Original scientific papers
Interpolative generalised Meir-Keeler contraction
Интерполяционное обобщенное сжатие Меира-Келлера
Интерполативна уопштена Меир-Келерова контракција
Interpolative generalised Meir-Keeler contraction
Vojnotehnicki glasnik/Military Technical Courier, vol. 70, no. 4, pp. 818-835, 2022
University of Defence
Received: 26 August 2022
Revised document received: 12 October 2022
Accepted: 14 October 2022
Abstract:
Introduction/purpose: The aim of this paper is to introduce the notion of an interpolative generalised Meir-Keeler contractive condition for a pair of self maps in a fuzzy metric space, which enlarges, unifies and generalizes the Meir-Keeler contraction which is for only one self map. Using this, we establish a unique common fixed point theorem for two self maps through weak compatibility. The article includes an example, which shows the validity of our results. Methods: Functional analysis methods with a Meir-Keeler contraction. Results: A unique fixed point for self maps in a fuzzy metric space is obtained, Conclusions: A fixed point of the self maps is obtained.
Keywords: Fuzzy metric space, common fixed points, weak compatibility, Interpolative generalised Meir-Keelar contraction..
Pезюме:
Введение/цель: Цель данной статьи заключается в введении понятия интерполяционного обобщенного условия сжатия Меира-Келлера для отображений в нечетком метрическом пространстве, которое расширяет, объединяет и обобщает многообразие Меира-Келлера, предназначенное только для одного отображения. При применении устанавливается единая теорема о совместной неподвижной точке для двух отображений через слабую совместимость. В статье приведен пример, доказывающий достоверность результатов исследования. Методы: Методы функционального анализа с сокращением Меира-Келлера. Результаты: Получена уникальная неподвижная точка для отображений в нечетком метрическом пространстве. Выводы: Получена неподвижная точка собственных отображений.
Ключевые слова: нечеткое метрическое пространство, общие фиксированные точки, слабая совместимость, интерполяционное обобщенное сокращение Меира-Келлера.
Abstract:
Увод/циљ: Циљ овог рада је да се уведе појам интерполативног генерализованог Меир-Келеровог контрактивног услова за пресликавања у фузиметричком простору. Он увећава, обједињује и генерализује Меир-Келерову контракцију и служи за само једно пресликавање. Користећи га, успостављамо јединствену заједничку теорему фиксне тачке за два пресликавања кроз слабу компатибилност. Рад садржи пример који показује валидност наших резултата. Методе: Методе функционалне анализе са МеирКелеровом контракцијом. Резултати: Јединствена фиксна тачка за пресликавања у фузипростору је добијена. Закључак: Фиксна тачка пресликавања самог у себе је добијена.
Keywords: фузиметрички простор, заједничке фиксне тачке, слаба компатибилност, интерполативна генера-лизована Меир-Келерова контракција.
Introduction
In 1965 L. Zadeh (Zadeh, 1965) introduced the theory of fuzzy sets. Later on, in 1978, the concept of a fuzzy metric space was introduced by Kramosil and Michalek in (Kramosil & Michalek, 1975), which was modified by George and Veeramani (George & Veeramani, 1994) in order to obtain a Hausdorff topology for this class of fuzzy metric spaces. Then in year 1988, Grabiec (Grabiec, 1988) gave a fuzzy version of the Banach (Banach, 1922) contraction principle in the setting of a fuzzy metric space. Over the past years, various authors have tried to generalize the fixed point theorem by modifying and varying the contractive condition, see, e.g., (Gregori & Sapena, 2002), (Jain & Jain, 2021), (Mihet, 2008), (Saha et al, 2016), (Tirado, 2012) and (Wardowski, 2013) in the sense of George and Veeramani. In 2019, Zheng and Wang (Zheng & Wang, 2019) introduced a Meir-Keeler contraction in the setting of a fuzzy metric (Schweizer & Sklar, 1983) space and proved some fixed point results for a self map.
