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Catalyzed by Ferrous Sulfate Studied by TG-MS
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ABSTRACT

By means of a thermogravimetric analysis coupled with mass spectroscopy, the catalytic effect of ferrous sulfate on the pyrolysis of
African Palm husk (APH) was studied. Thermogravimetric data were adjusted to the distributed activation energy model (DAEM) with
four pseudo-components. Ferrous sulfate had a strong influence on the decomposition parameters of the second and fourth pseudo-
components of the DAEM, which are identified as hemicellulose and lignin, respectively. The profiles of the signal intensity curves
for the selected m/z ratios were successfully modeled using the kinetic parameters obtained by adjusting the thermogravimetric
data. It was found that ferrous sulfate promotes the formation of fragments of m/z = 64, 95, and 96, corresponding to molecules,
such as SO,, hydrocarbon ions of general formula [CnH2n-3]+, and furfural, respectively.
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RESUMEN

Mediante el andlisis termogravimétrico acoplado a espectroscopia de masas, se estudid el efecto catalitico del sulfato ferroso
sobre pirdlisis del cuesco de Palma Africana (APH). Los datos termogravimétricos se ajustaron al modelo de energfa de activacion
distribuida (DAEM, por sus siglas en inglés) con cuatro pseudocomponentes. El sulfato ferroso tuvo una fuerte influencia en los
parametros de descomposicion del segundo y cuarto pseudocomponente del DAEM, que se identifican como hemicelulosa y
lignina respectivamente. Los perfiles de las curvas de intensidad de la sefal para las relaciones m/z seleccionadas se modelaron con
éxito utilizando los pardmetros cinéticos obtenidos del ajuste de los datos termogravimétricos. Se encontr6 que el sulfato ferroso
promueve la formacién de fragmentos de m/z = 64, 95 y 96, que corresponden a moléculas como SO,, iones hidrocarburos de

formula general [CnH2n-3]+ y furfural respectivamente.
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Introduction

Global energy consumption has increased considerably
in recent years due to the substantial growth of the global
population and industrial development. As a result, the
demand for transportation fuels has significantly increased
(Bhoietal., 2020). The development of renewable energy has
played an important role in meeting demands and mitigating
the dependence on fossil fuels, as they are non-renewable
and unsustainable and their use increases the emissions of
greenhouse gases (GHQ) into the atmosphere, which causes
global climate change. Residual biomass has great potential
for use in the synthesis of renewable energies because it is
found in large quantities, it is available and cheap, and it is
ecological and sustainable (Rasid et al., 2020).

Several mechanisms exist through which biomass can be
converted into renewable energy sources, such as gasification
to produce gaseous fuels or pyrolysis or hydrothermal
liquefaction to generate liquid fuels. Pyrolysis can be carried
out at ambient pressure. As a result, biomass transformation
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DEVOLATILIZATION OF AFRICAN PALM (ELAEIS GUINEENSIS) Husk CATALYZED BY FERROUS SULFATE STUDIED BY TG-MS

into liquid fuels through pyrolysis has become very attractive
(Hu and Gholizadeh, 2019). Pyrolysis is the thermochemical
decomposition of biomass in the absence of oxygen at
temperatures between 300 and 700 °C. From this process,
liquid bio-oil, non-condensable gases, and solid biochar are
obtained (Brassard et al., 2017). Non-condensable gases can
be used to provide energy to the pyrolysis process. Catalytic
Fast Pyrolysis (CFP) is commonly used to transform biomass
into high-quality bio-oil, deoxygenating the H,O, CO, and
CO, vapors formed during the process (Chen et al., 2019).

