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Ensemble Kalman Filter for Hourly Streamflow
Forecasting in Huaynamota River, Nayarit, México

Filtro de Kalman de Conjuntos para pronoéstico de caudales horarios en
el rio Huaynamota, Nayarit, México

Ildefonso Narvéaez-Ortiz !, Laura Ibafiez-Castillo 2, Ramon Arteaga-Ramirez 32, and Mario Vazquez-Pefia *

ABSTRACT

Hydrological phenomena are characterized by the formation of a non-linear dynamic system, and streamflows are not unrelated to
this premise. Data assimilation offers an alternative for flow forecasting using the Ensemble Kalman Filter, given its relative ease of
implementation and lower computational effort in comparison with other techniques. The hourly streamflow of the Chapalagana
station was forecasted based on that of the Platanitos station in northwestern México. The forecasts were made from one to six
steps forward, combined with set sizes of 5, 10, 20, 30, 50, and 100 members. The Nash-Sutcliffe coefficients of the Discrete
Kalman filter were 0,99 and 0,85 for steps one and six, respectively, achieving the best fit with a tendency to shift the predicted
series, similar to the persistent forecast. The Ensemble Kalman Filter (EnKF) obtained 0,99 and 0,05 in steps one and six. However, it
converges on the observed series with the limitation of considerable overestimation in higher steps. All three algorithms have equal
statistical adjustment values in step one, and there are progressive differences in further steps, where ARX and DKF remain similar
and EnKF is differentiated by the overestimation. EnKF enables capturing non-linearity in sudden streamflow changes but generates
overestimation at the peaks.

Keywords: Ensemble Kalman Filter, autoregressive models, short-term streamflow forecasting, data assimilation

RESUMEN

Los fendmenos hidroldgicos se caracterizan por conformar un sistema dindmico no lineal, y los caudales no son ajenos a esta premisa.
La asimilacion de datos ofrece una alternativa para el prondstico de caudales mediante el Filtro de Kalman de Conjuntos, dada su relativa
facilidad de implementacion y menor esfuerzo computacional en contraste con otras técnicas. Se pronostico el caudal horario de la
estacion Chapalagana en funcion del de la estacidn Platanitos en el noroeste de México. Los prondsticos se realizaron de uno a seis pasos
hacia adelante, combinados con tamaios de conjunto de 5, 10, 20, 30, 50 y 100 miembros. Los coeficientes de Nash-Sutcliffe para el Filtro
de Kalman Discreto fueron de 0,99 y 0,85 en los pasos uno y seis respectivamente, logrando el mejor ajuste con tendencia a desplazar
la serie pronosticada, similar al prondstico persistente. El Filtro de Kalman de Conjuntos (EnKF) obtuvo 0,99 y 0,05 en los pasos uno y
seis. No obstante, este converge sobre la serie observada con la limitante de sobrestimacion considerable en pasos superiores. Los tres
algoritmos tienen igual valor de ajuste estadistico en el paso uno, y se dan diferencias progresivas en pasos sucesivos, donde ARX y DKF
se mantienen similares y EnKF se diferencia por la sobrestimacion. EnKF permite captar la no linealidad en los cambios bruscos de caudal,
pero genera sobrestimacion en los picos.

Palabras clave: Filtro de Kalman de Conjuntos, modelos autorregresivos, prondsticos de caudales a corto plazo, asimilacion de
datos
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Introduction

Climate variability has intensified the incidence of extreme
precipitation events that can generate sudden changes
in streamflow and lead to floods and landslides (IPCC,
2012). Having advance information on streamflow behavior
becomes an indispensable tool for the administration of
dams and disaster risk management (IPCC, 2012; Singh
and Zommers, 2014). Different methods have been used
for streamflow forecasting, such as autoregressive methods,
neural networks (Box et al., 2016; Shmueli and Lichtendahl,
2016), and, more recently, data assimilation methods such
as Kalman filters (Abaza et al., 2015; Alvarado-Hernandez et
al., 2020; Gonzalez-Leiva et al., 2015; Morales-Veldzquez
et al., 2014). In hydrological studies, the Ensemble Kalman
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Filter (EnKF) (Evensen, 1994, 2009; Gillijns et al., 2006)
has been widely used as a method of assimilation (Liu and
Gupta, 2007; Maxwell et al., 2018; Sun et al., 2016), with
little evaluation in forecasting flows. EnKF is an extension
of the Discrete Kalman Filter (DKF) (Kalman, 1960) and a
computationally less demanding alternative to the Extended
Kalman Filter (EKF) for treating non-linear dynamic systems
(Evensen, 1994, 2003). Among the applications of EnKF
are streamflow forecasting in basins dominated by melting
snow and ice (Abaza et al., 2015), evapotranspiration (Zou
et al., 2017), and soil moisture (Brandhorst et al., 2017;
Meng et al., 2017). Moreover, it has been evaluated while
integrated with distributed hydrological models such as
TopNet, Hydrotel, and MGB-IPH (Abaza et al., 2015; Clark
et al., 2008; Quiroz et al., 2019).

