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Abstract:

Introduction/purpose: An approximate approach to definite integral calculation has been an attractive problem continuously
since the creation of integration due to practical needs in scientific and engineering areas. In most practical cases, the integrand is
complex, which leads to a difficulty of obtaining an exact value of integration, so an approximate value of the definite integral with
certain accuracy is satisfactory for practical applications. In this paper, an efficient approach for calculating a definite integral with
a small number of sampling points is proposed based on the uniform design method from the viewpoint of practical application.
Methods: e distribution of sampling points in its single peak domain is deterministic and uniform, which follows the rule of
the uniform design method and good lattice points.
Results: e efficient evaluation of a definite integral for a periodical function in its single peak domain can be obtained by using
11 sampling points in one dimension, 17 sampling points in two dimensions, and 19 sampling points in three dimensions.
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Conclusion: e efficient approach for a definite integral developed here on the basis of the uniform test design method is promised
from the viewpoint of practical application; the sampling points are deterministically and uniformly distributed according to the
rule of the uniform design method and “good lattice points”. e efficient approach developed in this article will be beneficial to
relevant research and application.
Keywords: uniform design method, good lattice point, definite integral, single peak domain, finite sampling points.

Pезюме:

Введение/цель: Приближенный подход к вычислению определенного интеграла всегда был привлекательной задачей с
самого зарождения интегрального исчисления из-за практических потребностей в научных и инженерных областях. На
практике в большинстве случаев подынтегральная функция бывает сложной, что затрудняет получение точного значения
интегрирования, поэтому для практических целей достаточно найти приближенное значение определенного интеграла с
некоторой точностью. В данной статье предлагается эффективный подход к вычислению определенного интеграла при
небольшом числе точек дискретизации, основанный на методе единого проектирования с точки зрения практического
применения.
Методы: Распределение точек дискретизации в области изолированного пика является детерминированным и
равномерным, что следует из правил методов единого проектирования и точек идеальной решетки.
Результаты: Эффективная оценка определенного интеграла периодической функции в области ее изолированного пика
может быть получена при использовании 11 точек выборки в одном измерении, 17 точек выборки в двух измерениях и 19
точек выборки в трех измерениях.
Выводы: Разработанный эффективный подход к определенному интервалу на основе единых методов проектирования
перспективен с точки зрения практического применения. Точки выборки детерминировано и равномерно распределены
в соответствии с правилами методов единого проектирования и точек идеальной решетки. Эффективный подход,
разработанный в данной статье, окажется полезным в соответствующих исследованиях и применении на практике.
Ключевые слова: единый метод проектирования, точки идеальной решетки, определенный интеграл,
область с изолированным пиком, конечные точки выборки.

Abstract:

Увод/циљ: Приближни приступ израчунавању одређеног интеграла представљао је проблем још од почетака интегралног
рачуна због потреба у областима науке и инжењерства. У већини случајева у пракси, интегранд је сложен, што отежава
добијање тачне вредности интеграције, тако да је, за практичне потребе, довољно наћи приближну вредност одређеног
интеграла са извесном тачношћу. У овом раду предлаже се ефикасан приступ израчунавању одређеног интеграла с малим
бројем тачака узорковања, заснован на методу униформног пројектовања са становишта практичне примене.
Методе: Дистрибуција тачака узорковања у подручју издвојеног врха је детерминистичка и униформна, што следи из
правила метода униформног пројектовања и тачака добре решетке.
Резултати: Ефикасна процена одређеног интеграла за периодичну функцију у њеном подручју издвојеног врха може се
добити помоћу 11 тачака узорковања у једној димензији, 17 тачака узорковања у две димензије и 19 тачака узорковања у
три димензије.
Закључак: Ефикасан приступ одређеном интервалу, који је у раду развијен на основу метода униформног пројектовања,
перспективан је са становишта практичне примене. Тачке узорковања су детерминистички и униформно распоређене
у складу с правилима метода униформног пројектовања и тачака добре мреже. Ефикасан приступ биће од користи за
релевантна истраживања и практичне примене.
Keywords: метод униформног пројектовања, тачке добре мреже, одређени интеграл, подручје издвојеног врха, тачке
коначног узорковања, метод униформног пројектовања, тачке добре мреже, одређени интеграл, подручје издвојеног врха,
тачке коначног узорковања.

