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ABSTRACT:

Introduction/purpose: The principal techniques of regularization schemes and their validity for gauge field theories are discussed.
Methods: Schemes of dimensional regularization, Pauli—Villars and lat- tice regularization are discussed.

Results: The Coleman—Mandula theorem shows which gauge theories are renormalizable.

Conclusion: Some gauge field theories are renormalizable, the Standard Model in particular.

KEYWORDS: regularization, renormalization, Gauge Field Theory, Coleman—Mandula Theorem..
Pe s31oM e ;

BeacHue/ueab: B AaHHOM cTaTbe paccMaTpUBAIOTCS OCHOBHBIC MCETOABI CXEM PETYASIPH3allMM M WX IIPUMEHHUMOCTb B
KaAHOPOBOYHBIX TCOPHSIX OACH.

Meroabt: B cTarpe npuMeHeHsI cxeMbl pasMepHOH peryaspusanun, [layan - Buasapcea u peryaspusanun pemeTku. 06CysKAI0TCs
peryasipusanusi.

Pesyaprarsr: Teopema Koyamana-MaHAyABI HOKa3BIBACT KaKHE KAANOPOBOYHBIE TCOPHUH ITOAACKAT PCHOPMAAUSALIUH.

BriBopbl: B x0A¢ HMCCcACAOBAaHUS BBISIBACHO, 9TO HEKOTOPBIE TCOPHH KAAHGPOBOYHOIO IOASI IICPCHOPMUPYEMBL, B YACTHOCTH —
CTaHAAPTHASI MOACAb.

KnouyeBb € CJ OB a: perysipusanus, IEPCHOPMUPOBKA, TCOPUs KaAnOPOBOYHOTO moast, Teopema Koaemana -
Mamnayasr.

ABSTRACT:

VBoa/11s: PasMaTpajy ce OCHOBHE TEXHMKE IIEMA PETYAAPHU- 3aLHj€ KAO M BUXOBA BAsSaHOCT 33 TEOPH]je KaAMGpauHOHMX mosna.
Metoae: Ilpumemyjy ce meme AuMeH3HOHaAHE peryaapusa- nmje, Ilayan-Buaapcosa peryasapusanuja xao u peryasapusanuje
penieTke.

Pesyararu: Koseman-Manayaa Teopema rokasyje Koje KaaH- 6pau1/10He TEOpHje C€ MOTY PEHOPMAAU30BATH.

3axwydax: Heke Teopuje KaAHGpauHox—lor HO/&a CE MOTY Pe- HOPMAAM30BaTH, CIEUPHIHO CTAHAAPAHU MOACA.

KEYWORDS: peryAapHsaqua, peHopMaAMsaqua, Teopnja KaAI/I6pauI/IOHOI‘ 0oMba, KOACMaH—MaHAyAa TeopeMa.

REGULARIZATION SCHEMES

Up to now, we have encountered quantum electrodynamics and other theories such as the scalar potential ¢
and the Standard Model (Fabiano, 2021a,b). In QED, we have seen in some detail how to get rid of infinities
coming from loop integrations and obtain meaningful results for physical quantities with renormalization.
For this purpose, we have used dimensional regularization, but there are other regularization schemes with
different properties.
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DIMENSIONAL REGULARIZATION

This is the scheme we have already used in (Fabiano, 2021a,b), per- haps the most versatile one (Bollini
& Giambiagi, 1972; 't Hooft & Veltman, 1972). First, a Wick rotation (Wick, 1954) is performed to an
Euclidean space. Then the action is extended to an arbitrary dimension p that becomes a complex number.
In these regions, all Feynman diagrams are finite. All integrals are analytically continued for p — 4, and
the resul- ting simple poles due to Gamma functions are to be reabsorbed into the physical parameters. This
scheme, beyond its simplicity, has the great advantage of preserving all symmetries of the theory that do not
depend on dimensionality such as gauge symmetry, Poincaré symmetry etc., as well as the Ward—Takahashi
identities (Ward, 1950; Takahashi, 1957). A remark on the notation. We have already encountered the
minimal subtraction scheme MS ('t Hooft, 1973; Weinberg, 1973), where the counterterms computed with
dimensional regularization have no finite part. There is another widely used scheme, the modified minimal
subtraction scheme, or the wis (Bardeen et al, 1978), where the finite part is a constant by means of the
substitution

1 1 v 1
o~ — log 4w,

B—2 D=31"T8 "8 \

where, as usual, v = 0.57721 is the Euler—Mascheroni constant.

PAULI-VILLARS REGULARIZATION

In this procedure of 1949 (Pauli & Villars, 1949) the propagator is modified as:

1 1 1 m2 — M2 m2 - M2 ( 1 )
— + +£

pP-m2 pP-m?2 pP-MZ P i P8

(2)

where the fictitious mass is chosen i s . The propagator behaviour for large momenta ~ 1/, is usually
enough to render finite all Feynman graphs. Eventually, the a2 - <« limit is taken to decouple the unphysical
particle. This technique has the advantage of preserving local gauge invariance in QED, as well as Ward
identities.

