Abstract:
Introduction/purpose: Researchers of fluids for high voltage engineering application always experience problems when selecting and recommending specific fluids suitable for high voltage application. This is due to the dual functionality of fluids required for high voltage equipment. Methods: This study introduced and employed a probability-based multi-objective optimization technique in the selection of high voltage thermofluids. Beneficial and unbeneficial preferable probability utility indexes were employed based on the desired properties of oils. Results: It was shown that the nanofluid with 0.6 wt% Al.O. is the most promising candidate for high voltage equipment compared to other produced fluids considered. It is also noteworthy to state that coconut oil exhibited better performance efficiency compared to standard oil. This study also identifies that the produced Jatropha oil was inadequate for high voltage equipment. Conclusion: In conclusion, a preliminary study essential for final usage of 0.6 wt% Al.O. nanofluids and coconut oil for high voltage equipment is recommended as well as the improvement of the performance characteristics of Jatropha oil for usage in high voltage equipment.
Keywords: preferable probability optimization, high voltage equipment, thermofluids, physicochemical properties, dielectric strength.
Pезюме:
Введение/цель: Исследователи, занимающиеся жидкостями, предназначенными для использования в технике высоких напряжений, зачастую сталкиваются с проблемами при выборе или при рекомендации соответствующей жидкости, подходящей для использования в технике высоких напряжений. Это связано с двойной функциональностью жидкостей, необходимых для высоковольтного оборудования. Методы: В данной статье представлен и применен метод многоцелевой оптимизации, основанный на вероятности, при выборе теплоносителя для высоковольтного оборудования. В зависимости от ожидаемых характеристик масла применялись индексы предпочтительной вероятности полезности, типа «чем больше, тем лучше» и «чем меньше, тем лучше». Результаты: Результаты исследования показали, что наножидкость с содержанием 0.6 wt% Al2O3 является наиболее перспективным кандидатом для высоковольтного оборудования по сравнению с другими испытанными жидкостями. Также важно отметить, что кокосовое масло показало лучшие результаты по сравнению со стандартным маслом. В ходе исследования также выявлено, что выработанное масло ятрофы непригодно для высоковольтного оборудования. Выводы: Рекомендуется провести предварительное исследование, необходимое для конечного использования наножидкостей с содержанием 0.6 wt% Al2O3, а также кокосового масла в технике высокого напряжения. Также рекомендуется улучшить характеристики масла, выработанного из растения ятрофа для использования в технике высокого напряжения.
Ключевые слова: оптимизация предпочтительной вероятности, высоковольтное оборудование, теплоносители, физико-химические свойства, диэлектрическая прочность.
Abstract:
Увод/циљ: При избору одговарајућег флуида погодог за примену у високонапонској опреми наилази се на проблеме. Узрок томе је двострука функционалност флуида која се захтева за високонапонску опрему. Методе: Овај рад уводи и примењује технику вишециљне оптимизације засноване на вероватноћи приликом селекције флуида за пренос топлоте у високонапонској опреми. Индекси корисности пожељне вероватноће типа „што више – то бољe” и типа „што мање – то боље” примењени су зависно од жељених карактеристика уља. Резултати: Показано је да је нанофлуид са 0,6 wt% Al2O3 најпогоднији за високонапонску опрему у односу на остале разматране произведене флуиде. Важно је поменути да је кокосово уље показало боље перформансе у поређењу са стандардним уљем. Указано је, такође, и да произведено уље биљке Jatropha није погодно за високонапонску опрему. Закључак: Препоручује се прелиминарна студија, неопходна за крајње коришћење нанофлуида са 0,6 wt% Al2O3,као и кокосовог уља за високонапонску опрему. Такође, препорука је да се побољшајукарактеристике уља биљке Jatropha ради коришћења у високонапонској опреми.
Keywords: оптимизација пожељне вероватноће, високонапонска опрема, флуиди за пренос топлоте, физичко-хемијска својства, диелектрична снага.