Oil palm (Elaeis guineensis) is the world’s main source of
vegetable oil, and it is produced principally by Malaysia and
Indonesia. Oil palm industry residues constitute the biggest
source of biomass in Malaysia, produced in large quantities
throughout the year, but only a small fraction is converted
into value-added products. Colombia is the second largest
producer outside Southeast Asia and the largest producer
in South and Central America (Onoja et al., 2019; Rivera-
Méndez et al., 2017). African Palm Husk (APH) is produced
as a result of the extraction of palm oil and is a biomass
available in large quantities to be transformed. Many efforts
have been made to take advantage of solid waste from the
palm oil industry. Some studies involve the pyrolysis of this
biomass using TG-MS, catalytic pyrolysis with low-cost
catalysts, conversion of oil palm biomass to hydrogen via
gasification reaction in supercritical water, metal oxide-
catalyzed hydrothermal liquefaction of oil palm biomass,
among others (Salema et al., 2019; Ro et al., 2018; Kelly-
Yong et al., 2007; Yim et al., 2017).

It has become essential to know the effect of heavy metals
as catalysts in the pyrolysis of metal-impregnated biomass,
as well as their distribution in pyrolysis products, in order
to find a suitable way of using them (Han et al., 2018).
The effect of metallic salts as catalysts in this process has
been studied by several authors (Zhao et al., 2017; Cao et
al., 2020). Moreover, metal (Ru/Fe) impregnated banana
pseudo-stem (Kumar et al., 2019), and copper and iron salts
as additives in wood pyrolysis (Edye et al., 1992) have been
studied.

Due to its advantages, biomass has gained interest as a green
renewable energy. Lignocellulosic biomass is composed
of cellulose (32-45%), hemicellulose (19-25%), and lignin
(14-26%), which usually makes for very complex thermal
decomposition profiles (Kaur et al., 2018; Han et al., 2018).
The combination of thermogravimetric analysis coupled
with mass spectrometry (TGA-MS) appears to provide a
deeper insight into the identification and quantification of
devolatilization products. One of the main advantages of
TGA-MS is that it can afford real-time and sensitive detection
of evolved gases, which is an important and often difficult
task in many thermal applications (Malika et al., 2016).

In this work, the effect of FeSO, as a catalyst on the
devolatilization kinetics of APH and its product distribution
at 10 and 100 K/min heating rates were studied using the
TG-MS simultaneous analysis technique, as a continuation
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of a previous study on APH devolatilization by TG-MS in the
absence of a catalyst (Albis et al., 2018). Kinetics parameters
obtained using TGA were fitted to the Distributed Activation
Energy Model (DAEM).

Methodology

Materials

The APH was obtained from a biodiesel plant in the
municipality of Santa Marta, Magdalena, Colombia. Biomass
was ground (particle size < 200 mm) and stored in a
desiccator for further use.

Sample preparation

An aqueous solution of FeSO, was prepared by dissolving 2
000 g of the salt at 75% in 100 ml of water to obtain a final
concentration of 15 mg Fe/ml. The prepared APH was added
to the solution in the adequate volume, and the suspension
was stirred for 2 h. Then, the sample was dried at 80 °C for
2 h, and thereafter for 2 h at 105 °C. The final concentration
of FeSO, in the biomass was 1,5% by weight.

Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was performed using a TA
instruments TGA 2950 thermogravimetric analyzer. Control
and acquisition of experimental data were carried out via the
Universal Analysis software. The procedure for this analysis
was the same as that used in the previous study (Albis et al.,
2018).

Distributed Activation Energy Model

The DAEM is a multiple reaction model widely used in the
pyrolysis of lignocellulosic biomass. This model assumes
that the decomposition mechanism takes a large number of
independent, parallel, first-order, or n*-order reactions with
different activation energies, reflecting variations in species’
bond strengths. The difference in activation energies can be
represented by a continuous distribution function (Cai et
al., 2014). As described in Albis et al. (2018), in this model,
the mass conversion rate is represented by several numbers
of reactions that share the same frequency factor (4;),
with an activation energy distributed in Gaussian form. A
media activation energy Eo; and a standard deviation of the
activation energy (g;) are part of the model represented by
Equations (1) and (2).

Mo dx.