LATTICE REGULARIZATION

Another popular scheme is the lattice regularization, where the theory is defined on a four—dimensional
Euclidean lattice with the finite spacing a (Wilson, 1975; Kadanoff, 1966). This spacing serves as a cutoff
A=1/a for the Feynman integrals, rendering the results finite. This approach is mostly used for QCD,
and results are extrapolated to the continuum limit for « — Ocomparing different lattice spacings. Almost
invariably, this method is used to simulate QCD on computers using Monte Carlo methods. The symmetry
on the lattice is of course lost as Lorentz invariance is broken. There is also the problem of fermion doubling,
with the appearance of more particles for each original fermion. This approach is also very computationally
intensive with large memory bandwidth requirements.
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OVERVIEW OF RENORMALIZATION
The divergences are given by graphs with loops. To determine the degree of divergence of any graph we

need to know the dimensions of various fields, coupling constants and the behaviour of propagators at large
momenta. As the action is given by

S = [dPz L(¢,0¢)
; (3)

and has the dimensions of #, that is zero dimensions in our units, [s] =0, then the Lagrangian has the
dimensions in length units (for energy units just reverse the sign)

From the free action for a generic bosonic field + and for a 1/2 spin fermion ¢, we readily obtain
¢
2 (5)

0] = —

and

(6)

The dimensions of the coupling constants are then easily computed, for instance in the Higgs potential
with /4t interaction, (j=p -4 so in 4 dimension g is dimensionless. We will now calculate the superficial
degree of divergence D of a Feynman diagram. Any diagram with loops could be represented by

d”p f(p) = [dp F(p) .
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(7)

(# is made out of different propagators in general) and the behaviour of r when all internal momenta go
to infinity gives the superficial degree of convergence D

F(p) ~ pP1forp — +o00.
When b - o, the diagram diverges like a power

A
dp pP—1 ~ AP,

)

while if p = 0 implies a logarithmic divergence, log A, and the integrals with p - o are convergent.

The asymptotic behaviour for large momenta of various propagators are well known: for bosonic scalar
fields ¢ and vector fields 4, . it is 1/?, while for electron (lepton) fields v is 1/». In general, the asymptotic
behaviour for a propagator 4,0 of a field 1 is given by

Ag(p) ~p 221

and it can be shown that for a massive field  that transforms under Lorentz group as (1.5 one has s, = 4+ 1,
so loosely speaking s is the “spin” of field. For massless bosonic fields, s; = 0. The photon (spin=1) propagator
and also the graviton field 4., (with spin=2) behave like 1.

By power counting, one could calculate the superficial degree of convergence p. Each fermion propagator

(10)

contributes to ', each boson propagator gives a »~term, each loop from integration contributes with a »
term, and each vertex with 72 derivatives contributes at most with a »' term. We will see the superficial degree

of divergence for QED graphs in some detail. Define
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L = number of loops.
V' = number of vertices,
E, = number of external electron legs,
I, = number of internal electron legs.
E 4 = number of external photon legs, and
I, = number of internal photon legs . 1)

P=4L — 9,

We want to rewrite this relation as a function of external legs only, no matter how many internal legs or

(12)

loops the graph may have.
Consider electrons. Each vertex connects to one end of an internal electron leg. For external legs, only one
end connects onto a vertex, thus:

1 : . 1
V=I,+_-E,impliesl, =V - _E,.
o | 2 (13)

For photons, each vertex connects to one end of an internal photon line, unless it is external, that is

&

L 1
V =214+ E, implies 14 = 5(1” — g .

(14)

We know that the total number of independent momenta is equal to r, which in turn equals the total
number of internal lines in the graph minus the number of vertices, because of moment conservation at each
vertex, plus one, as we have overall momentum conservation as well. So:

L=l 4T~V 41.

By substituting for ».. .. » the expressions found in egs. (13)—(15) into eq. (12), we obtain
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3
D — —J: - _ELi - EJ_l .
2 (16)
WHAT 1S RENORMALIZABLE?

The procedure of renormalization we have met in QED is not substantially different from any other theory.
When calculating Feynman diagrams one encounters diagrams with momenta integration inside loops.
These integrals diverge, and have to be regularized in some manner, that is, their divergencies should be
isolated. Then these infinities are reabsorbed by a set of bare physical parameters, such as coupling constants
and masses. These parameters have divergencies that cancel out the ultraviolet infinities coming from loops
in Feynman diagrams. Eventually, we are left with the physical (or “renormalized” or “dressed”) parameters,
that are the actual parameters one could measure in an experiment.