Original scientific papers
Employment of probability-based multi-response optimization in high voltage thermofluids
Применение оптимизации с несколькими выходами, основанной на вероятности, для жидких теплоносителей высоковольтного оборудования
Примена оптимизације са више излаза засноване на вероватноћи флуида да преносе топлоту у високонапонској опреми
Received: 06 January 2022
Revised document received: 10 March 2022
Accepted: 12 March 2022
High voltage engineering is an integral area of electrical and mechanical engineering. A lot of devices have been made for high voltage application - power transformers, switchgears, control equipment, communicating devices, and insulators, to mention but a few. The quality of insulating fluids used in such equipment is essential for its wellbeing and efficiency (Oparanti et al, 2020; Oparanti et al, 2022). This study comes with the motivation to apply a novel multi-objective approach in the selection of optimal processing conditions or better performance fluids for high voltage equipment.
Conventional mineral oil has been used in high voltage equipment due to its unique and multifunctional characteristics, which are efficient cooling and dielectric capacity. However, due to mineral oil non-biodegradability and other intricate production tendencies, researchers have worked on the production of alternative fluids for high voltage engineering. Abeysundara et al (2001) produced and examined the properties of coconut oil as an alternative for transformer mineral oil. Sitinjak et al (2003) examined the characteristics of palm oil and its derivative for high voltage equipment. Hosier et al (2009) studied the selection of a suitable vegetable oil for high voltage engineering. Garba et al (2013) produced and characterized Jatropha oil for transformer application. Peppas et al (2016a, 2016b) produced ultrastable natural ester-based nanofluids for high voltage engineering. Oparanti et al (2021a) developed a nanofluid from palm kernel oil for high voltage engineering. Oparanti et al (2021b), in addition to their previous work, analyzed AC breakdown of their synthesized nanofluids from palm kernel oil. In all of these studies, with the ones not mentioned, there has been a challenge in selecting a specific oil sample suitable for high voltage application, considering the dual functionality of a typical high voltage equipment oil. Hence, this study has addressed this challenge by introducing and employing a probability-based optimization technique for multiple performance characteristics of high voltage engineering oil.
Consequently, several techniques such as Ashby’s method (Ashby, 2000; Ashby et al, 2004), the TOPSIS method (Deshmukh & Angira, 2019), the grey relational analysis method (Abifarin, 2021; Abifarin et al, 2021a, 2021b, 2021c; Awodi et al, 2021; Abifarin et al, 2022; Abifarin & Ofodu, 2022), and the intersection multi-objective probability method (Wang & Teng, 2021; Zheng, 2022) have been used for multiple objective optimization in several applications; probability-based multi-objective optimization has proven to be simple and more efficient (Zheng, 2022).
Hence, this study selected some data (Abeysundara et al, 2001; Garba et al, 2013; Oparanti et al, 2021a) in high voltage engineering oil development and then the new multi-objective probability optimization technique was employed for the first time to determine the most efficient oil sample among other samples in the study.
The beneficial utility index method is applied to a desired characteristic which should be as high as possible. The index characteristic indicator contributes positively to a partial preferable probability. Equation 1 is used to compute the partial positive probability index (Pij), while equation 2 is used to compute the normalized factor () of the jth utility index of the performance characteristic indicator.
where Xij is the jth beneficial utility index of the characteristic performance indicator of the ith number of sample, n is the total number of samples considered in the study, m is the total number of utility indices of each sample involved, and Xj is the value of the arithmetic mean of the utility index of the sample characteristic performance indicator. The performance characteristics considered for the beneficial utility index are shown in Table 1:
The unbeneficial utility index method is applied to a desired characteristic which should be as low as possible, i.e. minimization type of optimization is desired. The index characteristic indicator contributes negatively to a partial preferable probability.
Equation 3 is used to compute the partial negative probability index (Pij), while equation 4 is used to compute its normalized factor () of the jth utility index of the performance characteristic indicator.
Furthermore, the conclusive preferable probability of the analysis is the product of the individual partial preferable probability of a corresponding candidate sample. Afterwards, the ranking is done to show the candidate sample with the best performance characteristics.