Hydrological phenomena such as streamflow have a
non-linear behavior (Bai et al., 2016; Xu et al., 2009),
especially when there are sudden changes in river levels.
For this reason, the use of non-linear algorithms for
data assimilation favors the fit of forecasts (Brandhorst
et al., 2017; Medina-Gonzdlez et al., 2015). In addition,
systematic errors can be reduced by recursive updating
based on each new available measurement (Clark et al.,
2008; Maxwell et al., 2018).

According to Valdés et al. (1980) and Winkler et al. (2010), in
hydrographic basins, different representative measurements
and a point of interest have a dynamic relationship with
the predominant physical and biological characteristics of
the area. Based on this information, the behavior of a given
phenomenon is modeled to obtain short-term forecasts. The
Kalman filter enables the incorporation of registers from
diverse sources, as well as continuous updates (Box et al.,
2016; Welch and Bishop, 2006).

To determine whether the algorithms for identifying
non-linear dynamic systems allow forecasting short-
term streamflow (6 h), this study evaluates the fit of the
series predicted by algorithms of the EnKF, the DKF,
and the first-order autoregressive model with first order
exogenous variable (ARX(1, 1)), in flows measured at the
Chapalagana station on the Huaynamota River. The Kalman
Filter algorithms estimate the system dynamic states and
correspond to the response function of the basin.

Materials and methods

This study was conducted in a tributary of the Huaynamota
River, also known as the Chapalagana or Atengo River,
located in northwestern México between the states of
Durango, Nayarit, Zacatecas, and Jalisco (INEGI, 2010)
(Figure 1), between -104°33'34,16” and -103°27'29,84"” W
and between 23°28'50,05” and 21°23'57,62” N, with an
area of 12 075,7 km?2. The altitude varies from 219 to 3 147
masl. The concentration time is 39,88 h, the mean annual
precipitation is 707 mm, and the mean annual temperature
is 17,9 °C (SMN, 2019).

2 0f 8

INGENIERIA E INVESTIGACION voL. 42 No. 3, DEcemBER - 2022

Figure 1. Location of the study area
Source: Authors

The Huaynamota River contributes to generating electricity.
The Solidaridad dam (also known as Aguamilpa), located
on the Lerma-Santiago River and geographically at
104°48'10,55” W and 21°50'22,74” N, produces 960 MW
of electricity and has a maximum capacity of 5 540 million
m?® of water (CONAGUA, 2008). The Huaynamota River
discharges into the Santiago River, where the Aguamilpa
dam is located, approximately 90 km upstream from the
Pacific Ocean, into which the Santiago River empties on the
coast of the Mexican state of Nayarit.

We implemented the EnKF (Evensen, 1994), DKF (Kalman,
1960), and ARX(1,1) (Bras and Rodriguez-Iturbe, 1985)
algorithms. Forecasts were made at 1, 2, 3, 4, 5, and 6 h
(L steps forward) of the flows at the Chapalagana station as
a function of the flows at the Platanito station, located 100
km upstream from Chapalagana, as the exogenous variable.
The hourly streamflow series between 9:00 hours on August
2 and 0:00 hours on September 28, 2017, were used, for
a total of 1 360 registers supplied by Federal Electricity
Comission (CFE).

EnKF, DKF, and ARX were implemented through R routines
(R Core Team, 2021), which generate forecasts in six steps
with DKF and ARX, and with 42 combinations between steps
by set size in EnKF. Both EnKF and DKF were implemented
to estimate the state vector corresponding to the response
function of the basin, or Instantaneous Unitary Hydrograph
(IUH) (Valdés et al., 1980). Values were estimated which
correspond to the columns of the IUH. Multiplying these
values by those of the measured series results in an
estimation. In the three algorithms, the last observations of
each series were considered (Valdés et al., 1980). The ARX
model was recursively implemented based on a fraction of a
series with 100 registers.