Since there is only a finite number of such parameters in a Lagrangian, one can make only a finite number
of such redefinitions. In other words, it is possible to renormalize only a theory with a finite number of
fundamentally divergent diagrams that are the building blocks of all divergent diagrams of the theory. For
instance, QED is such a theory, and we have encountered those kinds of diagrams in (Fabiano, 2021a,b).

Of course, all this procedure has to be built on solid grounds, requiring a sound mathematical proof that
this can be actually done. It is usually done by an induction argument, that is, if one proves that the 7 th
order of a theory is finite, and the n + 1th order is finite in terms of the 7 th order, then the theory is
renormalizable. The induction proof uses Weinberg’s theorem, which essentially states that a Feynman graph
converges if the superficial degree of the divergence b of the graph and all its subgraphs is negative. We
will now find out whether a particular theory is renormalizable. Consider its Lagrangian and compute the
dimensions of the coupling g starting from eqs. (4)—(6). Let ¢ be the length dimension of g, that is

(17)

and from the scaling of the Lagrangian parameters we have met in (Fabiano, 2021b), eq. (16) in particular,
for which ¢ — c-t-»2.., we could deduce the scaling

B .F]UL_d or g~ .gUEd ) (18)

. being a length scale, £ an energy scale, and 9 the bare coupling constant. Suppose now that d > 0, then
we see that with decreasing distance, or increasing energy, the coupling constant ¢ increases indefinitely:

g=-+occfor L - 0,0r £ — +c0.

(19)
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As the coupling constant increases, perturbation theory will fail; therefore, it will not be renormalizable.

So, we have obtained the important result: if the length dimension of the coupling constant is positive,
then the theory is zon renormalizable. On the other hand, if ¢ is negative, ¢ — 0for increasing energy, then
perturbation theory is applicable. In this case, the theory is called super renormalizable. 1f the coupling
constant is adimensional, then the theory is renormalizable.

NON RENORMALIZABLE THEORIES

Non renormalizable theories have coupling constants with negative energy dimensions: for instance, any
theory with the interaction ¢o" with» > 4 in four dimensions. Such theories have infinite divergent Feynman
diagrams of infinite different kinds. The proliferation of different types of divergencies cannot be controlled
by redefinition of a finite number of physical parameters.

Some examples of such theories are:

Any nonpolinomial action: an action that has an infinite number of terms like s:%4..o. Independently of
the dimension there will be an (infinite) number of dimensionful coupling constants with negative energy
dimensions.

Fermi’s interaction: the four fermion interactions proposed by Fermi in 1934 (Fermi, 1934a,b) much
before the electroweak theory, ¢r@v2 Asitis well known, ¢, ~ 1/m3. so the coupling has the energy dimension
of -2.

Massive vector boson with a non Abelian gauge group: avector field with mass 1 hasa propagator such as

9uv — PuPv / M :
p? — M? + ie

that goes like a constant -1/12 atinfinity. No integral of aloop diagram could converge with such behaviour.

Gravitation: Newtonian potential is ¢mim,/r. So ¢ has negative energy dimensions.

Theories with anomalies: symmetries of the original classical Lagrangian could be broken by quantum
effects and are called anomalies. They in turn spoil Ward-Takahashi identities, essential for proving that a
theory could be renormalizable.

RENORMALIZABLE THEORIES

These theories are of course the most important ones. They have only a finite numbers of necessary
counterterms, and their coupling constant is adimensional. Some examples follow.

¢t in four dimensions: a scalar field with such interaction, like the Higgs potential, has a dimensionless
coupling constant ¢ for » = 4. From hints by the e—expansion method, this theory is also probably free in
four dimensions.

QED: we already discussed quantum electrodynamics in (Fabiano, 2021a,b), and explicitly wrote the
counterterms. Historically, it was the first theory to be proven renormalizable.

Standard Model: the sM of particles with a gauge groupsSU..(3) x SUL(2) x Uy(1) broken to
SU,(3) % Uan(1) has three adimensional coupling constants (Glashow, 1959; Salam & Ward,1959;
Weinberg, 1967). Notice, however, that electroweak model alone, sv.2)xtv(1), is not renormalizable. The
further presence of quarks is needed in order to cancel all anomalies and render the SM anomaly free.

Yukawa theory: it is also part of the sM. It describes a coupling between fermions and scalars given by
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go

the coupling constant ¢ is, as usual, dimensionless (Yukawa, 1935).

Spontaneously broken non Abelian gauge theories: although we have seen that a massive vector
boson is non renormalizable, spontaneously broken massless non Abelian gauge symmetries are actually
renormalizable. These are spontancously broken Yang—Mills theories. The proof was given by ’t Hooft
and Veltman in 1972 ('t Hooft & Veltman, 1972), and only after that the usage of gauge theories was
fully justified. It is important to notice that unbroken Yang—Mills theories are renormalizable only in four
dimensions.