Introduction

An approximate approach to definite integral calculation has been an attractive problem continuously since
the creation of integration due to practical needs from science and engineering, information processing, and
theoretical analysis, etc. In most practical cases, the integrand is complex, which leads to the difficulty of
gaining an exact value of integration, thus an approximate result of a definite integral with certain accuracy
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is satisfactory. erefore, it is of considerable importance to seek appropriate approximation for a definite
integral in practical applications.

In the one-dimensional case, many classical quadrature rules are available, such as the rectangle rule
(midpoint rule), the trapezoidal rule, Simpson’s rule, or the Gauss rule, which have the following form
(Leobacher & Pillichshammer, 2014),

(1)

with the quadrature points x0, x1, x2,..., xn,...,xm from [0, 1], and with the weights q0, q1, q2,..., qn,..., qm.
In the case of the trapezoidal rule, q0 = qm = 1/(2m), for other weights, qn= 1/m with n = 1, 2,..., m-1. If
f C2([0; 1]), the error of the trapezoidal rule is of the order O(m-2).

Furthermore, under the condition of s dimensions, it results in the following form

(2)

with the set of s-fold quadrature points { x0  ,  x1, x2  , ... xn  ,..., xm  } in the [0, 1]s domain. Hence the total
number of nodes is N = (m +1)s, which grows dramatically with the dimension s. But in terms of the actual
number N = m + 1s of integration nodes, this error is of the order O(N-2/s).

For large dimensions, which might be in the hundreds for practical problems, such an error convergence
is less than satisfying (Leobacher & Pillichshammer, 2014). is phenomenon is oen called the curse of
dimensionality (Leobacher & Pillichshammer, 2014).

e Monte Carlo method was proposed as a calculation approach with stochastic sampling in mid-1940s.
However, this method needs a large number of random numbers (sampling points) for simulation calculation
(Fang & Wang, 1994; Fang et al, 2018) and with a rather slow convergence speed.

e idea of a uniformly distributed point set was proposed by Korobov in 1959, followed by the
development of the good lattice point (GLP) method with low discrepancy by Hua and Wang (1981).
According to the GLP, the convergence speed of integration is much higher than the Monte Carlo method.
In 1980s, Fang and Wang established a uniform design method on the basis of the "good lattice point". In
the uniform design method (Fang & Wang, 1994; Fang et al, 2018), the distribution of the sampling points
in the space is well deterministic, rather than random. Such kinds of algorithms belong to the “quasi - Monte
Carlo method” (QMC) thereaer (Tezuka, 1998, 2002; Paskov & Traub, 1995; Paskov, 1996; Sloan &
Woiniakowski, 1998).

Consequently, the so-called “curse of dimensionality” problem puzzled the application of QMC method
for many years as well (Tezuka, 1998, 2002; Paskov & Traub, 1995; Paskov, 1996; Sloan & Woiniakowski,
1998). However, the situation changed dramatically in 1990s when Paskov and Traub used Halton
sequences and Sobol sequences for accounting a ten-tranche CMO (Collateralized Mortgage Obligation)
in high dimensions even reaching to 360 dimensions and found that QMC methods performed very well
as compared to simple MC methods, as well as to antithetic MC methods (Tezuka, 1998, 2002; Paskov &
Traub, 1995; Paskov, 1996; Sloan & Woiniakowski, 1998). Aerwards, a lot of analogical phenomena were
found in different pricing problems by using different types of low-discrepancy sequences (Tezuka, 1998).
All these results are really counter-intuitive, so it was difficult to understand that the point distribution from
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low discrepancy sequences is with so much singular convergence speed compared to that of the distribution
of random numbers. Sloan and Wozniakowski proposed an idea of a so-called "weighted" discrepancy to
explain this conundrum (Sloan & Woiniakowski, 1998), while Caflisch et al proposed a concept of effective
dimensions to demonstrate the miracle (Caflisch et al, 1997). ese achievements indicate the effectiveness
of QMC methods though the reason is unclear. Here we do not focus our attention on it in more detail, but
develop an efficient approach for the calculation of a definite integral in the viewpoint of practical application
instead.

Actually, the integrand in an integral has a certain form and with a clear physical meaning. erefore, the
value of the integrand varies according to a certain rule as the point in space changes from one position to the
next, so it is more appropriate to conduct the numerical integration according to a point set which pursues
a certain rule and possesses a regular distribution in space in principle.

