition of the pipes (yellow or orange). Few pipes saw
their structural state overestimated (red). In short, the
proposed methodology proves to be conservative (more
underestimation than overestimation), which is a plus from
a safety perspective when it comes to deciding which pipes
require priority management action. Table 4 summarizes the
results presented in Figure 5.
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Figure 3. Category classification maps for inspected sewer pipes in
Bogota for vitrified clay-asphalt pavement. Left: classification map of
observed condition. Right: classification map of results when using the
proposed methodology.

Source: Authors
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Figure 4. Category classification maps for inspected sewer pipes in
Bogota for vitrified clay-concrete pavement. Left: classification map of
observed condition. Right: classification map of results when using the
proposed methodology.

Source: Authors

In Figure 5, the prediction error importance is seen to be
generally null or low (green and yellow pipes). In other
words, for the majority of pipes, the categories obtained
using the proposed methodology matched the categories
observed (green), or the methodology underestimated the
condition of the pipes (yellow or orange). Few pipes saw
their structural state overestimated (red). In short, the
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proposed methodology proves to be conservative (more
underestimation than overestimation), which is a plus from
a safety perspective when it comes to deciding which pipes
require priority management action. Table 4 summarizes the
results presented in Figure 5.
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Table 5. Percentage of pipes per category for prediction error
importance of each alternative

Prediction error
. . Kappa
Alternative importance
Null [Low | Med -

Alternative 1: Concrete -
Pavement in Asphalt 78 1 3 0,305
Alternative 2: Concrete - 78 13 9 0,415
Concrete pavement
A!ternatwe 3: Vitrified clay 55 31 14 1 0,071
pipes - Asphalt pavement
A!ternatlve 4: Vitrified clay 69 97 4 0,213
pipes - Concrete pavement

Source: Authors

Table 5 shows that more than 78% of sewer pipes presented
a null or low prediction error importance. Low prediction
importance is considered favorable for decision-making

related to sewer management, provided that the percentage
of pipes is not high. Despite the improper classification of
some pipes, these were classified in the next most critical
category. This suggests that, if these pipes were reviewed,
they would likely be in better structural states than expected.
It should be noted that low importance prediction error
is possible when the selected model has more than two
structural categories, as is the case for alternative 3 (vitrified
clay pipes under asphalt pavement). Nevertheless, broadly
speaking, satisfactory pipe classification was observed for
the first three alternatives, with a successful classification
between 78 and 86%. For the fourth alternative, this figure
was 69%. Moreover, the percentage of pipes with high
prediction error importance was less than 4% for all the
alternatives studied, with the exception of alternative 2 (9%).

The results presented in Table 5 do not suggest a direct
relation between proper classification with the proposed
methodology for each alternative and the corresponding
Cohen kappa coefficient, which implies that the latter is only
useful for model selection.

The previously mentioned results represent the combination
of results obtained for both calibration and validation
databases. To distinguish the results obtained for the two
databases, as well as to judge the predictive capacity of the
proposed methodology, readers are directed to Figure 6.
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Figure 6. Prediction error importance for the calibration (left) and
validation (right) databases
Source: Authors

Figure 6 evinces consistency among the results obtained
for both databases (calibration and validation) in terms of
prediction error importance. As was the case for the results
shown in Figure 5, the majority of sewer pipes analyzed in
both databases had null (green) or low prediction importance
(yellow). Table 6 summarizes this information.

In Table 6, for the calibration data, 72% of pipes were
properly classified (null prediction error importance-green),
and 11% of pipes were improperly classified, but with a low
prediction error importance (yellow). Therefore, it can be

INGENIERIA E INVESTIGACION voL. 42 No. 2, Aucust - 2022 7 of 10



METHODOLOGY FOR CLASSIFYING THE STRUCTURAL STATE OF UNINSPECTED PIPES IN SEWER NETWORKS BASED ON SUPPORT VECTOR MACHINES

said that, for the calibration database, the proposed SVM
classification methodology provided satisfactory results
for 83% of the pipes. Similarly, for the validation data,
satisfactory classifications were obtained for 78% of analyzed
pipes, thus opening the possibility of utilizing the proposed
SVM classification methodology for sewer management
decision-making to improve inspection processes, as well as
maintenance, rehabilitation, and replacement. The validation
data (78%) represent the proposed tool’s performance
concerning classifying the structural state of uninspected
concrete or vitrified clay pipes.