Yer@y==> ¢, —L (1)
(?) ]Z,, 7

Where, according to Albis et al. (2018):

yede represents the conversion rate of the sample or
signal strength, M is the number of reactions or pseudo-
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components of the sample, ¢; is a proportionality constant,
x; is the unreacted fraction of the material represented by
the j-™ kinetic equation, and “ is the rate of production or
consumption of j, which can be calculated as:

dx/ dxj(t,,uj)d )

1 e
;(f)=ﬁj,wexp[ﬂﬁ]exp[0,75\ MZ]T Hi

where u; = 2 (E — Eo;)/(V20;) and X;(t, 1) are the solution
for dx; /dt at time t, and the value of the energy of activation
is E.

Equation (2) was solved using MATLAB, as described by
Albis et al. (2014).

Results

Thermogravimetric Analysis (TGA)

The TG and DTG of the samples of APH and APH + 1%
FeSO, at temperature rates of 10 and 100 K/min are shown
in Figures 1a and 1b, respectively. In Figure 1, four events
are observed: the first is related with water release at
temperatures below 393 K; the second, at temperatures
between 393 and 475 K, which approximately corresponds
to the first thermal decomposition; followed by the main
pyrolytic event, which shows two peaks; and, finally, the last
event is a slow-rate decomposition.

In Figure 1a, a displacement to the right with increased
heating rate from 10 to 100 K/min is noted in the thermogram
in both cases, i.e., in the absence and presence of the
catalyst, related to a small increase in sample weight loss.
A similar percentage of char reported in the absence of the
catalyst (Albis et al., 2018) was also observed in its presence,
which is within the limits of experimental uncertainty. This
means that the presence of the catalyst does not affect the
percentage of carbonization at either of the two heating
rates evaluated.

In the main pyrolytic event, the first peak is associated with
hemicellulose decomposition, and the second one with the
disintegration of cellulose. In Figure 1b, a difference in the
formation of peaks in the presence of FeSO, is observed,
which is related to an increase in the second pseudo-
component (corresponding to hemicellulose) within the
DTG peak. This peak is higher in the pyrolytic event than the
hemicellulose peak for the APH pyrolysis in the absence of
the catalyst at the heating rates studied.

The presence of FeSO, leads to a hemicellulose reduction
in the DTG peak temperature at heating rates of 10 and 100
K/min. This behavior suggests a catalytic effect that causes
the pyrolytic process to start earlier. In previous studies,
it was found that the promoting effects of FeSO, were
noticeable in the hydrolysis of microcrystalline cellulose —an
84,14% conversion was obtained. It was also found that
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the depolymerization and hydrolysis of biomass remains
active in the presence of metals that lower the degradation
temperature of the biomass (Tao et al., 2010). This shows
the capability of catalysts of initiating pyrolysis reactions at
lower temperatures.
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Figure 1. a) TG and b) DTG thermograms of APH and APH + 1% FeSO, at heating
rates of 10 and 100 K/min, respectively
Source: Authors

Fitting to the DAEM

In Figure 2, the fitting of the DAEM in the presence of the
catalyst at heating rates of 10 and 100 K/min is shown.
Given the number of peaks, Figure 1b suggests the use of
at least four pseudo-components. Consequently, the DAEM
with four pseudo-components is used to illustrate the
experimental data in this study.

The fitting of the data regarding the conversion rate to the
DAEM with four pseudo-components for pyrolysis of APH
with FeSO, heated at 10 and 100 K/min is shown in Table
1. In comparison with a previous study (Albis et al., 2018),
the results in Table 1 show that the catalytic effect of FeSO,
affects mainly the second and fourth pseudo-components,
identified as hemicellulose and lignin, reducing their average
activation energies and their corresponding standard
deviations. This behavior explains the reduced starting
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temperature for the pyrolysis process of APH in the presence
of a catalyst: reduction of the activation energy increases
the decomposition rate of these compounds, and reduction
in the standard deviations of the activation energy causes
these components to have a narrow temperature range. For
the third pseudo-component, identified as cellulose, the
catalytic effect of FeSO, enhances the standard deviation of
the activation energy, which produces a broad temperature
range. Moreover, the proportionality constant decreased
for the first, second, and third pseudo-components, but
increased for the fourth one. On the other hand, the values
of the frequency factors remained within the range of values
reported for all pseudo-components. Prior studies have
reported the catalytic effects of FeSO, in the decomposition
of lignin in wood pyrolysis (Edye et al., 1992), as well as the
catalytic effects of ferric sulfate in hemicellulose pyrolysis
(Albis et al., 2018).
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Figure 2. Fitting of the DAEM with four pseudo-components for APH + 1% FeSO,
at a) 10 K/min and b) 100 K/min
Source: Authors
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Table 1. DAEM parameters with four pseudo-components for APH + 1,5% FeSO,
at heating rates of 10 and 100 K/min