By means of the sensitivity analysis with 5, 10, 20, 30, 40,
50, and 100 members that were combined with the six
steps, and based on the root mean square error (RMSE),
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the adequate number of members in the EnKF sets was
determined (Quiroz et al., 2019). White noise that is
integrated in the EnKF members was generated with the
mvtnorm package (Multivariant Normal and t Distributions)
(Genz and Bretz, 2009). In the evaluated Kalman Filter
algorithms, the Q variance was assumed to be constant
(Simon, 2001) with a value of zero (Morales-Veldzquez et
al., 2014), and the R was assumed to have a near-zero value
(0,01) in order to confer flexibility to the convergence of the
algorithm (Welch and Bishop, 2006). With these values, the
covariance matrices were created.

The fit reached by each algorithm was evaluated using the
Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970) and
the RMSE (Morales-Veldzquez et al., 2014), as expressed by
Equations (1) and (2). The assumed normality of errors was
verified using graphs (Gonzalez-Leiva et al., 2015).

Ns=1-Ze TN M

2)

where V; is the forecasted data, ); is the observed data,
); is the average of the observed data, ), is average of the
forecasted data, and 1 is the amount of observations.

Ensemble Kalman Filter

To extend the functionality of the DKF (Kalman, 1960) and
deal with non-linear dynamic systems, the EKF, among
others, has been proposed (Jazwinski, 2007; Welch and
Bishop, 2006), which includes the EnKF (Evensen, 1994,
2009). The EnKF emerges as an alternative to the EKEF,
which has a high computational demand (Evensen, 1994,
2009) and is a sub-optimal estimator that, via Monte Carlo
simulations, estimates the statistical error (Evensen, 1994;
Gillijns et al., 2006; Rafieeinasab et al., 2014). Errors should
satisfy the normal distribution assumption and are estimated
based on sets of q values.

The algorithm is based on two groups of equations: forecast
and analysis (Figure 2). In this study, the cycle began with the
forecast equations, using the random values that make up
the first matrix X, , thus obtaining the first forecast via the
measurement equation. The error matrices of the forecast
were calculated against the new measurement, which is
the input for the analysis equations, where the states are

updated as new measurements are entered.

The h matrix is formed with the last register of two (n) hourly
flow series of the Chapalagana and Platanitos stations. The
uk parameter is absent because, in the upstream from the
Chapalagana station, there are no structures (e.g., dams) that
have a direct impact on streamflow. The errors v, and v,
correspond to the noise contained by the process and the
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measurement, respectively. They are assumed to be white
noise, with a mean of zero and variance Q and R (Figure
2). The noise in the measurements is generated by adding
q deviations with normal distribution to the measurement
in k time.

In the second analysis equation, the component y, +vli
represents the noisy measurements, Yk is the measurement
in time k, and the superscript i represents the number of
members, i.e., random values under normal distribution
that correspond to i=12........q. The adequate number of
members in a set in hydrological studies is between 50 and
300 (Gillijns et al., 2006; Quiroz et al., 2019). The predicted
value Z, is obtained by averaging the vector resulting
from multiplying the h matrix and the x{’, and applying the
measurement equation.

Discrete Kalman Filter

The DKF is an optimal recursive estimator of states in linear
dynamic systems (Kalman, 1960) (Figure 2).

Figure 2. EnKF algorithm
Source: Gillijns et al. (2006)

Figure 3. DKF algorithm
Source: Welch and Bishop (2006)
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The state equation has two (n) hourly flow series from the
Chapalagana and Platanitos stations. The matrices A (nxn)
and B (nx 1) relate the state at time k — 1 to the current state
at time k. Like the EnKF, the control matrix B is not included,
given that, in the upriver from the Chapalagana station, there
are no structures that have a direct impact on streamflow.
Matrix A is assumed constant throughout the process, and
matrix H is composed of a vector row of 1 xn that contains
the last observation of each entry series. The predicted value
Zx is obtained via the measurement equation by multiplying
the H matrix by the state vector x; (nx1).

