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ABSTRACT:

Introduction/purpose: The problem of quantum corrections to propagators in Quantum Electrodynamics (QED) is discussed.
Methods: The Dyson—Schwinger equation is employed for correcting propagators in QED.

Results: The observable quantities in QED are finite.

Conclusions: QED divergencies can be avoided by redefining physical quantities in a suitable manner.

KEYWORDS: Quantum Electrodynamics, Quantum Field Theory, Renormalization Group.
Pe s31oMe;

Beeacnue/ueas: B poanHoi cTathe 06cyKA2eTCSI MPOGACMA KBAHTOBBIX IIONPABOK K IIPONAraTOPaM B KBAHTOBOM JACKTPOANHAMHUKE
(K24).

Metoanr: Aast monpasok k npomnaratopam B K9A ucrnoarsosasocs ypaBaeHue Aaricona — [IIsunrepa.

Pesyabrarsr: Habaroaaemsie Beananns: B QED xoHeuHsr.

BeiBoppr: Pacxoxaenus B KOA MoxHO nsbexars, COOTBETCTBYOMNM 00pa3oM NepeoOnpeACAnB GU3HIECKUE BEAUTHHBL.

Knwue BB e cJ 0B a: KBaHTOBas IACKTPOAMHAMHKA, KBAHTOBASI TCOPHUSI ITOASL, PCHOPMAAM3AMOHHAS I'PYIIIIA.

ABSTRACT:

VBoa/uun: Y paay ce pasmaTpa Ipo6aeM KBaHTHHX KOPEKLHja IPOMAraTopa y KBaHTHOj eaektpoauHamunu (QED).

Metope: Kopumhena je Aajcon-IIBunreposa jeanaunna 3a kopexuujy npomararopa y QED-y.

Pesyararu: ITocmarpane koanuune y QED-y cy xonaune.

3akaydak: AMBepreHIyje y KBAHTHO] CACKTPOAUHAMHIIN MOTy ce u3behu peaedpunucamem GusHIKux BeAndnHa Ha oaroBapajyhn
Ha4MH.

KEYWORDS: kBautna CACKTPOAMHAMUKA, KBAHTHA Teopuja [O/a, PCHOPMAAU3AIIMOHA IPYyIIa.

QED Loops
Corrected photon propagator

In (Fabiano, 2021) we have computed the correction to the photon line at one-loop level in QED.
Remembering that the bare photon propagator is given by the expression

: . G
iD,,., = —j——
it (q) qg 1 e 0
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obtained, roughly speaking, by inverting the term F* in the Lagrangian (5) of (Fabiano, 2021). In
Minkowskian metric the vacuum polarisation is given by

ll;u«'(‘fj = ('?y,q:f - g;qu}ﬂ—(qzj . @)

The physical or renormalised photon propagator is obtained by considering all possible corrections to the
photon line, as illustrated in eq. (3).

Aswe can see, the physical photon propagator . is obtained by repeated insertions of vacuum polarisation
diagrams at oneloop level, in the following manner:

iD},(q) = iD,, (q) + iDyux(q)illx,(q)iD, (q)+
iDul(Q)iﬂip(QJiDﬂﬁ (Q)EHF‘EU(@)IDUV(Q] +-... (4)

Recalling the geometric series for which this expression holds true

+0o0

T 1
> (a)" = s

n=1

(5)

one could immediately recognise the same pattern in eq. (4) and rewrite it as (Dyson, 1949), (Schwinger,

1951)

iDP(g) = ;—29 (1= 7 + (7P + ...} + O(qua) =

—1

q_gg;u/ + O(Q,qu) .

2
1+ 7(q?) ©

Corrected electron propagator

Proceeding in a manner completely analogous to previous section we could calculate the physical electron
propagator. The bare electron propagator is given by
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1 . pt+m

]

S(p)ZEP—m—I—zE _Ipz—ﬂ1.2+i5.

