INGENIERIA E INVESTIGACION VOL. 42 No. 3, DEecemser - 2022 (€97363)

Research article/ Systems and Computer Engineering https://doi.org/10.15446/ing.investig.97363

A Survey of Virtualization Technologies: Towards a New
Taxonomic Proposal

Una revision de las tecnologias de virtualizacion: hacia una nueva
propuesta taxonémica

Luis E. Sepulveda-Rodriguez !, Julio C. Chavarro-Porras 2, John A. Sanabria-Ordonez 32,
Harold E. Castro ¢, and Jeanna Matthews 3

ABSTRACT

At present, there is a proliferation of virtualization technologies (VTs), which are part of the basic and underlying infrastructure of
popular cloud computing. Those interested in VTs are faced with a non-unified volume of information and various approaches to
modes of operation, classification structures, and the performance implications of these technologies. This makes it difficult to
decide which type of VT is appropriate for a particular context. Therefore, this paper reviews the state of the art on VT taxonomic
models. Methodologically, a literature review is carried out to identify VT classification models, recognizing their features and
weaknesses. With this in mind, a new taxonomy of virtualization technologies is proposed, which responds to the weaknesses
identified in the analyzed schemes. The new VT taxonomy combines the Abstraction Level and Virtual Machine Type approaches,
providing the reader with a means to visualize VTs. In doing so, the reader can locate the level of abstraction at which each VT is
developed, in addition to the type of machine projected, whether it is a complete system or an execution environment for processes.
The proposed taxonomy can be used in the academic environment to facilitate teaching processes or in the business environment
to facilitate decision-making when implementing VTs.

Keywords: container, taxonomy, virtualization, virtual machine, virtualization technologies

RESUMEN

En la actualidad existe una proliferacion de tecnologias de virtualizacion (VTs), las cuales constituyen una parte de la infraestructura
fundamental y subyacente al tan popular cloud computing. Los interesados en las VTs se enfrentan a un volumen de informacion no
unificada y con enfoques diversos acerca de los modos de operacion, estructuras de clasificacion e implicaciones del desempefio
de estas tecnologias. Esto hace dificil decidir sobre el tipo de VT adecuado para un contexto particular. Por lo anterior, este trabajo
realiza una revision del estado del arte acerca de los modelos taxondmicos de las VTs. Metodoldgicamente, se realiza una revision
de la literatura para identificar modelos de clasificacion de las VTs, reconociendo sus caracteristicas y debilidades. Considerando
lo anterior, se propone una nueva taxonomia de las tecnologias de virtualizacion, que responde a las debilidades identificadas en
los esquemas analizados. La nueva taxonomia de VTs combina los enfoques de Nivel de Abstraccion y Tipo de Mdquina Virtual,
proporcionando al lector un medio para visualizar las VTs. Al hacerlo, el lector puede ubicar el nivel de abstraccion en el que se
desarrolla cada VT, ademas del tipo de mdquina proyectada, ya sea un sistema completo o un entorno de ejecucion para procesos. La
taxonomia propuesta puede ser utilizada en el dmbito académico para facilitar los procesos de ensefianza o en el dmbito empresarial
para favorecer la toma de decisiones a la hora de implementar VTs.

Palabras clave: contenedor, mdquina virtual, taxonomia, tecnologias de virtualizacion

Received: July 20*, 2021
Accepted: June 9*, 2022

Introduction

Systems and computing engineer. MSc in Open Software. Affiliation: PhD stu-
dent in Engineering with emphasis on Computer Science, Universidad Tecnold-
gica de Pereira, Pereira, Colombia. Professor at Universidad del Quindio. Arme-
nia, Colombia. Email: lesepulveda@uniquindio.edu.co

In recent years Virtualization Technology (VT) has been
used to obtain benefits such as isolation, resource splitting,

8

Systems engineer. PhD in Engineering, Universidad del Valle, Cali, Colombia.
Affiliation: Universidad Tecnoldgica de Pereira, Colombia. Email: jchavar@utp.
edu.co

Systems engineer. PhD in Computer Information Science and Engineering,
Universidad de Puerto Rico. Affiliation: Universidad del Valle, Cali, Colombia.
Email: john.sanabria@correounivalle.edu.co

Systems and computing engineer. PhD in Computer Science, Institut National
Polytechnique de Grenoble (INPG), Grenoble, France. Affiliation: Computing
and Systems Engineering Department, Universidad de los Andes, Bogotd, Co-
lombia. Email: hcastro@uniandes.edu.co

Mathematics and Computer Science, BS PhD in Computer Science, University
of California, Berkeley, CA, USA. Affiliation: Department of Computer Science,
Clarkson University, Potsdam, NY, USA. Email: jnm@clarkson.edu

w

s

consolidation, security, migration, and ease of management
(Varasteh and Goudarzi, 2017). VT builds an abstraction of
applications and hardware in a virtual view (AbdEIRahem et
al., 2016). This virtual view can be different from the physical

How to cite: Sepulveda-Rodriguez, L. E., Chavarro-Porras, J. C., Sanabria-
Orddiiez,). A., Castro, H., Matthews, J. ((2022). A Survey of Virtualization
Technologies: Towards a New Taxonomic Proposal. Ingenieria e Investigacion,
42(3), €97363. https://doi.org/10.15446/ing.investig.97363

@. BY Attribution 4.0 International (CC BY 4.0) Share - Adapt

10of 14

https://doi.org/10.15446/ing.investig.97363
https://creativecommons.org/licenses/by/3.0/deed.en
https://orcid.org/0000-0003-2446-0602
https://orcid.org/0000-0003-2446-0602
https://orcid.org/0000-0001-8876-8855
https://orcid.org/0000-0001-8876-8855
https://orcid.org/0000-0003-1381-5682
https://orcid.org/0000-0003-1381-5682
https://orcid.org/0000-0003-1381-5682
https://orcid.org/0000-0002-7586-9419
https://orcid.org/0000-0002-7586-9419
https://orcid.org/0000-0001-5955-0996
https://orcid.org/0000-0001-5955-0996
mailto:lesepulveda@uniquindio.edu.co
mailto:jchavar@utp.edu.co
mailto:jchavar@utp.edu.co
mailto:john.sanabria@correounivalle.edu.co
mailto:hcastro@uniandes.edu.co
mailto:jnm@clarkson.edu
https://doi.org/10.15446/ing.investig.97363

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

view of computing resources (Stallings, 2015). In addition,
Silberschatz et al. (2014) note that VT allows an operating
systems (OS) to run as an application within another OS.

VT includes emulation, which refers to the fact that there are
differences between the physical and logical architectures
used by virtualized processes. Thus, a virtual machine (VM)
could use the same host architecture, a different emulated
architecture, or a hybrid. In addition, the processes could
use a physical architecture with modifications in order to
make virtualization easier (paravirtualization).

VT allows creating one or several environments, i.e., many
computers can look like a single large resource (resource
aggregation) or, conversely, a single computer is considered
as several instances of itself (resource splitting) (Hoopes,
2009; Silberschatz et al., 2014).

Unfortunately, the x86 computer architecture, despite
being one of the most widely adopted architectures in the
world, cannot be completely virtualized (Adams and Agesen,
2006). However, this situation can be solved through
mechanisms and VT approaches that act at different levels
of abstraction. The abstraction levels where VT takes place
are the instruction set level, the hardware abstraction level
(HAL), the OS level, the user library interface level, and the
application level (Nanda and Chiueh, 2005).

The concept of virtualization was formalized in Goldberg’s
thesis (1973) and published in other works (Goldberg, 1974;
Popek and Goldberg, 1974). In these studies, VMs were
defined as “an efficient and isolated duplicate of the real
machine” (Goldberg, 1973, p. 12). In later works, the term
VM was expanded to include other kinds of virtualization,
including applications at user level such as libraries, system
calls, interfaces/services, system configurations, processes,
and state files (Nanda and Chiueh, 2005).

The term virtual machine monitor (VMM) was also
established by Popek and Goldberg (1974). It is a software
layer that supports infrastructure using the resources of a
lower level to create multiple independent and isolated
VMs (Cafaro and Aloisio, 2011; Nanda and Chiueh, 2005).
Similarly, Stallings (2015) determined that a VMM acts as an
intermediary between the real machine and VMs. VMMs are
also called hypervisors (Hoopes, 2009).

VT also brings financial benefits regarding returns on
investment and reductions in the total cost of ownership
of computer systems hardware (AbdEIRahem et al., 2016).
Moreover, VT uses less energy, which is related to the
so-called green computing (Jing et al., 2013; Ranjith et al.,
2017; Thathera et al., 2015) and plays an essential role in
safeguarding the environment. Other goals of VT include
increasing the scalability and availability of computing
environments, as well as improving the administrative
and security structures of the existing computational
infrastructure (Hui and Seok, 2014; Kusnetzky, 2011).