Implicit in the predicted value z, is the measurement error
wy—1, and, likewise, the process error v; is contained in
the state equation. In both cases, the normality assumption
must be satisfied.

The state and measurement equations maintain a cycle that
is repeated indefinitely. At time k — 1, it makes the a priori
estimation (forecast) of the states, and, at time Kk, they are
updated (a posteriori estimation). The states are assumed to
be the response function of the basin, and the a posteriori
estimation corresponds to the forecast for time k + 1. This
cycle is repeated indefinitely, predicting time k + 1 based on
the H matrix and the state vector updated to time k.

First-order autoregressive model

One of the first approximations for the forecast is the
first-order autoregressive model, which is based on the
autocorrelation that occurs within the same series of
data (Box et al., 2016; Bras and Rodriguez-lturbe, 1985).
Algebraically, it is described as follows:

na nb
Vi = Zi:()aiyk—i + ijoﬂjyk—j e O

where y,.4 is the predicted value, «; and B; are the model
parameters, and y,, and v, correspond to the entry variable
and the exogenous variable, respectively. The parameters
are estimated by the method of least squares, which requires
a series section of at least 50 registers (Box et al., 2016;
Shmueli and Lichtendahl, 2016). In the ARX(na, nb) model,
na and nb represent the autoregressive delays that are used
in each variable.

Results and discussion

Forecasts with six-hour steps were made of the flows at the
Chapalagana station. For the case of EnKF, seven set sizes
were evaluated in order to estimate the error, which had
6, 10, 20, 30, 40, 50, and 100 members. Series with 1 360
registers were used, which included two main events.

As of 50 members per set, the EnKF algorithm showed a
stable convergence for all steps. Consequently, under the
conditions of this study, it is acceptable to use at least 50
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members per set to have an adequate fit regarding the
convergence of the algorithm and the stabilization of the
error, aiming to minimize computational effort. As previously
indicated, the results presented below have a base of 50
members per set. Table 1 presents the statistical indicators
of fit for the observed series against the predicted one.

Figure 4. RMSE for different set sizes
Source: Authors

Table 1. Summary of statistics for application of EnKF, DKF, and ARX

Algorithm Metric L1 12 L3 L4 L5 L6
RMSE 27,27 4499 58,84 70,84 81,69 92,09
Nash-Sutcliffe 0,99 0,96 0,94 091 0,88 0,85

DKE Mean 199,39 198,22 197,37 196,43 195,44 194,39
SD 241,28 239,47 238,41 237,39 236,42 235,42
RMSE 51,77 91,61 122,43 147,15 176,96 233,10
Nash-Sutcliffe 0,95 085 0,74 062 045 0,05

EnkF Mean 202,29 206,91 211,78 216,71 222,32 230,85
SD 250,35 268,34 287,56 308,41 330,24 370,35
RMSE 27,84 48,34 6583 79,89 91,14 99,74

ARX(11) Nash-Sutcliffe 0,99 096 092 089 086 0,83
Mean 200,88 202,51 203,83 204,81 205,93 206,42
SD 243,54 245,72 248,35 250,15 251,53 251,21

Note: RMSE: root mean square error; Nash-Sutcliffe: Nash-Sutcliffe index;
Mean: Average. The mean and standard deviation (SD) of the observed series
are 198,7 and 239,77, respectively.

Source: Authors

According to the statistical indicators in Table 1, the NS shows
similarities between DKF and ARX, with values of 0,99 and
0,83 in steps one and six, respectively, while EnKF obtained
0,95 and 0,05 in steps one and six. According to the NS, the
fit of all the steps is less with EnKF; in step one, it is 0,04
less, and there is a marked change up to step six, where the
difference is around 0,78. The mean of the predicted series
is more stable with DKF, followed by ARX and, finally, EnKF.
EnKF and ARX show an upward trend in the mean value for
each step, whereas DKF has a downward trend.

Despite the low fit values, the EnKF algorithm expressed
the changes with a non-linear trend and showed better
convergence on the observed series once it was updated
with new measurements. DKF and ARX generated forecasts
in which the displacement of the predicted series was
accentuated against the observed series, similar to the
persistent forecast method (Aguado-Rodriguez et al., 2016;
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Kavasseri and Seetharaman, 2009). This behavior is also
noticeable in the work of Alvarado-Hernandez et al. (2020),
Gonzdlez-Leiva et al. (2015), and Morales-Veldzquez et al.
(2014).