Two dimensional fermion theory: for b = 2, a term @)’ of Fermi’s theory is renormalizable there.

SUPER RENORMALIZABLE THEORIES

They converge very rapidly, only a finite number of graphs is divergent. Actually, the degree of divergence
decreases when the number of loops increases.

¢ ¢ in three dimensions, this bosonic theory is super renormalizable. However, this theory is ill-defined
because the potential is unbounded from below, so the vacuum is unstable.

ot :in three dimensions, this theory is super renormalizable as its coupling is such that ;- p -4, negative
forp < 4.

Two dimensional boson theory:forp — 2, thatis, only time and a space coordinate, there is a sort of magic.
Any theory of bosonic field is super renormalizable, because the field itself is dimensionless, and 1 = 2.

Two dimensional theory: combining the results previously obtained, in two dimensions a theory

P(¢)yn)

where P is an arbitrary polynomial is super renormalizable.
WHY GAUGE THEORY?

We have followed the full path starting from the Lagrangian to a measurable physical quantity. On our walk,
we have encountered infinite quantities and rigorous results that allow us to get rid of them. All the time we
have dealt with gauge theories that combine Poincaré group invariance (that is the Lorentz plus translation
group) and some internal symmetry groups, the gauge group, for instance v(1) for QED or SU(3) for QCD.

A question naturally arises whether it is possible to have theories with different kinds of symmetries than
those previously described, which are able to give physically meaningful results?

This question has been answered by the Coleman—Mandula zo—go theorem ot 1967 (Coleman & Mandula,
1967) and, to a certain extent, the short answer is “no”.

We recall that the Lorentz group preserves the distance with Minkowski metric s = 2,9z, It has .,
generators of rotations, boosts and inversions that obey the SO(3, 1) Lie algebra

sy Lo = 8uadnig + $0pple —iGupdve— ooy - (20)
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Remember that the Lie algebra is defined by its generators 7+ with com- muting properties
ma b - rabere
Te, T = i fabere |

where s is the structure constant. The Lie algebra is obtained from the Lie group by taking the logarithm

(21)

of group elements ¢.
The generators . together with the generators of translations p» form the Poincaré algebra. While the
translations commute among them

[P*, P"] =0,

(22)

they do not commute with the Lorentz generator, because the latter has two indices opposed to only one:

(LMY, PP] = ig"PP¥ — ig"” PP .

(23)
Wigner (Wigner, 1939) gave all possible classifications for real particles from the Poincaré group, where
states are labelled by the invariant mass 72= 2 the spin s and the helicity 7.
1. P> = m? > o and the spin s is discrete, then the state is [m.s), s=0.1/2.1.3/2.....
2. P2 =n? and the state is determined by its helicity, 1, where n — x5, s —0,1/2,1,3/2,...
3. P? =m? =0, and the spin is continuous, so &. is continuous. These states do not seem to be realized
in nature.

COLEMAN-MANDULA THEOREM

It states that, given some reasonable physical assumptions we will discuss later, the only possible Lie algebra of
symmetry generators consist of the generators of the Poincaré group and of some other symmetry generators
of the gauge group that commute between them. Let P be the Poincaré group, P itsalgebra, and the symmetry
group, ¢ its algebra. Then the only possible algebra cis of allowed symmetry group ¢ is given by the direct
product of those two, that is

C.ﬂ.ﬁr — _P 'g G . (24)

In plain language, it means these two groups never mix, the Lorentz indices do not affect the group indices
and vice versa. For instance, in QED, an v(1) rotation will not affect electron energy, likewise a Lorentz boost
is unable to flip electron charge.

The assumptions of this theorem are very reasonable. Consider the scattering matrix 5, and its symmetry
group cm with the following assumptions
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e Mass gap: for any given mass m > o there is only a finite number of particles with mass less than m.
No continuous spectrum is allowed.

e Scattering: it occurs at almost all energies except maybe for some discrete set of energies.

e Analyticity: the 5 matrix for two body scattering is an analytic function of angle, energy and
momentum, except maybe for some discrete set of energies.

e “Ugly technical assumption”: stating that the matrix elements of the group generators are
distributions in momentum space.

Under these assumptions, the only allowed algebra for the symmetry group cu of the 5 matrix is given
by eq. (24).

There is actually a possible way out of this theorem. If one considers a symmetry that exchanges bosons
with fermions, so called supersymmetry, then it is possible to extend this particular symmetry to the allowed
symmetries of the § matrix without breaking the Coleman—Mandula theorem, which is known as the Haag-
Eopuszariski-Sohnius theorem (Haag et al, 1975).

It must be stressed, however, that up to this date supersymmetric particles are yet to be discovered.
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