2 of 14

INGENIERIA E INVESTIGACION voL. 42 No. 3, DEcemBER - 2022

Kampert (2010) indicates that the benefits of VTs have
revolutionized data centers in the last two decades and
have motivated the development of many variations to suit
different use cases. In response, several attempts have been
made in the academic literature to establish classification
schemes for these variations of VT.

This paper reviews VT classification schemes and proposes a
new taxonomy that responds to several identified weaknesses.
This taxonomy improves and unifies the previous works in the
classification of VTs in three ways: first, it combines and unifies
approaches that consider the VM type with those that consider
the level of abstraction; second, it updates classification
approaches to include examples of VTs that have emerged more
recently; third, it introduces a taxonomic key diagram based on
our unified classification, which can guide the selection of VTs
in either academic or production environments.

The remainder of this document comprises the following
sections: VT classification schemes, The need for a new
taxonomy, Proposal for a virtual machine taxonomy,
Taxonomic key diagram, and Conclusions.

VT classification schemes

This section presents the results of a literature review by
means of a systematic process of combined database search
and manual reference tracking using the Snowball technique
(Samireh and Claes, 2012). In this way, 12 classification
schemes for VTs were identified, and their characteristics
were highlighted. A paragraph is added at the end of each
case which highlights the strengths and weaknesses of the
classification scheme.

VT taxonomy by Nanda and Chiueh

Nanda and Chiueh (2005) classified VTs according to the
following five levels of abstraction of a computer system.

Instruction set architecture (ISA) level

VTs emulate an ISA, allowing VMs to run as if they were
running on hardware. When the ISA offered by this layer
differs from the real ISA, this is called emulation.

e Hardware Abstraction Layer (HAL): VTs use the
same ISA as the host. Here, it is possible to perform
independent OS installations, and its applications run as
if they were executed in a real environment.

® Operating System: VTs work through an OS module to
provide a virtualized system call interface.

® Library Level: User-level libraries control the
communication between the applications and the rest of
the system. VTs allow implementation as an Application
Binary Interface (ABI) or an Application Programming
Interface (API).

SEPULVEDA-RODRIGUEZ, CHAVARRO-PORRAS, SANABRIA-ORDONEZ, CASTRO, AND MATTHEWS

® Programming Language Level: VTs implement the
virtualization layer as an application that can create a
simplex or complex VM.

Although Nanda and Chiueh (2005) establish a way to
classify VTs, they do not consider virtualization types at the
same level of abstraction. Besides, it is necessary to include
some VTs that have emerged in recent years.

VM taxonomy by Smith and Nair

Figure 1. VM taxonomy proposed by Smith and Nair in 2005
Source: Smith and Nair (2005)

Smith and Nair (2005) presented a taxonomy with two main
categories: Process VMs and System VMs. Furthermore,
these categories divide VTs according to whether the ISA
supported in the VM is the same as the underlying hardware
(Figure 1).

Process VMs

This category describes an environment in the ABI interface
or at the API level. It is called a Multiprogrammed System
when it uses the same ISA; otherwise, it is called Dynamic
Emulator or Binary Translator. The subcategories are
described below:

® Multiprogrammed Systems are multiprogramming
OSs that implement the management of timeshare
access to the available underlying hardware resources.
These systems use the same ISA and can handle
multiple user processes ‘simultaneously’. The OS
delivers an individual VM for each user process that
runs concurrently. One implementation in this context
involves dynamic binary optimizers using the same ISA
from the host system.

¢ Dynamic Emulators use process VMs to support
compiled binary programs for an ISA different from the
underlying hardware. This condition implies executing
an emulation effort performed through interpretation,
which can be relatively slow. However, this situation can
be compensated when a software cache is implemented
in order to deal with the overload.

System VMs

These are characterized by hosting one or several complete
and independent OSs running simultaneously on the same
hardware of the host computer, which results from the
intermediation performed by the VMM. The subcategories
of the system VMs are described below:

® (lassic System VMs use the VMM and execute it
directly on the bare hardware without an underlying OS.
Thus, the VMM has real access to hardware resources
and serves as an intermediary between the guest OSs
and the hardware itself. In this case, the VMs are called
Hosted VMs.

® Whole-system VMs provide virtualization of a complete
environment, but guest systems use an ISA different
from those used in the underlying hardware, unlike
the previous category. In this case, the VMs are called
Codesigned VMs.

Smith and Nair’s study (2005) can be considered an essential
basis for classifying VTs that provide a virtual environment
for a complete system or processes. However, this work
does not contemplate what was established by Nanda and
Chiueh (2005) regarding the levels of abstraction. Another
important aspect is that this classification model does not
have a high degree of detail; it uses very general descriptions,
without even including specific technologies. It is essential
to consider that this study was carried out in 2005 and does
not include subsequently developed technologies.

Virtualization taxonomy by the SCOPE Alliance

The SCOPE Alliance (2008) proposed an extension of the
work carried out by Smith and Nair in 2005. The proposal
includes more branching of the main categories and more
examples of VTs (Figure 2).

This classification places type I and type Il hypervisors as
distinctions of the Classic OS VM model of System VMs that
support the same ISA as the underlying hardware.

Figure 2. Virtualization taxonomy by the SCOPE Alliance
Source: SCOPE Alliance (2008)

INGENIERIA E INVESTIGACION voL. 42 No. 3, Decemser - 2022 3 of 14

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

Regarding the Process VMs category, this classification
distinguishes between a Multiprogrammed System and
Dynamic Translators. Multiprogrammed Systems are
further classified depending on whether the OS provided by
the underlying system is the same as the OS used by the
application. If it uses the same OS, the category is called
Multitask OS, which contains OS Virtualization. If the OS is
different, it is called OS Translator. When the processes are
based on a different ISA, they are called Dynamic Translators.
Finally, if the VMs use the same OS, they are called ISA & AB/
Translators; otherwise, they are called High-level Language.

Although the SCOPE Alliance’s study (2008) contributes
to complementing the taxonomy of VTs, the research does
not contemplate aspects such as the levels of abstraction
indicated by Nanda and Chiueh (2005). This situation gives
rise to problems of conceptual inference, in which, for
example, type | and type Il hypervisors are perceived to be
at the same level of abstraction. Additionally, according to
the date of publication of the study, it is necessary to expand
concepts and update VTs that have emerged in recent years.

Taxonomy of VTs by Kampert

Kampert (2010) presented his taxonomy of VTs using
different virtualization techniques. This taxonomy uses the
unified modeling language, as shown in Figure 3, where
all elements are classes. For example, the class Domain is
a superclass of the classes Server, Application, Desktop,
Storage, and Network.

Kampert's taxonomy (2010) aims to cover the domains in
a complete way in which the concept of virtualization takes
place, including storage and network virtualization not seen
in previous taxonomies. However, this taxonomy itself does
not offer the level of granularity necessary to identify VTs in
each of the specified domains.

Figure 3. VT taxonomy by Pual Kampert
Source: Kampert (2010)

Virtualization model by Kusnetzky

Kusnetzky’s virtualization model (2011) is composed of
seven parts, five distributed in layers, and two arranged

4 0f 14

INGENIERIA E INVESTIGACION voL. 42 No. 3, DEcemBER - 2022

parallel to the layers above Kampert (2010). Each part is
briefly described below:

® Access virtualization: Many users share the same
system.

e Application virtualization: Many applications run
transparently on different OSs and hardware platforms.

® Processing virtualization allows the division or
aggregation of resources.

e Network virtualization presents a logical view of the
physical network elements.

® Storage virtualization hides the location and type of
physical storage devices in which applications store
their data.

® Security for virtual environment controls the access to
the various elements of virtual media in order to protect
them from unauthorized actions.

® Management of the virtual environment controls the
available physical resources and the generated virtual
environments.

Figure 4. Kusnetzky’s model of virtualization
Source: Kusnetzky (2011)

Kusnetzky presents a way to include categories for a
range of virtualizable computational resources but does
not provide details about the existing VTs in each layer of
the model. In addition, the model does not differentiate
between technologies of the same layer. For example,
in Processing Virtualization, there is no evidence of a
difference between the types of VMs present in type | or
type Il hypervisors.