In the flood that began at 810 h, EnKF assumed the abrupt
change in flow and generated a forecast with a steeper slope
than DKF and ARX. Also, in the flow descents between 870
and 900 h, EnKF converged more precisely on the observed
series (Figure 5).

Figure 5. Observed flow and flows predicted with EnKF, DKF, and ARX (flood
from 4/9/2017, 16:00 h, to 8/9/2017, 20:00 h)
Source: Authors

The DKF fits are similar to those obtained by Alvarado-
Hernandez et al. (2020), who used the same series and a
model that integrates ARX and DKF. This model considers
the delay between series to be one, whereas, in our study,
it was updated dynamically throughout the series, favoring
the fit at peaks and reducing the effect of displacement of
the predicted series. EnKF, in its six steps, obtained lower
fits due to overestimation or underestimation at the peaks,
with the difference that it achieved a better fit in ascents
and descents of the observed series. The EnKF algorithm
obtained a better temporal fit at peaks and converged more
precisely on the observed series when the trend persisted
in a number of hours higher or equal to the evaluated step.

The forecast with EnKF showed overestimations relative
to the observed series. This occurred because we treated
the measurements as a non-linear phenomenon (Evensen,
1994, 2009), a situation that, in step one, allows for an
acceptable fit in the entire series. However, in step six, broad
overestimations may be found which can affect the quality
of the forecast. As the forecast step increases, the frequency
of overestimations increases because the new register that
serves to update the states also breaks away, and there may
be changes in the L interval that are not considered in the
initial forecast. The dynamic incorporation of the delay time
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between series (Meng et al., 2017) allows improving the fit,
given that updating is performed with the equivalent event
in the exogenous variable (Figure 6).

Figure 6. Observed flow and flows predicted with EnKF, DKF and ARX (flood from
23/09/17, 10:00 h, to 28/09/17, 00:00 h)
Source: Authors

The dispersion of the observed series against the predicted
one was congruent with the NS index, highlighting the
similarities between DKF and ARX. The difference exhibited
by EnKF is due to the peaks associated with abrupt changes
in flow. The EnKF algorithm tended to overestimate
throughout the series, unlike DFK and ARX, which caused
a slight tendency to underestimate. Step six with EnKF
produced large overestimations that are reflected as isolated
points above the diagonal in Figure 7.

Figure 7. Observed vs. predicted flows
Source: Authors
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Figure 8. Histographs of residuals
Source: Authors

The standardized errors of the forecasts have a symmetrical
distribution around zero (Figure 8) (Cryer and Chan, 2008;
Martinez et al., 2012; Wang et al., 2017). According to
Chatfield (2001), a behavior approaching normality is
accepted. As shown in Figure 8, there is symmetry and
higher concentration of registers in the central area of the
Gauss bell curve. The proportion of registers between three
standard deviations above and below the mean is more than
97%, and EnKF had the highest values in all steps.

As the steps of the forecast increase, the fit decreases, and
overestimations and underestimations become more frequent
for EnKF. Introducing coefficients that represent stationality
and autocorrelation into the transference function can reduce
the over-dimensioned estimations and achieve better fit.

Conclusions

The dynamic updating of delay time relative to the exogenous
variable allowed improving the fitin the evaluated algorithms.
The EnKF algorithm achieved a better convergence on the
observed series but generated overestimations of greater
magnitude as the step increased, which resulted in a lower
degree of fit, as demonstrated with the Nash-Sutcliffe
index. The potential of EnKF lies in its convergence and
non-linear treatment of abrupt changes in flow. Basically,
EnKF helps capture the non-linearity in some parts of the
of the hydrograph and accurately represents the timing or
times of occurrence of maximum flows, even though they
are overestimated.

In future studies, the use of EnKF for streamflow
forecasting can be a viable alternative when integrated with
autocorrelation analysis, so that stationality and stationarity
become part of the model, thus allowing to represent the
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changes associated with daytime, nighttime, or the months
of the year. Together, the quantity of registers for updating
the states can be increased in order to enable the detection
of changes in trends during the last registered hours.

To improve the fit of the forecast, it is important to advance
in research with step sizes of several hours (e.g., groups of
six hours using the mean or maximum) in such a way that
each step is equivalent to six hours and the forecast at six
steps equals 36 hours.
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