Heating Rates

DAEM B=10K B=100K
Parameter min min

C, 0,166 0,179
A, 1,270E+15  1,270E+15
E, 1,380E+05 1,380E+05
S, 1,900E+04  1,900E+04
C, 5,767E-01 6,864E-01
A, 1,274E+14  1,274E+14
E, 1,739E4+05  1,733E+05
S, 8,550E+03  1,082E+04
C, 5,161E-01 3,964E-01
A, 7,987E+14  7,987E+14
E, 2,023E+05 2,013E+05
S, 8,518E+03  6,269E+03
C, 6,474E-01 6,573E-01
A, 1,064E+14  1,064E+14
E, 1,864E+05 1,863E+05
S, 3,832E+04  3,833E+04
SE 4,359E-05 2,396E-04

Source: Authors

It was found that, in comparison with the previous study
(Albis et al., 2018), the activation energy for the first
pseudo-component (Ea = 1,38E+5 kJ/mol), identified as
extractives, remained the same in the absence and presence
of the catalyst for the heating rates studied. The activation
energy for the second pseudo-component, identified as
hemicellulose, went from Ea = 1,77E+05 kJ/mol in the
absence of the catalyst to Ea = 1,739E+05 kJ/mol and Ea
= 1,733E+05 kJ/mol in the presence of FeSO, at heating
rates of 10 and 100 K/min, respectively. Furthermore,
the activation energy for the third pseudo-component,
identified as cellulose, went from Ea = 2,04E+05 kJ/mol
in the absence of the catalyst to Ea = 2,023E+05 kJ/mol
and Ea = 2,013E+05 kJ/mol in the presence of FeSO, at 10
and 100 K/min, respectively. The activation energy for the
fourth pseudo-component, identified as lignin, went from
Ea = 1,95E + 05 kJ/mol in the absence of the catalyst to Ea
= 1,864E+05 kJ / mol and Ea = 1,863E+05 kJ/mol in the
presence of FeSO, at 10 and 100 K/min, respectively. The
decreased activation energy shows the catalytic effect of
FeSO, on APH pyrolysis.

A previous study on pyrolysis of banana pseudo-stem
found that, in comparison with raw biomass (Ea =116,22
kJ/mol), samples impregnated with FeSO, have a lower
activation energy (Ea = 86,78 kJ/mol). The catalytic
effect lowers the activation energy, thus enhancing the
reaction rate with modified reaction pathways (Kumar et
al., 2019).
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Mass spectrometry

Figures 3 and 4 show the fitting of the DAEM with four
pseudo-components for some of the m/z ratios at heating
rates of 10 and 100 K/min, respectively. The fit for all the
m/z curves at the heating rates studied is supplied in the
complementary material.

To analyze the effect of the catalyst, the data obtained at the
10-K/min heating rate is used because, due to the high speed,
very few points were obtained in the areas of interest at 100
K/min (Figure 4). Table 2 shows the mass spectrometric
intensities selected for kinetic evaluation and its presence in
the main thermal events at heating rates of 10 and 100 K/min.