Taxonomy of VTs by Pessolani

Pessolani et al. (2012) proposed their taxonomy of VTs with
five main categories: 1) Hardware or System Virtualization,
2) Para-virtualization, 3) Virtualization based on OS, 4)

SEPULVEDA-RODRIGUEZ, CHAVARRO-PORRAS, SANABRIA-ORDONEZ, CASTRO, AND MATTHEWS

Virtualization at the Process or Application level, and 5)
Virtualization of OS. Additionally, the main categories
include subcategories that suggest a level of abstraction
(Figure 5). These main categories are described below:

Figure 5. Taxonomy of VTs proposed by Pessolani et al.
Source: Pessolani et al. (2012)

e Hardware or System Virtualization puts the type |
hypervisor on top of the hardware with its VMs and
their respective guest OSs.

e Paravirtualization distributes its elements to Hardware
or System Virtualization, but the guest OS is modified
to be aware that it is virtualized.

® Virtualization based on OS is founded on using
independent workspaces called containers, which are
based on the host OS.

® Virtualization at the Process or Application level uses
an application on the host OS to provide a VM that
allows the execution of processes based on it.

® Virtualization of OS needs a host OS to carry out
the functions of a hypervisor in order to support the
guest OSs, which in turn have their own completely
independent applications.

Pessolani’s taxonomy (2012) does not explicitly consider the
levels of abstraction to which these technologies apply. In
addition, it focuses only on the conceptual elements, leaving
specific examples aside, nor does it establish a way to divide
types of VMs within each main category.

Taxonomy of virtualization concepts by Pék

Pék et al. published a taxonomy of virtualization concepts
in 2013. This work extends the studies by Smith and Nair
(2005) an the SCOPE Alliance (2008) (Figure 6).

This taxonomy adds elements and several components, such
as in the Hosted category, equivalent to type Il hypervisors
from the study by the SCOPE Alliance (2008). It also includes
the Paravirtualization subcategory.

Figure 6. Taxonomy of virtualization concepts by Pék et al.
Source: Pék et al. (2013)

Although the study by Pék et al. (2013) presents an extension
to some previous works, this taxonomy leaves a gap in the
search for the details of VT categorization, since they do
not contemplate the levels of abstraction at which VTs are
implemented.

Taxonomy of virtualization by Ameen

Figure 7. Taxonomy of virtualization by Ameen and Hamo
Source: Ameen and Hamo (2013)

Ameen and Hamo presented a taxonomy with three levels
in 2013. (Figure 7). The first level contains the following ten
categories:

® Mobile software that is embedded on a mobile phone to
decouple the applications and data from the underlying
hardware (VMware, 2022).

e Data abstracts the source of individual data items and
provides a common data access layer for different data
access methods such as SQL, XML, JDBC, File access,
MQ, JMS, etc. (Mann, 2006).

® Memory adds an extra level of address translation to give
each VM the illusion of having zero memory address
space, as real hardware provides (Waldspurger, 2002).

INGENIERIA E INVESTIGACION voL. 42 No. 3, Decemser - 2022 5 of 14

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

® Desktop is the ability to display a graphical desktop
from one computer system on another computer (von
Hagen, 2008).

® Storage creates logical abstractions of physical storage
systems (B. Li et al., 2005).

® Server is a type of virtualization that allows running
many OSs both in isolation and independence.

® Network provides an abstraction layer that can decouple
the physical network equipment from the delivered
business services over the network (Annapareddy, 2011).

e Application allows the user to run the application using
local resources without installing the application in his
system completely (Annapareddy, 2011; White and
Pilbeam, 2010).

® Grid provides a way to abstract multiple physical servers
from the application they are running (Mann, 2006).

® Clustering causes several locally connected physical
systems to appear to the application and end-users as a
single processing resource (Mann, 2006).

® The following describes the virtualization types at the
second level of the taxonomy, which are derived from
the Server category, as indicated by Ameen and Hamo
(2013):

® Emulation is a virtualization method in which you can
create a complete hardware architecture in software
(Ameen and Hamo, 2013).

® Hosted OS uses software-only. The hypervisor is over
an OS (Ameen and Hamo, 2013; von Hagen, 2008).

® Hardware the hypervisor is assisted by processor
hardware such as AMD-V or Intel VT-x processor
virtualization technologies (von Hagen, 2008).

® Paravirtualization, according to Ameen and Hamo
(2013, p. 7), is “a technique in which the guest OS
includes modified (para-virtualized) I/O drivers for the
hardware”.

® Container is a kernel-layer abstraction and refers to
techniques in which the abstraction technology is built
directly into the OS kernel rather than having a separate
hypervisor layer (Ameen and Hamo, 2013; Q. Lin et al.,
2012).

® Hybrid is a combination of Full Virtualization and
Paravirtualization that wuses input/output (l/O)
acceleration techniques (White and Pilbeam, 2010).

At the third level of the taxonomy are the type | and type Il

hypervisor categories derived from Server/Hardware.

6 of 14 INGENIERIA E INVESTIGACION voL. 42 No. 3, DECEmBER - 2022

Ameen and Hamo’s taxonomy (2013) is closely related
to the works by Kampert (2010) and Kusnetzky (2011).
Furthermore, it presents a classification scheme through a
three-level hierarchical structure. However, although this
graphical representation is interesting, it is unbalanced,
since it focuses only on detailing the Server category.

Taxonomy of VTs by Abdulhamid

Abdulhamid et al. (2014) presented a taxonomy focused on
cloud computing (Abdekhoda et al., 2019; Fareghzadeh et
al., 2019) and based on the work by Sahoo et al. (2010),
which includes categories such as Full Virtualization,
OS-Layer Virtualization, Hardware-Layer Virtualization,
Paravirtualization, Application Virtualization, Resource
virtualization, and Storage virtualization. In addition, this
work adds the Grid Virtualization and Cloud Virtualization
categories (Figure 8).

Figure 8. Taxonomy of VTs by Abdulhamid
Source: Abdulhamid et al. (2014)

Some categories have already been described. Below is a
brief description of the new ones.

® Grid Virtualization focuses on the virtualization of grid
resources either for a virtual organization (VO) or for a
Virtual Organization Cluster (Abdulhamid et al., 2014).

® Cloud Virtualization or Cloud Computing (Sehgal
and Bhatt, 2018) enables on-demand provisioning of
virtual resources through the Web, as well as applying
the concept of pay-per-use. In this category, the VTs
form cloud computing services, provisioning virtual
resources to customers on demand. (Abdulhamid et al.,
2014; Aceto et al., 2013).

Although the taxonomy by Abdulhamid et al. (2014) shows
two levels, only one level can be observed which comprises
its nine categories from a hierarchical perspective. On the
other hand, the description of each category lacks details
and examples of VTs.

Types of VMs by Li
X.-F. Li (2016) presented his work with four types of VMs:
® Type 1: The Full ISA VM allows full ISA-level emulation

or virtualization. The OS and its applications can run on
top of the VM as a real machine (X.-F. Li, 2016).

SEPULVEDA-RODRIGUEZ, CHAVARRO-PORRAS, SANABRIA-ORDONEZ, CASTRO, AND MATTHEWS

e Type 2: The ABI VM allows ABI-level emulation of the
processes in the guest OS. These applications can run in
conjunction with native ABI applications (X.-F. Li, 2016).

® Type 3: The Virtual ISA VM provides a runtime engine
for applications encoded in the virtual ISA to run on it
(X.-F. Li, 2016).

® Type 4: The Language VM gives a runtime engine that
runs programs written in a guest language (source).
The runtime engine needs to interpret or translate the
program.

Although the study by X.-F. Li (2016) presented a four-type
classification scheme, it does not indicate a hierarchical
structure that clarifies how they relate. It also does not have
a supporting graph to facilitate understanding. This work
does not contemplate many of the categories indicated in
other previously presented taxonomies.

Taxonomy of VMs by Bugnion

Bugnion (2017) presented a structure with two levels that
shows the concepts related to VMs. The first level is related
to abstraction, and it includes the following categories:
Language-based VM, System-level VM, and Lightweight VM.
The second level is related to the platform, and itincludes two
categories derived from System-level VM, which are called
Machine Simulator and Hypervisor. The latter is divided into
Bare-metal Hypervisor (type I) and Hosted Hypervisor (type
1) (Figure 9).

Figure 9. Taxonomy of VMs and the platforms that run them presented by Bugnion
Source: Bugnion et al. (2017)

® lLanguage-based VM refers to any managed language
runtime environment such as the Java VM, Microsoft
Common Language Runtime, and JavaScript engines
embedded in browsers.

® Lightweight VM refers to software mechanisms to
ensure that applications run directly on the processor
as securely isolated from other environments and the
underlying OS.

e System-level VM refers to the computer environment
that resembles the hardware of a computer, so that
the VM can run an OS and its applications in complete
isolation from the other VMs and the rest of the
environment. This category includes two Hypervisor
types (type | and type II).

