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ABSTRACT:

Introduction/purpose: In the current literature, several dozens of vertex-degree-based (VDB) graph invariants are being studied.
To each such invariant, a matrix can be associated. The VDB energy is the energy (= sum of the absolute values of the eigenval-
ues) of the respective VDB matrix. The paper examines some general properties of the VDB energy of bipartite graphs.

Results: Estimates (lower and upper bounds) are established for the VDB energy of bipar- tite graphs in which there are no cycles
of size divisible by 4, in terms of ordinary graph energy.

Conclusion: The results of the paper contribute to the spectral theory of VDB matrices, especially to the general theory of VDB
energy.

KEYWORDS: vertex-degree-based graph invariant, vertex-degree-based matrix, vertex-degree- based energy, energy (of graph).
Pe s31oMe;

Bseaenue/uean: B HoBeilimeit AUTepaType H3yYaIOTCS ACCATKU HHBAPHAHTOB rpadoB, ocHOBaHHbIX Ha cTenery sepmumn (VDB). K
KKAOMY TAKOMY HHBAPHAHTY MOYET IPUCOEAMHUTHCS MaTpHna. JDueprust VDB - a1o sneprus (= cymma abcoAoTHBIX 3HAYEHMI
COBCTBEHHBIX 3HAYCHMUIT) COOTBETCTBYoImeH MaTpuubsl VDB. B panHOM cTathe HccaeayoTest HekoTopble obmue coiictea VDB-
SHEPTHH ABYAOABHBIX IPadoB.

Pesyasrarsr: [Toayuensr onexku (mmxueit u BepxHEH rpaHunbl) o aHepruu VDB ABYAOABHBIX IpadoB, He HMECIOIIMX LIUKAOB
BEAMYHHBL, KPaTHOH 4, B 3aBICUMOCTH OT OOBIMHOM dHepruu rpada.

Br1BoABL: PesyabTaTl CTATBH BHOCST BKAAA B CIICKTPAABHYIO Teoprio Marpuy; VDB, a ocobenno B 06myro teopuio sneprun VDB.

KnodyeBo € CJ OB a: uHBAPUAHT rpada, OCHOBAHHBII HA CTECIICHU BEPIIHHBI, MATPHULIA, OCHOBAHHAS HA CTEIICHU
BEPIIMHBI, SJHEPTHUS, OCHOBAHHAs HA CTENEHU BEPLIMHEBI, JHEPIH (rpacl)a).

ABSTRACT:

VYBoa/uun: Y HOBHjOj AUTepaTypH Hmpoy4aBajy ce 6pojHe rpadoBcke MHBApHjaHTe 3acHOBaHE Ha cTeneHMMa yBoposa (VDB).
CBaxoj 0a OBHX MHBApHUjaHTH MOXe ce¢ NPUAPYXHTH Matpuua. VDB enepruja je 36up ancoAyTHUX BPEAHOCTH COICTBEHHUX
BPEAHOCTH oArOBapajyhe VDB matpuie. Paa uctpaxyje Heke ommure ocobune BAB eHepruje bunapruTHuX rpadpoBa.

Pesyararu: Aobujene cy npoueHe (Aome u ropme rpannue) sa VDB eneprujy 6unmaprutaux rpadosa Koju HeMmajy LIUKOABE
BEAMYHHE ACAHHBE Ca 4, 4 y 3aBUCHOCTHU 0A 0b1YHe rpadoBCKe eHepruje.

3axmwyyax: Pesyaratn oBor pasa pompuHoce crexrpasnoj reopuju VDM Marpuia, a moce6Ho onurroj reopuju VDB enepruyje.

KEYWORDS: I/IHBapI/IjaHTa 3aCHOBaHa Ha CTCIICHHMa YBOPOBA, MaTPUI[A 3aCHOBaHA Ha CTIICHUMA YBOPOBA , CHCPI‘I/Ija 3aCHOBaHa Ha
CTENIEeHUMA YBOPOBa, eHepruja (rpa(l)a).

INTRODUCTION

Let G be a simple graph with the vertex set V(G) and the edge set E(G). If the vertices #, v € V(G) are
adjacent, then the edge connecting them is denoted by #v. The number of edges incident to a vertex v is the
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degree of that vertex, and is denoted by 4(v). The minimum and maximum vertex degrees are denoted by 0
and A, respectively.

Let V(G) ={v;, v 2, ..., 0., }. Then the adjacency matrix A(G) = [4;; ] of the graph G is the symmetric
matrix of order 7, whose elements are (Cvetkovié et al, 2010):

1 ifye; € E(G)
ajj = 0 ifvy € B(G)
0 ifi=j.