At the heating rate of 10 K/min, the fragments associated
with m/z = 2, 16, 28, and 40 did not evolve during pyrolysis
in the presence of the catalyst. The signal intensities m/z =
12, 14, 17, 32, 34, 44, 50, 51, 55, 58, 60, and 98 for APH
pyrolysis in the presence of FeSO, were lower than the signals
corresponding to the absence of the catalyst (Albis et al.,
2018). These signals were assigned to methane (m/z =12 and
14), water (m/z = 17), methanol (m/z = 32), hydrogen sulfide
(m/z = 34), and carbon dioxide (m/z = 44). The fragments
associated with m/z = 50 and 51 were assigned to furfural
and benzene. m/z = 55 was assigned to cyclohexanone,
2(5H)-furanone, or 1,4-dimethylcyclohexane, C,H30*.
m/z = 58 was assigned to isobutane, propanal, acetone, or
propanol. m/z = 60 was assigned to acetic acid, dodecanoic
acid, hexadecanoic acid, or octadecanoic acid, and m/z = 98
was assigned to 1,2-cyclopentanedione, 4-methyl-5H-furan-
2-one, 3-furanmethanol, or cyclohexanone.

In addition, the signal intensities of the m/z = 64, 95, and 96
ratios for APH pyrolysis in the presence of FeSO, were greater
than those corresponding to the absence of the catalyst. This
behavior suggests that FeSO, promotes the formation of
these compounds. Signals were assigned to the production of
[SO,]I* or [SONH,]* (m/z = 64) (Kuehl and Rozynov, 2003),
hydrocarbon ions of general formula [C H, ,I* (m/z = 95)
(Mjgs, 2004), and furfural (m/z = 96) (Shen et al., 2015). It has
been reported that Fe, as a catalyst, removes the oxygenated
compounds from the pyrolysis process, thus, improving
bio-oil quality and, consequently, increasing the formation of
hydrocarbons. Also, the aqueous solution contains aldehydes
(Kumar et al., 2019; Ansari and Gaikar, 2019).

Fitting mass spectrometry data to the DAEM

Tables 3 and 4 show the proportionality constant values (c)
for the DAEM with four pseudo-components for the m/z
signals detected regarding the pyrolysis of APH + 1% FeSO,
at heating rates of 10 and 100 K/min.

When comparing these results to those of a previous study
(Albis et al., 2018), several observations can be made. In
the absence of the catalyst, at a heating rate of 10 K/min,
the fragments associated with m/z = 12, 17, 18, 60, and
95 were associated with the thermal decomposition of
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hemicellulose, cellulose, and lignin. However, in the presence
of the catalyst, these fragments were associated only with the
thermal decomposition of hemicellulose and cellulose, with
the contribution of the thermal decomposition of lignin being
almost negligible. In the case of the fragments associated with
m/z = 51, 55, and 96, the gases evolved were associated with
hemicellulose, cellulose, and lignin decomposition with and
without the catalyst. For the m/z ratios described, in the absence
of the catalyst, the peak corresponding to the decomposition
rate of hemicellulose is lower than that corresponding to the
decomposition rate of cellulose. In contrast, in the presence
of the catalyst, the peak corresponding to the decomposition
rate of hemicellulose is higher than that corresponding to
the decomposition rate of cellulose. This, except for m/z
= 55, whose main event is associated with the thermal
decomposition of lignin. This behavior coincides with the
results obtained in the DTG curves described.

Table 2. m/z obtained for the kinetic study and its presence in the main thermal
event at heating rates of 10 and 100 K/min