Bugnion’s work (2017) is less a taxonomy than a book
focusing on the core architectural support provided by
hardware to run VMs efficiently.

The need for a new taxonomy

The taxonomies described above have many elements that
contribute to the classification of VTs. However, in each
of these classification schemes, some aspects that need
improvement have been identified. Each scheme offers a
taxonomic approach, such as a) Abstraction Level, b) Type
of VM, and ¢) Virtualization Domains. Table 1 summarizes
the classification schemes analyzed in this paper by author,
year, and taxonomic approach, which were published
between 2005 and 2017. It is worth noting that we found no
taxonomies published between 2018 and 2021.

The Type of VMis the most popular approach, as demonstrated
by CS2, CS3, CS6, and ACS7. On the other hand, CS4 and CS5
take a different perspective; their objective is to consider, in
a general way, the largest number of technological domains
in which it is possible to carry out virtualization processes,
hence the name Virtualization Domain. Some taxonomies
have a dual approach; for example, CS8 and CS9 combine
the Type of VM with the Virtualization Domain, and CS11
combines the Type of VM with the Abstraction Level. Lastly,
CS1 and CS10 consider the Abstraction Level approach as
fundamental for the categorization of VTs. These differences
in viewing VTs can confuse the community interested in this
field when reading different authors.

Table 1. Summary of classification schemes

Classification Schemes (CS)

ID Author(s)

CS1 [Nanda and Chiueh (2005)
CS2 | Smith and Nair (2005)
CS3 | SCOPE Alliance (2008)

Taxonomy approach

Abstraction Level
Type of VM
Type of VM

CS4 | Kampert (2010) Virtualization Domain

Virtualization Domain
Type of VM
Type of VM

CS5 | Kusnetzky (2011)

CS6 | Pessolani et al. (2012)
CS7 |Péketal (2013)

Type of VM and Virtualization

CS8 [Ameen and Hamo (2013) Domain

Type of VM and Virtualization

CS9 | Abdulhamid et al. (2014) Domain

CS11 | X.-F. Li (2016) Abstraction Level

CS12 | Bugnion (2017)

Type of VM and Abstraction Level

Source: Authors

INGENIERIA E INVESTIGACION voL. 42 No. 3, Decemser - 2022 7 of 14

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

Therefore, there is a need for a new taxonomy that provides
a unified, organized, and current view of VTs. Therefore, this
paper makes the following contributions:

e A review of the literature with the identification,
analysis, and comparison of 12 classification VT
schemes (Table 1).

® A proposal for a new VM taxonomy. This work
identified, expanded, and combined different studies,
offering a single view of multiple concepts such as the
Types of VMs and their corresponding Abstraction
Level. The taxonomy includes examples of older VTs
in order to provide a reference factor to those who
have some knowledge about them. It also includes
examples of new VTs that have gained wide recognition
in the industry and academia, such as those related
to containers. The taxonomy is also intended to be
an instrument to support the pedagogical processes
within the academic community with interests in VTs
(Figure 10).

® Ataxonomic key diagram that facilitates the visualization
of the technological ecosystem that surrounds this topic
and consequently helps the academic and industrial
community in the decision-making processes regarding
the selection of VTs (Figure 11).

Proposal for a virtual machine taxonomy

This section presents a new taxonomic proposal for
virtualization technologies. This taxonomy considers the
12 studies reviewed in this research, but it focuses mainly
on studies such as CS1, CS2, CS3, CS7, and CS11 (Figure
10). The proposal presents an innovative contribution that
integrates the Abstraction Level and Type of VM taxonomic
approaches. In addition, it contributes by extending
the examples of VTs, which are placed in the diagram
representing the new taxonomy. The first approach considers
the layers of the classical architecture of a computer system
and makes it possible to visualize the VTs according to the
level of abstraction they occupy at the time of execution. The
second approach considers the types of virtual machines,
be it complete systems or execution environments for
processes. The description of the taxonomy is shown below,
making a cross-analysis between the two approaches.

Approach 1: abstraction layers

Thefirstapproach of this taxonomy uses the abstraction layers
in a computer system, such as the Hardware Abstraction
Layer (HAL), the Operating System (OS), the Application
Binary Interface (ABI), the Application Programming
Interface (API), Type I/Type Il Hypervisors, and Libraries.
In Figure 10, the labels located on the left side indicate
the abstraction level, and they are the title of rectangular
structures with horizontal distribution in the taxonomy.
With these layers, the taxonomy makes it possible to locate

8 of 14 INGENIERIA E INVESTIGACION voL. 42 No. 3, DEcemBer - 2022

VTs depending on the level at which they take place. Thus,
the reader can quickly infer aspects such as the dependence
or not of an underlying OS, as well as determine the number
of intermediaries involved in the virtualization process.
Furthermore, this information allows inferring the possible
performance of these technologies. The abstraction layers
are described below from bottom to top.

Hardware Abstraction Layer (HAL)

HAL includes those VTs that are placed directly on top of
the hardware. This arrangement is also known as BareMetal
and is identified by the absence of intermediaries between
the VMs and the underlying hardware, suggesting a higher
performance for the set of VTs placed here. This layer
contains the category called Type I Hypervisor and can have
several types of VTs.

Operating System (OS)

This layer contains the sublayers Application Binary Interface
(ABI) and Application Programming Interface (API). In the
ABI sublayer, the VTs use the OS as an intermediary to
access the underlying hardware. The virtualization is carried
by OS calls and uses Dynamic Binary Translation, Type
Il Hypervisors, or Libraries. This situation suggests that
the VTs may present degradation in performance due to
intermediation costs between the different environments.
VTs implement virtualization based on high-level languages,
offering portability in the API sublayer, as APIs support
multiple hardware and software platforms. However, this
sublayer has considerable degradation given the multiple
interpreters between the VTs and the hardware functions.

Approach 2: Type of VM

The second approach of this taxonomy considers VTs
according to their type: System VMs or Process VMs. System
VMs contain a whole OS (guest OS) within their virtual
environment. On the other hand, Process VMs use the host
OS as an intermediary between the virtual environment and
the actual hardware.

System VMs

This type of virtualization has two categories. The first is
Classic System VMs and is characterized by the fact that the
host and guest OSs have the same ISA. The second category
is Whole-System VMs and is characterized by the host OS
and guest OS having a different ISA.

® Classic System VMs: This category is known as Hardware
Virtualization and includes two subcategories: the first
one is Native VMs, and the second one is Hosted VMs.
It is important to note that each subcategory takes place
at different levels of abstraction.

e Native VMs: This VT is also known as Type |
Hypervisor and corresponds to the HAL abstraction

SEPULVEDA-RODRIGUEZ, CHAVARRO-PORRAS, SANABRIA-ORDONEZ, CASTRO, AND MATTHEWS

level. It uses a software layer directly on top of the
hardware. It also presents a subdivision, as shown
below:

¢ Transparent indicates that the OS inside the
VM is unaware of its virtualization state and is
divided into the following types:

¢ Hardware-Assisted virtualization involves
the use of physical components to facilitate
the management of VMs. Examples of this
are: KVM (2021), Microsoft Hyper-V (Jason
et al., 2009; Syrewicze and Siddaway,
2018), Xen (Xen Cambridge, 2022), VLX
(Armand and Gien, 2009), and VMware
ESX/ESXi (Z. Li, 2021; VMware, 2022).

® Dynamic Binary Translation implies that
the Type | Hypervisor catches and inspects
the code of each guest OS request to
convert it into a proper request towards
the underlying hardware, e.g., VMware
ESX/ESXi (Z. Li, 2021; VMware, 2022) and
XtratuM (Wessman et al., 2021; Xtratum,
2022) .

® Para-virtualized is also known as Operating
System-Assisted Virtualization and refers to
efficient communication between the guest OS
and the hypervisor. This implies modifying the
guest OS to be aware of virtualization and to
take advantage of that condition. Examples of
this are: Xen (Barham et al., 2003; Matthews et
al., 2008; Xen Cambridge, 2022; Xen Project,
2022), VIX (Armand and Gien, 2009), KVM
(Abeni and Faggioli, 2020; KVM, 2021), and
VMware VMI (VMware, 2022).

Hosted VMs: This subcategory is also known
as Type 2 Hypervisors, corresponds to the ABI
abstraction level, and uses a layer of software on
a Host OS. It presents the same subdivision and
functions of the Native VMs category, so only
examples of VTs will be listed below.

® Transparent

e Hardware-Assisted: VMware Workstation/
Fusion (VMware, 2022), Parallels Desktop
(Parallels, 2021), and Oracle VirtualBox
(Oracle, 2021b).