Inspired with the interpolative theory, Karapinar and Agrawal (Karapinar & Agarwal, 2019) introduced the notion of an interpolative Rus-Reich-C´iric´ type contraction via the simulation function in a metric space. Motivated by this paper, we introduce an interpolative generalised Meir-Keeler contraction (Gregori & Minana, 2014) for two self maps (Rhoades, 2001) in the setting of a fuzzy metric space, which enlarges, unifies and generalizes the existing Meir-Keelar contraction in a fuzzy metric (Mihet, 2010) space through weak compatibility (Banach, 1922).
The structure of the paper is as follows:
After the preliminaries, we introduce a interpolative generalised MeirKeeler contraction in the setting of a fuzzy metric space. Then we study the Meir-Keeler contractive mapping due to Zheng and Wang (Zheng & Wang, 2019). In section 4, the existence of a unique common fixed point of an interpolative generalised Meir-Keeler contractive mapping has been established through weak compatibility followed by an example.
Preliminaries
DEFINITION 1. (George & Veeramani, 1994) A mapping ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (t-norm for short) if ∗ is continuous and satisfies the following conditions:
(i) ∗ is commutative and associative, i.e. a ∗ b = b ∗ a and a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ [0, 1];
(ii) 1 ∗ a = a, for all a ∈ [0, 1];
(iii) a ∗ c ≤ b ∗ d, for a ≤ b, c ≤ d for a, b, c, d ∈ [0, 1].
The well-known examples of the t-norm are the minimum t-norm ∗m, a∗m b = min{a, b} written as ∗m and the product t-norm ∗, a ∗ b = ab.
DEFINITION 2. (George & Veeramani, 1994) A fuzzy metric space is an ordered triple (X, M, ∗) such that X is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set on X × X × (0, +∞) satisfying the following conditions, for all x, y, z ∈ X and t, s > 0;
(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1 if and only if x = y;
(GV3) M(x, y, t) = M(y, x, t);
(GV4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);
(GV5) M(x, y, .) : (0, +∞) → (0, 1] is continuous.
Note that in view of the condition (GV2) we have M(x, x, t) = 1, for all x ∈ X and t > 0 and M(x, y, t) < 1, for all x ̸= y and t > 0.
The following notion was introduced by George and Veeramani in (George & Veeramani, 1994).
DEFINITION 3. (George & Veeramani, 1994) A sequence {xn} in a fuzzy metric space (X, M, ∗) is said to be M-Cauchy, or simply Cauchy, if for each ϵ ∈ (0, 1) and each t > 0 there exists an n0 ∈ N, such that M(xn, xm, t) > 1 − ϵ, for all n, m ≥ n0. Equivalently, {xn} is Cauchy if limn,m→+∞ M(xn, xm, t) = 1, for all t > 0.
LEMMA 1. (Grabiec, 1988) Let (X, M, ∗) be a fuzzy metric space. Then M(x, y, .) is non-decreasing for all x, y ∈ X.
THEOREM 1. (George & Veeramani, 1994) Let (X, M, ∗) be a fuzzy metric space. A sequence {xn}n∈N in X converges to x ∈ X if and only if limn→∞ M(xn, x, t) = 1.
DEFINITION 4. (George & Veeramani, 1994) (X, M, ∗) (or simply X) is called M-complete if every M-Cauchy sequence in X is convergent.
LEMMA 2. (Saha et al, 2016) If ∗ is a continuous t-norm {αn}, {βn}, {γn} are sequences such that αn → α, βn → β and γn → γ as n → +∞ then
and
LEMMA 3. (Saha et al, 2016) Let {f(k, .) : (0, +∞) → (0, 1]; k = 0, 1, 2, ..., } be a sequence of functions such that f(k, .) is continuous and monotone increasing for each k ≥ 0. Then is a left continuous function in t and
is a right continuous function in it.
Denote △ = {δ|δ : (0, 1] → (0, 1]} where δ is right continuous.
DEFINITION 5. (Zheng & Wang, 2019) Let (X, M, ∗) be a fuzzy metric space. A mapping f : X → X is said to be a fuzzy Meir-Keeler contractive mapping with respect to δ ∈ △ if the following condition holds:
for all x, y ∈ X, t > 0.