If the cigenvalues of A(G) ared; , ..., 4, , then the (ordinary) energy of the graph G is defined as

n
£=£G) ="Ml
= @)
The theory of graph energy is nowadays elaborated in due detail (Li et al, 2012; Ramane, 2020).
In the chemical and mathematical literature, a variety of vertex-degree-based (VDB) graph invariants of
the form

I=I(G)= > fld{u),d))

S e (3)

has been considered, where fis a suitably chosen function, with a property flx, y) = f{y, x) (Kulli, 2020;
Todeschini & Consonni, 2009). These are usually referred to as ropological indices. Of these, we list here a
few most popular and best studied ones (Table 1):

TABLE 1
i, 3 name of index type
w4 first Zagreb
k% Fecond Zagreb forgotten |t
N y2 Sormbor t
2 y2 nirmala Randic t
WXyl Furm-connectivity t
W 1A fiarmonic |
PNy s inverse degree |
) rmodified Sormbor l
2 2 ptom-bond-connectivity |}
L+ 170 s 1bertson ]
142 + 32 -
172
[+ » = 20/ -~
[ = ¥l




IVAN GUTMAN. ESTIMATING VERTEX-DEGREE-BASED ENERGIES

The parameters x and y (being vertex degrees) always satisfy the conditionx > 1, y > 1. Bearing this in mind,
we immediately recognize that most VDB indices are either monotonically increasing ( ) or monotonically
decreasing functions ( | ) of the vertex degrees. Only a few such indices do not possess such a monotonicity
property (#).

It should be noted that for practically all VDB indices of type 1 that exist in the literature, the condition

f(x y) = 1is satisfied for all values of x and y that occur for the edges of graphs.
Analogously, for practically all VDB indices of type | , 0 < f(x, y) < 1 holds for all values of x and y.
Taking into account Eq (1) and (3) we introduce the VDB matrix

Az(G) = [(az)y]
via
_,I"I{r.rlia.',-].:fl:a':,} if vy © E(G)

(ar)y = 0 if vy & E(()

0 ifi=j. 4)

If its eigenvalues are &y, . . . , ¢ 5, then the energy pertaining to the VDB invariantz, Eq. (3), is

&z = &2(G) = Zlml -
i=1 (5)

For recent works on the investigation of this class of graph-spectral invariants see (Das et al, 2018; Gutman,
2020; Gutman, 2021; Gutman et al, 2022; Li & Wang, 2021; Shao et al, 2021).

MAIN RESULTS

A cycle of length p is a cycle consisting of (exactly) p vertices v, v, ..., v,, so that v; and v;,; are adjacent
fori=1,2...,p~ 1, and also v; and v, are adjacent. As it is well known, a graph G is bipartite if and
only if all its cycles (if any) are of even length. In this paper, we prove the results valid for bipartite graphs
which do not possess cycles of a length divisible by 4. Let G be such a graph. Without loss of generality, we
assume that G is connected.

Let the graph energy Oand the VDB energy ¢; be the quantities defined via Egs. (2) and (5), and let be the
function specified in Eq. (3). Let 9 ad A be the smallest and largest vertex degrees of G.

Theorem 1. Let G be a bipartite graph with no cycle of size divisible by 4. Then

£(0,0)€(G) < &2(G) < f(A,A) E(G)

holds for all VDB invariants in which the function fis monotonically increasing and f (x, y) = 1 for all vertex
degrees x and y. Equality on both sides holds if and only if G is a regular graph, in which case 6 = 4.
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The examples of the VDB invariants for Theorem 1 are the above listed first and second Zagreb, forgotten,
Sombor, and nirmala indices.

Theorem 2. Let G be a bipartite graph with no cycle of size divisible by 4. Then
f(A,A)E(G) < &2(G) < f(4,9) E(G)

holds for all VDB invariants in which the function fis monotonically decreasing and 0 < f (x, y) < 1 for all
vertex degrees x and y. Equality on both sides holds if and only if G is a regular graph.

The examples of the VDB invariants for Theorem 2 are the above listed Randi’c, sum-connectivity,
harmonic, and modified Sombor indices, as well as the inverse degree.

A tree is a connected graph with no cycles. Therefore, Theorems 1 and 2 apply to trees. For any tree 6 =
1, but Theorems 1 and 2 can be slightly strengthened.

Theorem 3. Let T be a tree with n > 3 vertices. Then

£(1,2) E(T) < E2(T) < F(A, D) E(T)

holds for all V DB invariants in which the function fis monotonically increasing and
f(xy) 2 1 for all x, y. Equality on the lefi-hand side holds if and only if n = 3.

Theorem 4. Let T be a tree with n > 3 vertices. Then
FIAA)E(T) < E2(T) < f(1,2) E(T)

holds for all VDB invariants in which the function f is monotonically decreasing and

0 <f(x, ) < 1 for all x, y. Equality on the right-hand side holds if and only if n = 3.

In addition to trees, Theorems 1 and 2 are applicable to various classes of cycle- containing graphs. Of
these, of particular interest may be the hexagonal systems (molecular graphs of benzenoid hydrocarbons)
(Gutman & Cyvin, 1989). All their vertices are of degrees 2 and 3. The so-called catacondesned hexagonal
systems (= hexagonal systems having no internal vertices) are known to possess only cycles of size 4p + 2.
For these molecular graphs

f(2,2)E(G) < &&2(G) < f(3,3) E(G) .

or

f(3,3)E(G) < &1(G) < f(2,2)€(G).