Heating Rate 10 K/min 100 K/min
m/z Component/ Fragment- E H C L E H C L
molecule
2 H, NA NA NA NA NA NA NA NA
u12 C -+ o+ - -+ o+ o+
14 CH, -+ -+ -+ o+ 4+
16 CH, NA NA NA NA + +
17 H,0 -+ 4+ + o+ o+
18 H,0 -+ o+ + o+ o+
28 CcO NA NA NA NA + + +
30 formaldehyde NA NA NA NA + + o+
32 Methanol + + - + + + - +
34 H,S + o+ o+ o+ + -+
40 Furfural NA NA NA NA + + +
42 Acetonitrile NA NA NA NA + 4+ o+
44 co, -+ 4+ + o+ o+
46 NO, NA NA NA NA + + + +
50 Furfural; benzene - + + + + + +
51 Furfural; benzene + + + + + +
52 Benzene - + + + + + +
2-Furanmethanol;
53 5- Methyl-2- -+ o+ o+ + o+ o+
furancarboxaldehyde
54  4,4-dimethylcyclohexene -+ + 4+ NA NA NA NA
Cyclohexanone; 2(5H)-
Furanone; 1,4-
55 Dimethylcyclohexane,C3H3, toF F NANANACNA
O+
56  4,4-dimethylcyclohexene - + + + - + + 4+
58 Isobutane, propanal, + o+ 4 + N
acetone, propanol
Acetic acid; dodecanoic
60 acid; hexadecanoic acid; - + + - - + + +
octadecanoic acid
64 [SO2]* or [SONH2]* - + + - - + - +
95 Hydrocarbon ions of general + o+ 4 o+ o+

formula [CH_ .]*

n’_2n-3
96 Furfural - + 4+ o+ - + + o+
1,2-Cyclopentanedione;
4- Methyl-5H-furan-2-
one; 3- Furanmethanol;
cyclohexanone

98 + o+ o+ -+ o+ 4

E= Extractives ; H= Hemicellulose ; C= Cellulose ; L= Lignin ; NA= Not-
Applicable
Source: Authors
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Table 3. Proportionality constants regarding the DAEM with four pseudo-
components for m/z signals detected related with the pyrolysis of APH + 1%
FeSO, at a 10 K/min heating rate

m/z c c, c, c,
2 2,293E-01 8,275E-07 1,842E-01 3,901E-01
12 3,787E-07 1,657E-01 2,273E-01 1,078E-01
14 2,755E-07 9,183E-01 3,570E-02 2,531E
16 7,661E-08 1,509E-02 5,647E-02 6,413E-02
17 5,532E-08 1,270E-01 2,035E-01 1,331E-01
18 3,526E-06 6,935E-01 1,085E4+00 7,248E-01
28 7,050E-01 5,420E-07 3,711E-01 1,583E+01
32 1,850E+00 1,394E+00 9,926E-07 5,853
34 3,026E-03 1,001E-02 2,905E-03 6,657E-02
40 1,003E-07 5,584E-02 7,001E-02 4,878E-02
44 8,693E-07 3,546E-04 6,111E-03 3,373E-03
50 2,910E-09 2,077E-02 2,652E-02 2,283E-02
51 7,650E-07 1,808E-02 2,421E-02 2,309E-02
52 9,952E-07 1,970E-02 2,564E-02 2,239E-02
53 4,267E-07 1,325E-02 4,181E-02 3,160E-02
54 4,776E-07 2,517E-02 3,990E-02 4,574E-02
55 3,458E-07 6,714E-02 5,892E-02 1,009E-01
56 3,370E-07 1,769E-02 3,343E-02 3,711E-02
58 5,504E-08 2,835E-02 5,870E-02 4,267E-02
60 1,240E-07 3,829E-01 1,204E-01 1,246E-04
64 2,974E-07 3,006E-02 5,171E-02 3,224E-04
95 1,588E-07 4,337E-02 1,397E-02 1,099E-02
96 1,263E-04 5,084E-02 1,748E-02 7,193E-03
98 9,529E-05 4,995E-04 4,085E-03 1,110E-02

Source: Authors

Table 4. Proportionality constants regarding the DAEM with four pseudo-
components for m/z signals detected related with the pyrolysis of APH + 1%
FeSO, at a 100 K/min heating rate

m/z [ [ C C

1 2 3 4

12 7,774E-07  5,769E-01  3,691E-01  8,162E-02
14 2,458E-07 1,917E 3,587E-01 1,971

16 1,830E-07  7,087E-03  5,504E-01 2,162

17 1,739E-06 4,934E 1,134 8,902

18 1,007E-05  1,816E+01 8,453 4,014E+01
28 3,953E-07 3,185 2,866 6,740E-01
32 4,660E-01  2,545E-01  1,649E-07 3,016

34 6,479E-08  1,563E-02  4,466E-04  3,253E-02
40 4,538E-07  1,503E-01  8,201E-02  3,152E-01
44 7,678E-06 4,174 2,958 4,253