Here in this article, we try to use a certain number of sampling points with regular distribution to perform
approximate assessment for a definite integral. It aims to develop an efficient approach with certain accuracy
for a definite integral. e characteristic analysis of a periodical function within its one period is conducted
first. e result shows that 11 sampling points of the circumference could supply an effective approximation
to the peak value with a relative error not greater than 4%, which enlightens us on exploring to use the 11
sampling points to carry out an efficient approach for the definite integral of a function within its monotonic
peak domain. ereaer, an analogical analysis for two and three dimensional problems is performed as well.
Aerwards, some typical examples of the definite integral of physical problems is studied to check the validity
of the approach.

Characteristic analysis of the periodical function within one periodical domain

1) One dimensional problem

Generally, the value of a function in a domain varies from point to point. Take a one dimensional monotonic
peak function in a domain as an example, represented as,

(3)

In Eq. (3), A indicates the amplitude coefficient,  is the period (wave length) of the periodical function,
and x is the coordinate value in one dimension.

Clearly, the function y takes its peak value at x = x0 =   /4, i.e., y takes 2A. While at  is the
deviation from x0, the value of the function y decreases,  

While, as  radian, the function y takes the value y1  = 1.92A, which leads to a relative error
not greater than 4% for the y value with respect to its peak value of 2A.

e above analysis indicates that if one attempts to give an approximation value of the periodical function y
with a relative error not greater than 4% with respect to its peak value by subdividing the period, the partition
number n of the subdivision in the period range (wave length)  of this periodical function within one period
is,

(4)
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Simultaneously, the distance between the nearest sampling points is 
Eq. (4) indicates that the 11 sampling points of the one periodical range (wave length) could provide an

efficient approximation to the peak value with a relative error not greater than 4% to its peak value for the
function in one dimension.

2) Two dimensional case

Under the condition of two dimensions, it is a problem on a plane where a rectangular coordinate system
could be set up, consisting of two orthogonal coordinate axes, let us say the X and Y axes.

First, if we only use the preliminary condition of the uniform design method (Fang & Wang, 1994; Fang
et al, 2018), i.e., the projections of any two sample points on each coordinate axis will not coincide, perhaps
we obtain the worst case, which is the status of all the sampling points being distributed along the diagonal
line of the square. Even in this case, the distance between the nearest sampling points will be enlarged by

 times as that of the distance between the nearest sampling points of one dimension. erefore, if one
attempts to provide an appropriate approximation with a relative error around 4% as similar to that of the
one dimensional problem for the function, the subdivision should be refined by about  times, let us take
1/1.5, which leads to the number of sampling points n’ to the period (wave length)  range of this periodical
function within one period to be

(5)

Eq. (5) indicates that 17 sampling points for two dimensions in one periodical range (wave length) could
provide an appropriate approximation for the peak value of the sine function with a relative error around
4% to its peak value.

Second, one could use the next requirement of uniform design that the sampling points must satisfy
both projection properties and spatial filling or spatial uniformity. en one could rearrange the spatial
distributions of the sampling points so that their distributions meet the demand of spatial uniformity at the
same time (Fang & Wang, 1994; Fang et al, 2018).

Ripley (1981) pointed out that, in the problem of spatial sampling, the expected value of the mean square
error of the sample decreases with the spatial correlation of the samples, which leads to the situation that the
number of sampling will decrease with the spatial correlation of the samples. is might be related to the
counter-intuitive phenomena of using QMC in high dimensions mentioned in the previous section.

3) ree dimensional case

Analogically, in the three dimensional case, i.e., cube, a rectangular coordinate system is set up, consisting of
three orthogonal coordinate axes, in general X, Y and Z axes. Again, let us consider the worst case first. When
all the sampling points are distributed along the diagonal line of the cube, the distance between the nearest
sampling points will be enlarged by  times as that of the distance between the nearest sampling points
of one dimension. So, if one attempts to provide an appropriate approximation for the peak value of the
function with a relative error around 4% as similar to that of the one dimensional problem for the function
once more, the subdivision should be refined by about 1/1.7 times, which results in the number of sampling
points n” to the period (wave length) l range of this periodical function within one period
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(6)

Eq. (6) indicates that the 19 sampling points of the one periodical range (wave length) could provide an
accurate estimation for the peak value of the sine function with a relative error around 4% to its peak value
in three dimensions.

en one could rearrange the spatial distributions of the sampling points according to the procedure of
the uniform design method (Fang & Wang, 1994; Fang et al, 2018).

e above discussion shows that if one attempts to provide an appropriate approximation for a periodical
function within one single peak domain, 11 sampling points (in one dimension), 17 sampling points (in two
dimensions), or 19 sampling points (in three dimensions) are needed for the calculation of a definite integral,
respectively, while the sampling points are deterministically distributed according to the rule of the uniform
design method and GLP. In the following sections, we will check the applicability of the above descriptions.