¢ Dynamic Binary Translation: VMware
Workstation/Fusion (VMware, 2022; Z. Li,
2021), Microsoft Virtual PC (Honeycutt,
2003), Plex86 (2021), Parallels Desktop
(Parallels, 2021), and Oracle VirtualBox
(Oracle, 2021b).

® Para-virtualized: VMware Workstation,
with the addition of the corresponding para-
virtualization driver to the network in the guest
OS (El-Anani, 2021; VMware, 2022).

Whole system VMs: This category is called Hardware
Emulation and presents an ISA different from the
underlying hardware. It takes place at the APl abstraction
level, evidencing a preexisting OS on which emulation
can occur. The subcategory is called Dynamic Binary
Translation and features VTs such as QEMU (Diaz
et al., 2021; QEMU, 2021), Simcs (Magnusson et al.,
2002), Bochs (Bochs, 2021), Rosetta (Apple Inc, 2009),
and BIRD (Nanda et al., 2006).

Process VMs

This type of virtualization also has the same two categories
as System VMs, depending on whether the host OS and
guest OS have the same ISA. When the ISA is the same, the
category is called Multiprogrammed Systems; otherwise, the
category is called Dynamic Translators. Both categories are
located at the OS layer.

Multi-programmed systems: In this category, the
VTs share the OS among many processes, generating
independent execution spaces for each one. This
generates the illusion that, for a moment, a process is an
exclusive executor in the system. This category is then
divided into two, depending on whether there is an OS.
When the same OS is projecting, the category is called
Multitasking OS; otherwise, it is called OS Translators.

® Multitasking OS is divided into Operating System
Virtualization and Same-ISA Dynamic Binary
Optimizer.

® Operating System Virtualization happens at
the ABI abstraction level and uses system calls
for interaction with the underlying hardware. It
uses the preexisting OS, and it allows generating
independent workspaces for the processes. This
type of virtualization is booming and is often
known as lightweight virtualization, container-
based, or simply containers (Tfrifonov, 2018).
For example: FreeBSD Jails (Biederman,
2006; Kamp and Watson, 2000) (Ryding and
Johansson, 2020) , Solaris Zones/Containers
(Oracle, 2021a), OpenVZ (2021), Linux-VServer
(Linux-VServer, 2018), AIX Workload Partitions
WPAR (Gibson, 2007), Parallels Virtuozzo
Containers (Virtuozzo, 2022), Denali (Whitaker
et al., 2002), Google Native Client (Yee et al.,
2009), Vx32 (Ford and Cox, 2008), User-Mode
Linux (Dike, 2006; User-Mode Linux, 2022),
Minix Over Linux (Pessolani and Jara, 2011),
Ensim (2022), LXC (Canonical Ltd., 2021),
Docker (Docker, 2022; Ryding and Johansson,

INGENIERIA E INVESTIGACION voL. 42 No. 3, Decemser - 2022 9 of 14

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

2020), and Singularity (Chang et al., 2021;
Sylabs.io, 2022).

Same-ISA Dynamic Binary Optimizers are
translators implemented in software that
perform optimized translations of binary code
with an equal ISA. Their operation is transparent,
and even the system’s native binaries can be
optimized. An example of this is the Dynamo
project (Bala et al., 2011).

Operating System Translators allow the
execution of applications built for OSs different

Figure 10. Proposal for a new virtual machine taxonomy

Source: Authors.

10 of 14 INGENIERIA E INVESTIGACION voL. 42 No. 3, DECemBER - 2022

from the system host, e.g., WINE (Jones et al.,
2018; Wine, 2022), WABI (Oracle, 2018), Lxrun
(2022), Visual MainWin (Fisher et al., 2006),
and Vcuda (Balis et al., 2021; S. Lin et al., 2009).

Dynamic Translators: Dynamic ISA translators
can support processes that use the same host
OS, e.g., FX!32 (Chernoff et al., 1998). It can
also be the case of dynamic ISA translations for
processes that use a different OS than the host,
such as Transitive (eWeek, 2008; IBM, 2008).
For the above cases, the translation occurs at the
Library level. It can also be the case of dynamic

SEPULVEDA-RODRIGUEZ, CHAVARRO-PORRAS, SANABRIA-ORDONEZ, CASTRO, AND MATTHEWS

ISA translators for processes using a different
OS and acting through high-level languages
such as Java Virtual Machine (JVM) (Lindholm
etal., 1997; Beronic et al., 2021), the Microsoft
.NET common language infrastructure (CLI)
(Thai and Lam, 2003), and Parrot (2022).

Taxonomic key diagram

This work also proposes a taxonomic key diagram to guide
decision-making about the technologies related to VMs, as
indicated in the proposed taxonomy (Figure 11). The diagram
uses a set of questions, which, depending on each possible
answer, establishes a path that leads to identifying a VT
defined in the aforementioned taxonomy. For example, the
diagram can be used by asking the question ‘Do you need
to virtualize the entire system or just some of its processes?’
If the complete system needs to be virtualized, the following
question will inquire about the specific need. If the desired
virtual system needs an ISA different from the underlying
hardware, the answer from the taxonomic key is the Dynamic
Binary Translation category, e.g., QEMU, Simics, and Bochs.

Figure 11. Taxonomic key diagram to select VTs
Source: Authors

Conclusions

A review of literature on the different classification schemes
for virtualization technologies proposed since 2005. These
schemes have been introduced using a timeline that has
allowed the identification of the following taxonomic
approaches: Abstraction Level, Virtual Machine Type, and
Virtualization Domains.

When performing the analysis of each classification scheme,
it was possible to identify weaknesses. These include the
presence of a single taxonomic approach in each scheme and
the lack of topicality considering the date of publication, as well
as the absence of the details on the inclusion of technologies.

The proposed taxonomy responds to the needs identified
in the analyzed classification schemes. As a result, the
proposal combines the Abstraction Level and Virtual
Machine Type approaches, giving the reader a means of
visualizing the virtualization technologies relating to virtual
machines. By doing so, the reader is always aware of the
level of abstraction at which each technology takes place, in

INGENIERIA E INVESTIGACION voL. 42 No. 3, Decemser - 2022 11 of 14

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

addition to the type of machine projected, be it a complete
system or an execution environment for processes.

The proposed taxonomy can be used in academic contexts
to facilitate teaching and learning or in the business field
to favor decision-making when implementing technologies
related to virtual machines.

The taxonomy allows for the classification of VTs present
in more than one conceptual branch, as these tools evolve,
meeting the needs of more than one approach by themselves
or using extensions.

Finally, a taxonomic key diagram has been created for use
by the industry in order to aid the selection of virtualization
technologies.

References

Abdekhoda, M., Asadi, Z., and Nadrian, H. (2019). Cloud com-
puting services adoption among higher education faculties:
Development of a standardized questionnaire. Education
and Information Technologies, 25(1), 175-191. https://doi.
0org/10.1007/s10639-019-09932-0

AbdEIRahem, O., Bahaa-Eldin, A. M., and Taha, A. (2016, De-
cember 20-21). Virtualization security: A survey [Conference
presentation]. 2016 11th International Conference on Com-
puter Engineering & Systems (ICCES), Cairo, Egypt. https://
doi.org/10.1109/ICCES.2016.7821971

Abdulhamid, S. M., Latiff, M. S. A., and Bashir, M. B. (2014).
On-demand grid provisioning using cloud infrastructures
and related virtualization tools: A survey and taxonomy. ar-
Xiv preprint. https://doi.org/10.48550/arXiv.1402.0696

Abeni, L., and Faggioli, D. (2020). Using Xen and KVM as re-
al-time hypervisors. Journal of Systems Architecture, 106,
101709. https://doi.org/10.1016/j.sysarc.2020.101709

Aceto, G., Botta, A., de Donato, W., and Pescape, A. (2013).
Cloud monitoring: A survey. Computer Networks, 57(9),
2093-2115. https://doi.org/10.1016/j.comnet.2013.04.001

Adams, K., and Agesen, O. (2006). A comparison of software
and hardware techniques for x86 virtualization. ACM SI-
GARCH Computer Architecture News, 34(5), 2-13. https://
doi.org/10.1145/1168919.1168860

Ameen, R. Y., and Hamo, A. Y. (2013). Survey of server virtualiza-
tion. arXiv preprint. https://doi.org/10.48550/arXiv.1304.3557

Annapareddy, N. D. R. (2011). An approach to storage virtuali-
zation. Texas A & M University-Kingsville.