50 5237E-08  3,332E-02  1,433E-02  3,581E-02
51 2,871E-07  2,081E-02  8,129E-03  5,866E-02
52 1,321E-08  2,399E-02  8,875E-03  5,640E-02
53 1,187E-07  3,023E-02  2,094E-02  6,537E-02
54 2,888E-07  1,870E-02  1,912E-02  7,988E-02
55 6,239E-08  2,523E-02  1,166E-02  1,722E-01
56 3,994E-04  2,605E-02  5,213E-03  8,258E-02
58 7,451E-04  6,835E-02  7,989E-07  6,423E-02
60 2,261E-07  3,386E-01 7,752E-02  5,932E-02
64 1,177E-03  1,029E-01  2,436E-08  8,370E-02
95 9,348E-08  4,438E-02  8,566E-03  1,231E-02
9% 1,557E-07  4,771E-02  9,458E-03  1,521E-02
98 1,150E-07  2,171E-03  8,642E-04  4,755E-03

Source: Authors
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Moreover, in the absence of the catalyst, the fragments
associated with the m/z = 14, 32, 34, 50, 64, and 98 were
associated with the thermal decomposition of all major
biomass components, extractives, hemicellulose, cellulose,
and lignin. Similarly, in the presence of the catalyst, m/z
= 32 was associated with the thermal decomposition of
extractives, hemicellulose, cellulose, and lignin. However,
for m/z = 64, the presence of FeSO, changed the m/z
signal intensity profiles, and the evolution of this fragment
was only associated with the thermal decomposition of
hemicellulose and cellulose. In the presence of FeSO,,
m/z = 50, 34, and 98 were associated with the thermal
decomposition of hemicellulose, cellulose, and lignin,
but not extractives. Finally, the evolution of the fragment
of ratio m/z = 14 was associated with the thermal
decomposition only of hemicellulose and lignin in the
presence of FeSO,. For the aforementioned m/z ratios,
in the absence of the catalyst, the peak corresponding
to the decomposition rate of cellulose is higher than that
corresponding to the decomposition of hemicellulose,
which was higher than the peak corresponding to the
decomposition of lignin. In contrast, in the presence of the
catalyst, the peak corresponding to lignin decomposition
is higher than those corresponding to hemicellulose
and cellulose decomposition, with the contribution of
the thermal decomposition of cellulose being smaller or
negligible in some cases, except for m/z = 64 for which
the contribution of the thermal decomposition of lignin is
negligible.

Forall m/zratios, the catalytic effect of FeSO, on hemicellulose
and lignin can be evidenced as a displacement to the left of
the DAEM fit for the thermal decomposition of hemicellulose
and lignin: the peaks go from being broad in the absence
of the catalyst to becoming narrow in its presence. This
means that decomposition occurs at lower temperatures
(increasing the decomposition rate), and in a shorter period
of time. Additionally, the thermal decomposition of cellulose
in the absence of the catalyst occurs in a short period of time
and it takes longer in its presence.

Conclusions

This work studied the effect of FeSO, on the APH pyrolysis
process. It was found that the catalyst mainly affects the
thermal decomposition of hemicellulose and lignin and
that FeSO, promotes the formation of compounds for
ratios m/z = 64, 95, and 96 —corresponding to fragments
of molecules, such as SO,, hydrocarbon ions of general
formula [C H, .1*, and furfural, respectively— due to the
iron deoxygenation effect, which improves hydrocarbon
formation. The m/z ratios of the gases evolved in the
presence of the catalyst were compared with the signals
corresponding to its absence. A difference in the formation
of peaks shows an effect on the rate of production in the
presence of FeSO,, thus increasing the decomposition rate
in the case of hemicellulose and lignin, and decreasing it in
the case of cellulose.
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