Efficient approach for numerical integration on the basis of the uniform test
design method and GLD for a single peak function

According to Hua and Wang, a set of good lattice points (GLP) could give an efficient value for a definite
integral with low-discrepancy (Hua & Wang, 1981; Fang & Wang, 1994; Fang et al, 2018), and the
discrepancy of the sum approximation of its function values in the discretized GLPs with respect to its precise
value of integration in one dimension is not greater than V(f)  D(n), where V(f) is the variation of the
function f(x) in its domain by the n uniformly distributed sampling points, D(n) is the discrepancy of the
point set with the n uniformly distributed sampling points, and D(n) = O(n-1) (Hua & Wang, 1981; Fang
& Wang, 1994; Fang et al, 2018).

e previous sections indicate that 11 uniformly distributed sampling points of the circumference in the
one dimensional case could provide an appropriate approximation for the peak value of the function with a
relative error not greater than 4% to its peak value. So, the relative error of the summation of the sinusoidal
function in the discretized GLPs with respect to its precise value of integration is expected to be around 4%
´   O(n-1) = 4%´  O(11-1)    0.4% in one dimension.

Similarly, the consequences in the last sections present that 17 and 19 uniformly distributed sampling
points in one periodical range could provide an appropriate approximation with a relative error of around
0.4% as compared to its precise value of integration for the sinusoidal function in 2 and 3 dimensions,
respectively.

In addition, other functions can be expanded as sine or cosine functions generally.
Hence, here in this section, let us conduct some typical definite integrals to show the rationality of the

approach. e sampling points are with the characteristics of GLP so as to give low-discrepancy (Hua &
Wang, 1981; Fang & Wang, 1994; Fang et al, 2018).

1) One dimensional problem

A1) Approximation for the probability integral
Our first example is the probability integral (Navidi, 2020),
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(7)

i.e.,

(8)

In Eq. (8), f(x) = exp(-x2) is the integrand function. As to exp(-x2), at xu = 4 its value is f(xu) = 1.125×10-7,
therefore the upper limit of the integral could be set as xu = 4.

According to the uniform design method (Fang & Wang, 1994; Fang et al, 2018), the distribution of
the sampling points in the integral domain [0, 4] is shown in Table 1, and the integration Eq. (8) is thus
discretized as

(9)

e positions of the distribution of the sampling points in the domain [0, 4] are obtained according to
the following formula (Hua & Wang, 1981; Fang & Wang, 1994; Fang et al, 2018),

(10)

TABLE 1
e positions of the distribution of the sampling points in the integral domain [0, 4]

e summation of the right-hand side of Eq. (9) indicates a value of 0.886227, which equals to the
probability integral of 0.886227 fortunately, which is with a higher accuracy (Navidi, 2020).

A2) Approximation of the elliptic integral calculus for the magnetic induction intensity of an elliptical current-
carrying ring

Take an elliptical current-carrying ring as an example, which is with the major axis a, the minor axis b, the
distance between the focal point F and the center O is c; the distance from a point M on the ellipse to the
center O is r, see Fig.1. e problem is to find the magnetic induction intensity at the center of the ellipse.
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FIG. 1
Polar coordinate of the elliptical current-carrying ring

e solution:
In the polar coordinate system, the elliptic equation with the center 0 is

(11)

in Eq. (11), k  c/a = (a2 – b2)0.5/a.
us, the expression of the magnetic induction at the center of the current-carrying ellipse can be written

as (Ju et al, 2005),

(12)

In Eq. (12), I and  0 represent the intensity of the electric current and the permeability of vacuum,
respectively.

Let us mark the integration part in Eq. (12) as Q, i.e., , then Eq. (12) can be rewritten as

(13)
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Under the condition of k = 0.3, one could try to evaluate the value of Q by our approximate approach.
Again, according to the uniform experimental design method (Fang & Wang, 1994; Fang et al, 2018),

the distribution of the sampling points in the integral domain [0, /2] is shown in Table 2, and thus the
integration Eq. (13) is discretized as

(14)

TABLE 2
Distribution of the sampling points in the integral domain [0, Pi/2]

e approximate result of the right-hand side of Eq. (14) gets a value of 1.608049, which equals to the
exact value of the elliptic integral of 1.608049 luckily (Ju et al, 2005; Byrd & Friedman, 1971), implying a
much higher accuracy of the approximate approach.