Apple Inc. (2009). Universal binary programming guidelines. ht-
tps://web.archive.org/web/20120327121744/http://develo-
per.apple.com/legacy/mac/library/documentation/MacOSX/
Conceptual/universal_binary/universal_binary.pdf

Armand, F., and Gien, M. (2009, January 10-13). A practical
look at micro-kernels and virtual machine monitors [Con-
ference presentation]. 2009 6th IEEE Consumer Communi-
cations and Networking Conference, Las Vegas, NV, USA..
https://doi.org/10.1109/CCNC.2009.4784874

Bala, V., Duesterwald, E., and Banerjia, S. (2011). Dy-

I 12 of 14 INGENIERIA E INVESTIGACION vOL. 42 No. 3, DEcemBER - 2022

namo: a transparent dynamic optimization
ACM SIGPLAN Notices, 46(4), 41-52.
org/10.1145/1988042.1988044

Balis, B., Antonelli, L., Bracciali, A., Gruber, T., Hyun-Wook, J.,
Kuhn, M., Scott, S., Unat, D., Wyrzykowski, R., and Eiling,
N. (2021, August 24-25). An open-source virtualization layer
for CUDA applications [Conference presentation]. Euro-par
2020: Parallel Processing, Warsaw, Poland.

system.
https://doi.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, 1., and Warfield, A. (2003).
Xen and the art of virtualization. In ACM (Eds.), Proce-
edings of the Nineteenth ACM Symposium on Opera-
ting Systems Principles (pp. 164-177). ACM. https://doi.
0rg/10.1145/945445.945462

Beroni¢, D., Pufek, P., Mihaljevi¢, B., and Radovan, A. (2021).
On analyzing virtual threads — A structured concurrency
model for scalable applications on the JVM [Conference
presentation]. 2021 44th International Convention on In-
formation, Communication and Electronic Technology
(MIPRO). Opatija, Croatia. https://doi.org/10.23919/MI-
PRO52101.2021.9596855

Biederman, E. W. (2006). Multiple instances of the Global Linux
Namespaces [Conference presentation]. Linux Symposium,
Ottawa, Ontario, Canada.

Bochs (2021). bochs. The cross Platform IA-32 Emulator. ht-
tps://bochs.sourceforge.io

Bugnion, E., Nieh, J., Tsafrir, D., and Martonosi, M. (2017).
Hardware and software support for virtualization. Morgan
& Claypool. https://doi.org/10.2200/S00754ED1V01Y-
201701CAC038

Cafaro, M., and Aloisio, G. (2011). Grids, clouds, and virtuali-
zation. In M. Cafaro and G. Aloisio (Eds.), Grids, Clouds and
Virtualization (pp. 1-21). Springer.

Canonical Ltd. (2021). Container and virtualization tools. ht-
tps://linuxcontainers.org

Chang, Y. T. S., Heistand, S., Hood, R., and Jin, H. (2021, No-
vember 14). Feasibility of running singularity containers with
hybrid MPI on NASA high-end computing resources [Confe-
rence presentation]. 2021 3rd International Workshop on
Containers and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC), St. Louis, MO, USA.
https://doi.org/10.1109/CANOPIEHPC54579.2021.00007

Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin, N.,
Tye, T., Bharadwaj Yadavalli, S., and Yates, J. (1998). FX! 32:
A profile-directed binary translator. IEEE Micro, 18(2), 56-
64. https://doi.org/10.1109/40.671403

Diaz, E., Mateos, R., Bueno, E. J., and Nieto, R. (2021). Ena-
bling parallelized-QEMU for hardware/software co-simula-
tion virtual platforms. Electronics, 10(6), 759. https://doi.
org/10.3390/electronics10060759

Dike, J. (2006). User mode linux (vol. 2).
Englewood Cliffs.

Prentice Hall

Docker (2022). Docker. https://www.docker.com

El-Anani, B. R. (2021). Server virtualization: Para- and full virtua-
lization: XenServer vs. KVM. https://www.theseus.fi/hand-
le/10024/507277

Ensim (2022). Ensim. http://www.ensim.com

https://doi.org/10.1007/s10639-019-09932-0
https://doi.org/10.1007/s10639-019-09932-0
https://doi.org/10.1109/ICCES.2016.7821971
https://doi.org/10.1109/ICCES.2016.7821971
https://doi.org/10.48550/arXiv.1402.0696
https://doi.org/10.1016/j.sysarc.2020.101709
https://doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/10.1145/1168919.1168860
https://doi.org/10.1145/1168919.1168860
https://doi.org/10.48550/arXiv.1304.3557
https://web.archive.org/web/20120327121744/http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf
https://web.archive.org/web/20120327121744/http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf
https://web.archive.org/web/20120327121744/http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf
https://web.archive.org/web/20120327121744/http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf
https://doi.org/10.1109/CCNC.2009.4784874
https://doi.org/10.1145/1988042.1988044
https://doi.org/10.1145/1988042.1988044
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://doi.org/10.23919/MIPRO52101.2021.9596855
https://doi.org/10.23919/MIPRO52101.2021.9596855
https://bochs.sourceforge.io
https://bochs.sourceforge.io
https://doi.org/10.2200/S00754ED1V01Y201701CAC038
https://doi.org/10.2200/S00754ED1V01Y201701CAC038
https://doi.org/10.1109/CANOPIEHPC54579.2021.00007
https://doi.org/10.1109/40.671403
https://doi.org/10.3390/electronics10060759
https://doi.org/10.3390/electronics10060759
https://www.docker.com
https://www.theseus.fi/handle/10024/507277
https://www.theseus.fi/handle/10024/507277
http://www.ensim.com

SEPULVEDA-RODRIGUEZ, CHAVARRO-PORRAS, SANABRIA-ORDONEZ, CASTRO, AND MATTHEWS

eWeek. (2008). IBM acquiring transitive to increase virtualiza-
tion capabilities of power systems. https://www.eweek.com/
virtualization/ibm-acquiring-transitive-to-increase-virtuali-
zation-capabilities-of-power-systems/

Fareghzadeh, N., Seyyedi, M. A., and Mohsenzadeh, M. (2019).
Toward holistic performance management in clouds: taxo-
nomy, challenges and opportunities. Journal of Supercom-
puting, 75(1), 272-313. http://doi.org/10.1007/s11227-018-
2679-9

Fisher, M., Sharma, S., Lai, R., and Moroney, L. (2006). Java EE
and .NET interoperability: Integration strategies, patterns, and
best practices. Prentice Hall Professional.

Ford, B., and Cox, R. (2008). Vx32: Lightweight User-level Sand-
boxing on the x86 [Conference presentation]. USENIX Annual
Technical Conference. https://www.usenix.org/legacy/events/
usenix08/tech/full_papers/ford/ford.pdf

Gibson, C. (2007). WPAR Power AIX workload partition explai-
ned. IBM Systems Magazine. http://www.ibmsystemsmag.
com/opensystems/december07/coverstory/18606p1.aspx

Goldberg, R. P. (1973). Architectural principles for virtual compu-
ter systems. Defense Technical Information Center.

Goldberg, R. P. (1974). Survey of virtual machine research. Com-
puter, 7(6), 34-45. https://doi.org/10.1109/MC.1974.6323581

Honeycutt, J. (2003). Microsoft virtual PC 2004 technical over-
view. Microsoft.

Hoopes, J. (2009). Virtualization for security: Including sandbo-
xing, disaster recovery, high availability, forensic analysis, and
honeypotting. Syngress.

Hui, L. Y., and Seok, K. H. (2014). A study of savings of power
consumption and server space through integrated virtuali-
zation of UNIX servers. International Journal of Software En-
gineering and Its Applications, 8(5), 219-230. http://dx.doi.
org/10.14257/ijseia.2014.8.5.17

IBM (2008). Transitive. https://www-03.ibm.com/press/us/en/
pressrelease/26106.wss

Jason, K., Velte, A., and Velte, T. (2009). Microsoft virtualization
with Hyper-V. McGraw-Hill, Inc.