7)

while the physical propagator S"(p) is obtained by repeated insertions of X(p) calculated in (Fabiano,
2021), formula (27):

[ — ¢ M LA A

= + +... (8)
The expression for S* is pictorially represented in eq. (8), this translates to:
S¥(p) = S(p) + S()Z(p)S(p) + S(P)Z(p)S(P)E(P)S(p) + - .. 9
and using eq. (5) we end with the expression
1
S(p) =1
(p) p—m —X(p) +ic o)

COUNTERTERMS

Up to now, we have computed all possible fundamental divergencies in QED. Those are necessary to build
the necessary counterterms in order to renormalise QED. Those counterterms are suitably constructed terms
in the Lagrangian in order to cancel out divergencies and make results finite. To recap, we started with this
classical Lagrangian in D dimensions

]. Ay J A e P =7
L= —;—lF“I’F;LI, + iy + e,u(i Ujf{?@-’;Aw — mp ,
; (11)

and we add a counterterm Lagrangian with the same form of the present Lagrangian of (11)
1 — , - -
Lo = =7 KsF" F, + iKo0dp + ep " PV2 K G Ah — mK, i)
: (12)

The obtained renormalised Lagrangian
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"'::'r'fm — "C'fi + £ct

(13)

could be expressed in terms of the bare quantities defined in the following way:

Yo = v/ 1+ Ko = Z;IIE’-!,EJ (14)

Al = [T+ K3AF = 2,/ A )
__ (4-D)/2 1+ K 4 (4—D)/2
ey = e - = — el
(VTR 27 »
mﬂ — m 1 + ﬁ'ﬂi — Z’F?E—m
1+ K> Zo (17)

where we have introduced Dyson’s Z notation (Dyson, 1952), and bare quantities, which do not depend
on the scale y, are denoted by a 0 subscript. Often, eq. (14) is called wave function renormalisation. The
renormalised Lagrangian is

1 e R i - i . i
Lyen = —EFH.“ Fouw + io@0 + eotbg Ao — motgto .

(18)
or in Dyson’s notation
Z3 L s Tk Ay i
Lyen = _TF Fuy + iZ2yp@y + eZ1p A — mZn)
- (19)
The covariant derivative in «... transforms as
A
'DI:‘LE'??. = 0“ - IE_A“
Z3 (20)
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and, in order not to spoil gauge invariance of the Lagrangian it needs to be Z; = Z,. It is possible to show
that this is actually the case to all orders of perturbation theory.
The counterterms can be read off the one-loop calculations encoun- tered in (Fabiano, 2021). Starting
with fermion line correction, from eq. (37) of (Fabiano, 2021) we extract the term
2

&
-

¥(p)=—i

1
— (p + 4m)— + finite terms
16 5 ()

and comparing to the inverse of the bare electron propagator, eq. (7)

S~ {p) = —i(p —m +ig) (22)

one could infer that the term in  is related to Z,, while the term proportional to m is related to Z,,.

Therefore

e 1 m
= — -+ F e, —
1672 | e T E I

(23)
and
2
. e 1 m
Itn'r, - T a2z + Fn‘r, E, —
dme | € i
(24)

where functions F, and F,, are arbitrary finite parts depending upon & and m/y, and are analytical as e »
0. It means that the counterterms contain just the part proportional to 1/¢ necessary to cancel the overall
divergencies.

The second correction we tackle is the one for the photon line encountered in (Fabiano, 2021). From eq.
(22) of (Fabiano, 2021) we have

2

e
— + finite terms
1272 ¢

2
HHL’ (Q’) — (QMQV - 5;;:,;@ )
(25)

and using the relation of eq. (4) we have for the one-loop propagator
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) ) d
[y L [
D#V(p)_ Q—I__FQH 2+:
p P p
2 2
5!—"” 1 — € 1 PuPv € l
p? 1272 ¢ pt 1272 ¢
. (26)
so that
2
e 1
K3 = 9.2 |:——|-E3]
[y = 27)
where F3 is an arbitrary dimensionless finite function.
Last comes the vertex correction, from (Fabiano, 2021) eq. (50) we have
. et 1 .
I'y(p,q) = —iepy, 1672 = + finite terms
(28)
that gives
2
e 1
Ki=—— [g + F1]
(29)
where, once more, F; is a finite function. In terms of the Z notation, we summarise our results as
2
€ 1 ‘
21:1— 5 ——I—Fl —I-O(Ei)
167 | £
(30)
2
& 1
Zy=1- i+
1672 | ¢

(31)
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Z3 =1 + Pyl 4

2 1
1272 | ¢

(32)

2
; 1
qu:l_% j‘}_Fm + e
4 = (33)