Table 6. Prediction error importance of the proposed methodology’s
classification in calibration and validation databases

% Pipes Prediction Importance
Null | Low Medium
Calibration 72 11 14 3
Validation 58 20 20 2

Source: Authors

Although the results obtained are satisfactory for managing
of Bogotd’s sewer systems, it is essential not to lose sight of
the limited public resources available for developing these
activities. Rodriguez et al. (2012) discuss the budget for
actions related to sewer pipe management, attributing the
low inspection coverage in Bogotd to a meager budget that
is too low to inspect all of the city’s sewer pipes. In light of
these restrictions, it is crucial to determine the percentage
of the minimum number of pipes that should be selected
(e.g., those that the proposed methodology classified in a
critical structural state) to ensure a percentage of proper
classifications with a satisfactory level of uncertainty (e.g.,
relative uncertainty < 15%). This may serve a host of
objectives, such as directing CCTV inspections as effectively
as possible within budget constraints.

The proposed methodology was applied to a case study to
select the minimum number or percentage of pipes classified
via SVMs as being in critical structural states for purposes
of inspection or action. Ten thousand random selections
were performed for each percentage (1 to 100%, with 1%
variations) of the total number of pipes in a critical structural
state when applying the SVM classification methodology.
The results of this case study can be found in Figure 7. This
Figure demonstrates that (i) pipes in critical structural states
were properly classified roughly 60% of the time by the
methodology; and (ii) to obtain a relative uncertainty less
than 15% of proper classifications, at least 10% of total pipes
classified in this state must be randomly selected. According
to the above, it is safe to say that decision-making regarding
pipes that require inspection or action can be performed
while meeting the budget assigned to these tasks. However,
it must be clarified that the percentage of pipes selected is
a decision to be made by stakeholders, and it requires the
consideration of multiple variables (e.g., financial variables).
Regardless, the results in Figure 7 offer an accurate depiction
of the analyzed case study.
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Figure 7. Relative uncertainty vs. percentage (%) of successful
classifications and percentage (%) of pipes predicted to be in critical
conditions

Source: Authors

Conclusions

In this article, the structural state of sewer pipes in a specific
case study (database of pipes inspected via CCTV in Bogota
between 2007 and 2011) is shown to be related to physical
characteristics, location, and pipe age. These findings match
the results of previous studies on the same database (Nifo
et al., 2012; Lopez-Kleine et al., 2016).

A methodology for classifying the structural state of
uninspected sewer pipes using SVMs was developed. The
proposed methodology employed SVM functions, CV
techniques, and an evaluation of results with Cohen'’s kappa
coefficient. This coefficient proved to be especially useful
for objectively selecting the best classification mode, for it
emphasized model predictability and avoided overtraining.

When applied to the case study, this methodology correctly
classified 78% of the inspected pipes (relative to validation
data). Additionally, the results obtained were satisfactory;
the methodology identified pipes in critical structural
states with a low prediction error importance for 69% of
the pipes studied. This provides an opportunity to develop
more rational management strategies from a financial
perspective for companies that provide sewer services and
facilitate decision-making in system management for pipe
inspection and action. Furthermore, this methodology
identified which pipes require inspection or action based on
the relative uncertainty of the expected percentage of proper
classifications.

Comparing this methodology’s results to those of Lopez-
Kleine et al. (2016), it can be confirmed that better results
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are achieved when grouping structural states in a few groups
that discriminate extreme structural states in the pipes.

In this study, other types of materials present in sewer
networks (such as masonry and PVC) and other types of
road (green surfaces or non-paved firm surfaces) over the
sewer network were omitted because pipes with these
configurations were not found in the inspection database
provided by EAB.

In conclusion, the authors recommend that future studies
use complete information on the types of roads over sewer
pipes that have not been inspected in Bogotd, seeing as the
methodology proposed in this paper could incorporate this
information to classify all pipes in the city’s sewer system.
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