Jing, S.-Y., Ali, S., She, K., and Zhong, Y. (2013). State-of-the-art
research study for green cloud computing. The Journal of
Supercomputing, 65(1), 445-468. https://doi.org/10.1007/
s11227-011-0722-1

Jones, M., Kepner, J., Orchard, B., Reuther, A., Arcand, W., Bes-
tor, D., Bergeron, B., Byun, C., Gadepally, V., Houle, M., Hu-
bbell, M., Klein, A., Milechin, L., Mullen, J., Prout, A., Rosa,
A., Samsi, S., Yee, C., and Michaleas, P. (2018, September
25-27). Interactive launch of 16,000 Microsoft Windows
Instances on a supercomputer [Conference presentation].
2018 IEEE High Performance extreme Computing Confe-
rence (HPEC), Waltham, MA, USA. https://doi.org/10.1109/
HPEC.2018.8547782

Kamp, P.-H., and Watson, R. N. (2000). jails: Confining the om-
nipotent root [Conference presentation]. 2nd International
SANE Conference. https://papers.freebsd.org/2000/phk-jails/

Kampert, P. (2010). A taxonomy of virtualization technologies.
[Master’s thesis, Delft University of Technology]. https://
d1rkab7tlqy5f1.cloudfront.net/TBM/Over%2Ofaculteit/Afde-
lingen/Engineering%20Systems%20and%20Services/People/

Professors%20emeriti/Jan%20van%20den%20Berg/MasterPh-
dThesis/Masters_Thesis_Paulus_Kampert_August 2010-2.pdf

Kusnetzky, D. (2011). Virtualization: A manager’s guide. O'Reilly
Media, Inc.

KVM (2021). Kernel Virtual Machine. https://www.linux-kvm.org

Li, B., Shu, J., and Zheng, W. (2005). Design and implementation
of a storage virtualization system based on SCSI target simu-
lator in SAN. Tsinghua Science and Technology, 10(1), 122-
127. https://doi.org/10.1016/51007-0214(05)70018-3

Li, X.-F. (2016). Advanced design and implementation of virtual
machines. CRC Press.

Li, Z. (2021, November 12-14). Comparison between common
virtualization solutions: VMware Workstation, Hyper-V and
Docker [Conference presentation]. 2021 IEEE 3rd Interna-
tional Conference on Frontiers Technology of Information
and Computer (ICFTIC), Greenville, SC, USA. https://doi.
org/10.1109/ICFTIC54370.2021.9647226

Lin, Q., Qi, Z., Wu, J., Dong, Y., and Guan, H. (2012). Optimi-
zing virtual machines using hybrid virtualization. Journal of
Systems and Software, 85(11), 2593-2603. https://doi.or-
g/10.1016/j.js5.2012.05.093

Lin, S., Hao, C., and Jianhua, S. (2009, May 23-29). vCUDA: GPU
accelerated high performance computing in virtual machines
[Conference presentation]. 2009 IEEE International Sympo-
sium on Parallel & Distributed Processing, Rome, Italy. ht-
tps://doi.org/10.1109/IPDPS.2009.5161020

Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. (1997). The
Java virtual machine specification. Addison-Wesley.

Linux-VServer (2018). Linux-VServer. http://www.linux-vserver.org

Lxrun (2022, 2008/03/09). Official Ixrun web site. https://web.
archive.org/web/20151025205205/http://www.ugcs.caltech.
edu/ " steven/Ixrun/

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D.,
Hallberg, G., Hogberg, J., Larsson, F., Moested, A., and Wer-
ner, B. (2002). Simics: A full system simulation platform.
Computer, 35(2), 50-58. https://doi.org/10.1109/2.982916

Mann, A. (2006). Virtualization 101: Technologies, benefits, and
challenges. Enterprise Management Associates, Inc.

Matthews, J. N., Dow, E. M., Deshane, T., Hu, W., Bongio, J.,
Wilbur, P. F., and Johnson, B. (2008). Running Xen: A hands-
on guide to the art of virtualization. Prentice Hall PTR.

Nanda, S., and Chiueh, T.-C. (2005). A survey on virtualization
technologies. Stony Brook University. http://comet.lehman.
cuny.edu/cocchi/CMP464/papers/VirtualizationSurveyTR179.
pdf

Nanda, S., Li, W., Lam, L.-C., and Chiueh, T.-C. (2006). BIRD:
Binary interpretation using runtime disassembly [Conference
presentation]. 2006 International Symposium on Code Ge-
neration and Optimization, New York, NY, USA. https://doi.
org/10.1109/CGO.2006.6

OpenVZ (2021). OpenVZ. https://openvz.org

Oracle (2018). WABI https://docs.oracle.com/cd/E19957-01/802-
6306/802-6306.pdf

Oracle (2021a). Oracle Solaris Zones. https://docs.oracle.com/
cd/E18440_01/doc.111/e18415/chapter_zones.htm#OP-
CUG426

INGENIERIA E INVESTIGACION voL. 42 No. 3, Decemser - 2022 13 of 14 [

https://www.eweek.com/virtualization/ibm-acquiring-transitive-to-increase-virtualization-capabilities-of-power-systems/
https://www.eweek.com/virtualization/ibm-acquiring-transitive-to-increase-virtualization-capabilities-of-power-systems/
https://www.eweek.com/virtualization/ibm-acquiring-transitive-to-increase-virtualization-capabilities-of-power-systems/
http://doi.org/10.1007/s11227-018-2679-9
http://doi.org/10.1007/s11227-018-2679-9
https://www.usenix.org/legacy/events/usenix08/tech/full_papers/ford/ford.pdf
https://www.usenix.org/legacy/events/usenix08/tech/full_papers/ford/ford.pdf
http://www.ibmsystemsmag.com/opensystems/december07/coverstory/18606p1.aspx
http://www.ibmsystemsmag.com/opensystems/december07/coverstory/18606p1.aspx
https://doi.org/10.1109/MC.1974.6323581
http://dx.doi.org/10.14257/ijseia.2014.8.5.17
http://dx.doi.org/10.14257/ijseia.2014.8.5.17
https://www-03.ibm.com/press/us/en/pressrelease/26106.wss
https://www-03.ibm.com/press/us/en/pressrelease/26106.wss
https://doi.org/10.1007/s11227-011-0722-1
https://doi.org/10.1007/s11227-011-0722-1
https://doi.org/10.1109/HPEC.2018.8547782
https://doi.org/10.1109/HPEC.2018.8547782
https://papers.freebsd.org/2000/phk-jails/
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Engineering%20Systems%20and%20
https://www.linux-kvm.org
https://doi.org/10.1016/S1007-0214(05)70018-3
https://doi.org/10.1109/ICFTIC54370.2021.9647226
https://doi.org/10.1109/ICFTIC54370.2021.9647226
https://doi.org/10.1016/j.jss.2012.05.093
https://doi.org/10.1016/j.jss.2012.05.093
https://doi.org/10.1109/IPDPS.2009.5161020
https://doi.org/10.1109/IPDPS.2009.5161020
http://www.linux-vserver.org
https://web.archive.org/web/20151025205205/http://www.ugcs.caltech.edu/~steven/lxrun/
https://web.archive.org/web/20151025205205/http://www.ugcs.caltech.edu/~steven/lxrun/
https://web.archive.org/web/20151025205205/http://www.ugcs.caltech.edu/~steven/lxrun/
https://doi.org/10.1109/2.982916
http://comet.lehman.cuny.edu/cocchi/CMP464/papers/VirtualizationSurveyTR179.pdf
http://comet.lehman.cuny.edu/cocchi/CMP464/papers/VirtualizationSurveyTR179.pdf
http://comet.lehman.cuny.edu/cocchi/CMP464/papers/VirtualizationSurveyTR179.pdf
https://doi.org/10.1109/CGO.2006.6
https://doi.org/10.1109/CGO.2006.6
https://openvz.org
https://docs.oracle.com/cd/E19957-01/802-6306/802-6306.pdf
https://docs.oracle.com/cd/E19957-01/802-6306/802-6306.pdf
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426

A SURVEY OF VIRTUALIZATION TECHNOLOGIES: TOWARDS A NEw TAXONOMIC PROPOSAL

Oracle (2021b). Oracle Virtual Box. https://www.oracle.com/vir-
tualization/virtualbox/.