We remark once more that Z; = Z, is satisfied to this order in perturbation theory. So using the relation
of eq. (16) and remembering that e = (4 — D)/2, for D » 4 we have

2

1
— <+ finite terms + O(f’-g)

e
= en |1
Co=er 1Lt o

(34)

If we ignore the finite part of the counterterms by adopting a mass independent prescription, also known
as the minimal subtraction scheme, or MS scheme ('t Hooft, 1973), (Weinberg, 1973), for which the finite
part is zero, we can compute the so—called beta function due to Gell-Mann and Low (Gell-Mann and Low,
1954) defined in the following way:

) de
Ble) = lim p— ,
e=0" du

(35)

which is an analytic function in e. Compute the beta function from eq. (34) by differentiating with respect
to u, remembering that n0 is constant taking the prescribed limit ¢ > 0, and obtain

de e®

Ble) = pu =
ple) =1 op 1272 36

which is actually a differential equation for electric charge e as a function of a mass scale p:

= 1 L 1
IZWE/dE—qZ/dJﬂ—,
e € I H
0 0 (37)

where g is an arbitrary scale. The explicit solution to this equation is
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1 1 1 ya

—_ — — —— o L
e?(p)  e*(uo) G2 14
(38)
which can be written in an explicit form for e*(i):
2
2 e” (ko)
e”(p) = 5
1 . L Ii,u,{]} ll:'.lg _&
62 o (39)
A few comments on eq. (39). It has a singularity at the point
2 -2
p = poexpl6r e ()] , w0

better known as the Landau pole (Landau et al, 1954), (Landau and Pomeranchuk, 1955). A careful
evaluation in QED shows that the Landau pole is of order of 10%84eV,a huge scale much larger than anything
envisaged so far — for instance the Large Hadron Collider (LHC) works at about 10" eV, while the Planck

scale, that is a scale at which quantum gravity effects should become relevant, vie. is at “only” 1028 eV.
As the energy scale increases, or conversely, the distance decreases, the electron charge increases.

RUNNING COUPLING CONSTANT

The formalism of the beta function and the existence of a so—called running coupling constant (An
oxymoron!) is not a peculiarity of QED but it is standard behaviour in any quantum field theory. We
have seen that in the minimal subtraction scheme the counterterms in the Lagrangian have no finite
parts, therefore can be expanded in a Laurent series in & containing only divergent parts. Call the generic
renormalised coupling constant g and its bare version gy, then the above statement could be written as

(hereafter, e =4 — D)

< 9k(9)
go=w |9+ =]

k=1 (41)

where gy are regular functions in g. Analogous expansions exist for bare mass mg and bare fields Vy, 4.
Now, a crucial observation is that all bare quantities are independent of the scale by definition. As the bare
coupling constant is not dependent upon y, dgo/dp = 0. Applying the derivative to eq. (41), one obtains
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+00
1 |dg ()
eg + (91 ) + Z [ =0.
(42)
We have already discussed that pog/dy is an analytical function in €, so we can write it as follows:
g <=
- E : I
'f.!:- - — dnE "
o
n=>0 (43)
and insert this form into eq. (42).
We obtain the equation for coefficients d of the beta function:
d
e(g+di)+ (91+d0+d1 dg;) +Z [9&+1+dnd—g +dy ?;;1] =0, ”

and observe that only the first two d terms survive, dg and dy, so that eq. (43) is only linear in &. We group
different powers of ¢, and each one of them has to vanish separately, so we have

(g+d1)=0
d
g +dy Q; = —dyp

d dag.
(1 + dld_g) Ge1 = —dg—%

(50)
Solving eqs. (45) and plugging it back in eq. (43) we end up with
99 _ o+ g2 dgy g
S—— £,
o dg »

and taking the limit e > 0:

B(g)=—g +9—
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(47)
We also found the recurrence relation for the coefficients of the counterterms:
d d
L —g— | [gk+1(9) — 91(9)] = 5-gk(g) -
dg a9 4

This recursion relation is very important because it shows that the coefhicients of higher order poles can,
at least in principle, be computed from just the knowledge of the simple pole term. So, in the minimal
subtraction scheme we have seen that the beta function depends only on the coupling constant g, and the
latter depends only on the scale y; therefore, we can write

W — (a0

(49)

This equation is known as the Callan-Symanzik equation (Callan, 1970), (Symanzik, 1970).
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