2) Two dimensional case
Under the condition of two or three dimensions, Fang and Wang developed a series of uniform design

tables and their utility tables according to GLP and number – theoretic methods (Fang & Wang, 1994; Fang
et al, 2018), which are specific for uniform design. Here the uniform design table U*17(175) is the proper
selection for our usage, which contains 17 sampling points.

Here, let us take the integration of  an example.
e integration of  with the precise value of 0.429560 (Song & Chen, 2004).
e distribution of the sampling points in the integral domain [1.4, 2.0] × [1.0, 1.5] is shown in Table 3,

in which x10 and x20 indicate the original positions from the uniform design table U*17(175) for [1, 17] × [1,
17] domain (Fang & Wang, 1994; Fang et al, 2018).
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TABLE 3
Distribution of the sampling points in the integral domain [1.4, 2.0] × [1.0, 1.5]

According to the uniform design method (Fang & Wang, 1994; Fang et al, 2018), the integration J in the
domain [1.4, 2.0] × [1.0, 1.5] is discretized as

(15)

e summation result of the right-hand side of Eq. (15) indicates a value of 0.429609, which gives a relative
error of 1.14×10-4% with respect to its precise value of 0.429560 (Song & Chen, 2004).

3) ree dimensional problem
Chen et al (2010) took the integration  as an example to study the validity of the integration

of multivariate functions by orthogonal arrays (Chen et al, 2010). Let us reanalyze it by using our newly
developed approximate approach for a definite integral on the basis of the uniform test design method and
the “good lattice point” (GLP) method here.

e integration of   with the precise value of 19/24 = 0.791667 (Chen et al,
2010). e uniform design table U*19(197) is a proper selection for our usage, which contains 19 partition
points. e distribution of the sampling points in the integral domain [0, 1] × [0, 1] × [0, 1] is presented
in Table 4 (Fang & Wang, 1994; Fang et al, 2018), in which x10, x20 and x30 indicate the original positions
from the uniform design table U*19(197) for the [1, 19] × [1, 19] × [1, 19] domain (Fang & Wang, 1994;
Fang et al, 2018).
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TABLE 4
Distribution of the sampling points in the integral domain [0, 1] × [0, 1] × [0, 1]

According to the uniform design method (Fang & Wang, 1994; Fang et al, 2018), the integration S in the
integral domain [0, 1] × [0, 1] × [0, 1] is discretized as

(16)

e summation result of the right-hand side of Eq. (16) results in a value of 0.801534, which gives a relative
error of 1.25% with respect to its precise value of 0.791667, while Chen et al gave a relative error of 0.04%
by simulation calculation with 100 tests in L100(299) orthogonal arrays (Chen et al, 2010). Obviously, their
amount of simulation calculation is really huge.

Discussion

e above studies including the analysis and example calculations indicate that the efficient result for a
definite integral of a function with an accuracy of around 0.4% within its single peak domain could be
obtained by using the new approach with 11 sampling points for one dimension, 17 sampling points for two
dimensions, and 19 sampling points for three dimensions. is result is much better than those of classic
methods on the one hand; besides, the approach is even better than the MC simulation in the sense of
workload of calculation. e novelty and contribution of this study is to use a small number of sampling
points to obtain an efficient result for a definite integral with a certain accuracy. As to this target, the aim is
fulfilled. Of course, more sampling points could further improve the accuracy provided the distribution of
sampling points follows the rules of uniform design and good lattice points at this stage.
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Exploration of much better distributions of sampling points might be one of future directions for a more
efficient assessment of a definite integral. Applications of the present approach might be another orientation
for future studies.

Conclusion

e efficient approach to a definite integral developed here on the basis of the uniform test design method is
promising from the viewpoint of practical application. An efficient result for a definite integral of a function
could be obtained by using this approach with 11 sampling points for one dimension, 17 sampling points for
two dimensions, and 19 sampling points for three dimensions within its single peak domain. e sampling
points are deterministically and uniformly distributed according to the rule of the uniform design method
and “good lattice points”. e efficient approach developed in this article will be beneficial to relevant
research and application.
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