(7)

depending on whether f (x, y) monotonically increases or decreases.
Hexagonal systems possessing internal vertices have cycles of size 4p, p = 3,4, etc., and thus Theorems 1 and
2 are not applicable. We nevertheless conjecture that estimates (6) and (7) are valid for all hexagonal systems.
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In order to prove the above theorems, we need an auxiliary result, stated below as Lemma 3.

ENERGY OF A WEIGHTED BIPARTITE GRAPH

The main part of the results outlined in this section was reported in (Gutman et al, 2021). These are repeated
here (in an abbreviated form) in order to maintain completeness. Also, a few errors committed in (Gutman
etal, 2021) are corrected.

Let G be a bipartite graph with n vertices. Let G,, be obtained from G by associating weighs to its edges,
so that wij is the weight of the edge ij. Then the characteristic polynomial of G,, is of the form (Cvetkovi¢
etal, 2010)

A(Guy N) = A"+ ) (—1)F ¢(Gu, k) A2

k>1 (8)

whereas the energy of G,, satisfies the equality (Gutman, 1977), (Gutman, 2020), (Li et al, 2012)

+00
2 dx
E(G’w)=7r/$ In |1+ c(Gu, k)=
0 k>1

Note that (G, ) is a monotonically increasing function of any of the coefficients ¢(G,, k).
According to the Sachs theorem (Cvetkovié et al, 2010).

(~1D)*e(Gu k)= D (12 w(o)

c€S2,(Gw) (10)

where S;(G,,) is the set of all Sachs graphs of G,, possessing exactly 2k vertices, and where o is an element
of $54(G,,), containing p(s) components, of which ¢(7) are cycles. The weight of the Sachs graph ¢ is equal to
the product of the weights of its components.

If the isolated edge 7 is a component of 7, then its weight is Wizj .Ifacycle Z is a component of ¢, then its
weight is the product of weights of the edges contained in Z.

Lemma 1. (Gutman et al, 2021) If the Sachs graph o # Sx(G,) * # does not contain cycles whose size is
divisible by 4, then

(—1)f (1)@ 2 5 ¢,

Proof. The Sachs graph o has p(7) components. Let among them be ry 2 0 isolated edges, whose total
number of vertices is 27y . Let o contain 7; 2 0 cycles, whose total number of vertices is 4x + 2 7; for some
integer x. Thus, 2k = 2rg+ 4x + 27 .
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Case 1: 2k is not divisible by 4. Then (—1)* = —1 whereas 7y + 7; = p() is odd.

Therefore, (—1)% (=1)@ > 0 and the claim of Lemma 1 holds.

Case 2: 2k is divisible by 4. Then (—1)* = +1 whereas 7y + 7, = p(z) is even, implying, again, (—1 F(-1)p@
> 0.

Lemma 1 has the following noteworthy consequences:

Lemma 2.

(a) Let G, be an edge-weighted bipartite graph whose all cycles (if any) have size not divisible by 4, and
let the weights of all its edges be positive-valued. Then for any Sachs graph o # S (G,) * #,

(-1 (-1@ 2O w(z) > 0.

(b) Therefore, because of Eq. (10), the coefficients ¢(G,, £) in Eq. (8) are non-negative and are the
monotonically increasing functions of the edge-weights.

(c) Therefore, because of Eq. (9), the energy of the graphs G, is a monotonically increas- ing function of
the edge-weights.

From Lemma 2(c), we obtain the result needed for our proofs:

Lemma 3. Let G, be an edge-weighted bipartite graph whose all cycles (if any) have size not divisible by 4.

(a) If for all edges 77 # E (G,), the condition w;; > I holds, then 0 (G,) 2 U (G).

If wy; > I for at least one edge ij, then O (Gw) > 0(G).

(b) If for all edges ij # E (G,,), the condition w;; < I holds, then O (G,,) < O(G).

If w; < 1 for at least one edge 7, then 0 (Gw) < O(G).

(c) If in both cases (a) and (b), w;; = w holds for all edges 5 # E (G,,), then 0(G,)=w 0O(G).

Proor oF THEOREMS 1-4

The adjacency matrix (@), Eq. (4), could be viewed as the ordinary adjacency matrix of an edge-weighted
modification of the graph G. Therefore, if the condition f (dvi, dvj ) >

Therefore, if the condition f{dv;dv; > 1) holds, and if £ (x, y) is an increasing function forx > 7 andy > 1,
then the lower bound of Theorem 1 follows by Lemma 3 if all f'(x, y) are replaced by £'(3, 9).

The upper bound is obtained if all /'(, y) are replaced by £(A, A).

The proof of Theorem 2 is analogous.

Theorems 3 and 4 are based on the fact that no tree with 7 > 3 vertices is a regular graph. The only tree
having two adjacent degree-one vertices is the two-vertex tree. Therefore, for trees with 3 or more vertices,

the minimal (resp. maximal) value of /', y) is (1, 2).
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