Parallels (2021). Parallels. https://www.parallels.com
Parrot (2022). Parrot. http://www.parrot.org

Pék, G., Buttydn, L., and Bencsath, B. (2013). A survey of securi-
ty issues in hardware virtualization. ACM Computing Surveys
(CSUR), 45(3), 40. https://doi.org/10.1145/2480741.2480757

Pessolani, P., and Jara, O. (2011, November 7-11). Minix over
Linux: A user-space multiserver operating system [Conferen-
ce presentation]. 2011 Brazilian Symposium on Compu-
ting System Engineering, Florianopolis, Brazil. https://doi.
org/10.1109/SBESC.2011.17

Pessolani, P., Gonnet, S. M., Tinetti, F. G., and Cortes, T. (2012).
Sistema de virtualizacién con recursos distribuidos [Confe-
rence presentation]. XIV Workshop de Investigadores en
Ciencias de la Computacion. http://sedici.unlp.edu.ar/hand-
le/10915/18375

Plex86 (2021). The new Plex86, x86 Virtual Machine Project.
http://plex86.sourceforge.net

Popek, G.)., and Goldberg, R. P. (1974). Formal require-
ments for virtualizable third generation architectures.
Communications of the ACM, 17(7), 412-421. https://doi.
org/10.1145/361011.361073

QEMU (2021). QEMU, the FAST! processor emulator. https://
Wwww.gemu.org

Ranjith, D., Tamizharasi, G. S., and Balamurugan, B. (2017,
April 20-22). A survey on current trends to future trends in
green computing [Conference presentation]. 2017 Interna-
tional Conference of Electronics, Communication and Ae-
rospace Technology (ICECA), Coimbatore, India. https://doi.
0org/10.1109/ICECA.2017.8203616

Ryding, C., and Johansson, R. (2020). Jails vs Docker: A perfor-
mance comparison of different container technologies [Un-
dergraduate thesis, Mid Sweden University]. http://urn.kb.se/
resolve?urn=urn:nbn:se:miun:diva-39517

Sahoo, J., Mohapatra, S., and Lath, R. (2010, April 23-25). Vir-
tualization: A survey on concepts, taxonomy and associated
security issues [Conference presentation]. 2010 Second Inter-
national Conference on Computer and Network Technology,
Bangkok, Thailand. https://doi.org/10.1109/ICCNT.2010.49

Samireh, J., and Claes, W. (2012). Systematic literature studlies:
database searches vs. backward snowballing [Conference pre-
sentation]. ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, Lund, Sweden. ht-
tps://doi.org/10.1145/2372251.2372257

SCOPE Alliance (2008). Virtualization: State of the art. https://
profsandhu.com/cs6393_s14/SCOPE-Virtualization-Stateof-
TheArt-Version-1.0.pdf

Sehgal, N. K., and Bhatt, P. C. (2018). Cloud computing. Sprin-
ger.

Silberschatz, A., Galvin, P. B., and Gagne, G. (2014). Operating
system concepts essentials. John Wiley & Sons, Inc.

Smith, J. E., and Nair, R. (2005). The architecture of virtual ma-

chines. Computer, 38(5), 32-38. https://doi.org/10.1109/
MC.2005.173

I 14 of 14 INGENIERIA E INVESTIGACION vOL. 42 NoO. 3, DECEMBER - 2022

Stallings, W. (2015). Operating systems: Internals and design
principles (9" ed.). Pearson.

Sylabs.io (2022). Sylabs.io Singularity. https://www.sylabs.io

Syrewicze, A., and Siddaway, R. (2018). Pro Microsoft Hyper-V
2019: Practical guidance and hands-on labs. Apress.

Tfrifonov, D. V., Hristo. (2018). Virtualization and containeriza-
tion systems for Big Data. Fundamental Science and Appli-
cations, 24, 129-132. Thai, T. L., and Lam, H. (2003). .NET
framework essentials. O'Reilly Media, Inc.

Thathera, H., Shashi, H., and Rajput, D. S. (2015). Green compu-
ting: An earth friendly system. International Journal of Science
and Research, 8(4), 25540-25550 https://research.vit.ac.in/
publication/green-computing-an-earth-friendly-system

User-Mode Linux (2022). The user-mode Linux Kernel home
page. http://user-mode-linux.sourceforge.net

Varasteh, A., and Goudarzi, M. (2017). Server consolidation techni-
ques in virtualized data centers: A survey. IEEE Systems Journal,
11(2), 772-783. https://doi.org/10.1109/)SYST.2015.2458273

Virtuozzo (2022). Virtuozzo. https://www.virtuozzo.com
VMware (2022). VMware. http://www.vmware.com

von Hagen, W. (2008). Professional Xen virtualization. John Wiley
& Sons, Inc.

Waldspurger, C. A. (2002). Memory resource management in
VMware ESX server. ACM SIGOPS Operating Systems Review,
36(Sl), 181-194. https://doi.org/10.1145/844128.844146

Wessman, N. J., Malatesta, F., Andersson, J., Gomez, P., Mas-
mano, M., Nicolau, V., Rhun, J. L., Cabo, G., Bas, F., Lorenzo,
R., Sala, O., Trilla, D., and Abella, J. (2021, August 23-27).
De-RISC: The first RISC-V space-grade platform for safety-cri-
tical systems [Conference presentation]. 2021 IEEE Space
Computing Conference (SCC), Laurel, MD, USA. https://doi.
org/10.1109/SCC49971.2021.00010

Whitaker, A., Shaw, M., and Gribble, S. D. (2002). Denali: Ligh-
tweight virtual machines for distributed and networked appli-
cations. http://web.cs.ucla.edu/ ™~ miodrag/cs259-security/
whitaker02denali.pdf

White, J., and Pilbeam, A. (2010). A survey of virtualization tech-
nologies with performance testing. arXiv preprint. https://doi.
org/10.48550/arXiv.1010.3233

Wine (2022). Wine. https://www.winehq.org

Xen Cambridge (2022). Xen Cambridge. The virtual machine mo-
nitor. https://www.cl.cam.ac.uk/research/srg/netos/projects/
archive/xen/

Xen Project (2022). Xen Project Website. https://www.xenpro-
ject.org

Xtratum (2022). Xtratum. http://www.xtratum.org

Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy,
T., Okasaka, S., Narula, N., and Fullagar, N. (2009). Nati-
ve client: A sandbox for portable, untrusted x86 native code
[Conference presentation]. 2009 30th IEEE Symposium
on Security and Privacy, Oakland, CA, USA. https://doi.
org/10.1109/SP.2009.25

https://www.oracle.com/virtualization/virtualbox/
https://www.oracle.com/virtualization/virtualbox/
https://www.parallels.com
http://www.parrot.org
https://doi.org/10.1145/2480741.2480757
https://doi.org/10.1109/SBESC.2011.17
https://doi.org/10.1109/SBESC.2011.17
http://sedici.unlp.edu.ar/handle/10915/18375
http://sedici.unlp.edu.ar/handle/10915/18375
http://plex86.sourceforge.net
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://www.qemu.org
https://www.qemu.org
https://doi.org/10.1109/ICECA.2017.8203616
https://doi.org/10.1109/ICECA.2017.8203616
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39517
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39517
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1145/2372251.2372257
https://doi.org/10.1145/2372251.2372257
https://profsandhu.com/cs6393_s14/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
https://profsandhu.com/cs6393_s14/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
https://profsandhu.com/cs6393_s14/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
https://doi.org/10.1109/MC.2005.173
https://doi.org/10.1109/MC.2005.173
https://www.sylabs.io
https://research.vit.ac.in/publication/green-computing-an-earth-friendly-system
https://research.vit.ac.in/publication/green-computing-an-earth-friendly-system
http://user-mode-linux.sourceforge.net
https://doi.org/10.1109/JSYST.2015.2458273
https://www.virtuozzo.com
http://www.vmware.com
https://doi.org/10.1145/844128.844146
https://doi.org/10.1109/SCC49971.2021.00010
https://doi.org/10.1109/SCC49971.2021.00010
http://web.cs.ucla.edu/~miodrag/cs259-security/whitaker02denali.pdf
http://web.cs.ucla.edu/~miodrag/cs259-security/whitaker02denali.pdf
https://doi.org/10.48550/arXiv.1010.3233
https://doi.org/10.48550/arXiv.1010.3233
https://www.winehq.org
https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xen/
https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xen/
https://www.xenproject.org
https://www.xenproject.org
http://www.xtratum.org
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1109/SP.2009.25

Predalyc

Availablein:
https://www.redalyc.org/articulo.oa?id=64379889015

How to cite
Complete issue
More information about this article

Journal's webpage in redalyc.org

Scientific Information System Redalyc
Diamond Open Access scientific journal network
Non-commercial open infrastructure owned by academia

Luis E. Sepulveda-Rodriguez, Julio C. Chavarro-Porras,
John A. Sanabria-Ordonez, Harold E. Castro,

Jeanna Matthews

A Survey of Virtualization Technologies: Towards a New
Taxonomic Proposal

Una revision de las tecnologias de virtualizacién: hacia
una nueva propuesta taxondmica

Ingenieria e Investigacion

vol. 42, no. 3,e214, 2022

Facultad de Ingenieria, Universidad Nacional de Colombia.,
ISSN: 0120-5609

ISSN-E: 2248-8723

DOI: https://doi.org/10.15446/ing.investig.97363

https://www.redalyc.org/articulo.oa?id=64379889015
https://www.redalyc.org/comocitar.oa?id=64379889015
https://www.redalyc.org/revista.oa?id=643&numero=79889
https://www.redalyc.org/articulo.oa?id=64379889015
https://www.redalyc.org/revista.oa?id=643
https://doi.org/10.15446/ing.investig.97363