Oparanti et al (2021a) developed nanofluids and examined their activation energy and breakdown voltage. However, the analysis did not reflect conclusively which oil sample is the best candidate for high voltage equipment. Table 3 shows the oil samples and their corresponding activation energies and breakdown voltages.
The data presented in Table 3 was analyzed using the beneficial utility index as the higher-the-better characteristics desired for high voltage equipment. The resulting analysis is displayed in Table 4. The multi-objective optimization shows that two oil samples exhibited the best performance - the nanofluids with 0.6 and 0.8 wt% Al2O3 nanoparticles. However, to save costs and to reduce agglomeration of nanoparticles in the fluid, the nanofluid with 0.6 wt% Al2O3 is the most promising candidate for high voltage equipment. In addition, it is recommended to study the effect of Al2O3 nanoparticles using the 1wt% stepwise increase instead of the used 2wt% stepwise increase of activation energy and breakdown voltage of ester oil. This will show that perhaps 0.7 wt% has better activation energy and breakdown voltage.
Garba et al (2013) produced Jatropha oil, examined its properties, and compared it with diesel oil and transformer oil to see which one would perform better for transformer application. The performance characteristics of various oils are displayed in Table 5.
The flash point and dielectric strength were analyzed using the beneficial utility index (see Table 1) while the rest of the characteristics in Table 5 were analyzed using the unbeneficial utility index (see Table 2). The result showed that the developed Jatropha oil exhibited lesser performance for high voltage equipment compared to the other two standard oils. This means that further study is essential to improve the performance characteristics of Jatropha oil for high voltage equipment. Many reports have shown that the addition of nanoparticles and the improvement of oil production can improve the performance efficiency of the oil for high voltage equipment (Jin et al, 2014; Peppas et al, 2016a, 2016b; Rafiq et al, 2016; Muangpratoom & Pattanadech, 2018; Oparanti et al, 2022).
Abeysundara et al (2001) produced a coconut oil, evaluated its performance characteristics and compared it with a standard oil for high voltage equipment. The properties of the two different oil types are presented in Table 7.
The multi-objective optimization analysis was done and presented in Table 8 based on the conditions in Table 1 and 2. It is interesting to note that the produced coconut oil exhibited a higher performance tendency for high voltage equipment compared to standard oil. This shows that it is a good candidate for high voltage engineering. Therefore, further study such as ageing, direct application of the oil in a typical high voltage equipment is recommended.
This study successfully introduced and employed a probability-based multi-response optimization technique in the selection of high voltage thermofluids. The results showed the possibility of the employment of the probability-based multi-objective optimization technique in the production and selection of high voltage equipment oil. It was found out that the nanofluid with 0.6 wt% Al2O3 is the most promising candidate for high voltage equipment compared to other produced fluids in the study of Oparanti et al (2021a). It is also noteworthy to state that coconut oil exhibited better performance efficiency compared to standard oil in the study of Abeysundara et al (2001). However, this study identifies that Jatropha oil produced by Garba et al (2013) was inadequate for high voltage equipment. Hence, preliminary study essential for the final usage of 0.6 wt% Al2O3 nanofluids and coconut oil for high voltage equipment should be done while the performance characteristics of Jatropha oil for high voltage equipment should be improved. In conclusion, the multi-objective optimization technique has been successfully employed in the selection of fluids for high voltage equipment. It is clear from the study that the analysis is simple to apply. Hence, it is recommended that the probability multi-objective optimization technique be subsequently employed when selecting the most efficient fluid for high voltage equipment.
FIELD: Mechanical engineering, Materials
ARTICLE TYPE: Original scientific paper
https://scindeks.ceon.rs/article.aspx?artid=0042-84692202393C (html)
https://aseestant.ceon.rs/index.php/vtg/article/view/35764 (pdf)
https://doaj.org/article/2faadbe9fea7463b8ce63d8b37c63cf8 (pdf)
https://elibrary.ru/item.asp?id=48140915 (pdf)
http://www.vtg.mod.gov.rs/archive/2022/military-technical-courier-2-2022.pdf (pdf)
jkabifarin@abu.edu.ng