DEFINITION 6. (Jain et al, 2009) Two self maps f and g in a fuzzy metric space (X, M, ∗) are said to be weakly compatible if they commute at their coincidence points i.e. for x ∈ X, fx = gx = y implies gy = fy.
Interpolative generalised Meir-Keeler contraction
DEFINITION 7. Let (X, M, ∗) be a fuzzy metric space. A pair (f, g) of self maps in X is said to be an interpolative generalised Meir-Keeler contractive if there exists α, β ∈ [0, 1) with α + β < 1 and for all x, y ∈ X, t > 0
where
REMARK 1. From equation (2) for all x y ∈ X, t > 0 the pair (f, g) is a strict contraction i.e.
Thus for x y
REMARK 2. Taking g = I, the identity map in equation (2) we obtain
where
which is an interpolative generalised Meir-Keeler contraction, for a self map f.
REMARK 3. Taking α = 0, β = 0 in equation (4) then M(x, y) = M(x, y, t) and we have
which is precisely the Meir-Keeler contraction, for a self map given by Zheng and Wang (Zheng & Wang, 2019).
LEMMA 4. (Zheng & Wang, 2019) If δ ∈ △, then for t ∈ (0, 1), there exists k = k(t) ∈ N such that
Before we prove the main result, we prove the following lemma:
LEMMA 5. Let (f, g) be a pair of an interpolative Meir-Keeler contractive mapping with respect to δ ∈ △ and f(X) ⊆ g(X). Construct a sequence {yn}, by fxn = gxn+1 = yn, for n = 0, 1, 2, . . .. Then limn→+∞ M(yn, yn+1, t) = 1.
Proof. Suppose if possible on the contrary that limn→+∞ M(yn, yn+1, t) = p(< 1). For α, β ∈ [0, 1) we have
By using lemma (4), for p < 1 and δ ∈ △ we can find k = k(p) ∈ N such that
Since limn→+∞ M(xn, xn+1) = p, we can find n0 such that when n > n0,
Also, there exists n1 such that whenever n > n1,
Let n > max{n0, n1}. Then both equations (6), and ( 7) hold for such n. Taking iin equation (2) we get
i. e. M(yn, yn+1, t) > p + , which contradicts the fact that limn→+∞ M(yn, yn+1, t) = p. Therefore, limn→+∞ M(yn, yn+1, t) = 1.
Main results
Our first new result is the next one:
THEOREM 2. : Let f and g be self maps in a fuzzy metric space (X, M, ∗) satisfying the following conditions:
(4.11) f(X) ⊆ g(X);
(4.12) The pair (f, g) is an interpolative generalised Meir-Keeler contraction;
(4.13) f(X) is complete;
(4.14) The pair (f, g) is weakly compatible.
Then f and g have a unique common fixed point in X if and only if there exists x0 ∈ X such that ∧ t>0 M(x0, f(x0), t) > 0.
Proof. : Suppose the pair (f, g) has a unique common fixed point u then u = fu = gu. Therefore, M(u, fu, t) = 1, ∀t > 0. Hence
Conversely, suppose that there exists x0 ∈ X such that ∧t>0 M(x0, f(x0), t) > 0. Construct a sequence {yn}, by defining fxn = gxn+1 = yn, for n = 0, 1, 2, . . .. First we show that if the two maps f and g have a common fixed point then it is unique. Let u and v be two common fixed points of f and g. Then u = fu = gu and v = fv = gv. We show that u = v.
Suppose, on the contrary that u v, then fu fv. Now
Now
M(u, v, t) = M(fu, fv, t),
> M(u, v), using (3)
= (M(u, v, t))(1−α−β)
i. e. M(u, v, t) > (M(u, v, t))(1−α−β) ,
implies
which is not true as the left hand quantity is less than 1.So u = v. Thus, if the pair (f, g) has a common fixed point then it is unique
Step 1 To see the existence of a common fixed point of the self maps f and g, we consider the following cases.
CASE I Suppose any two terms of the sequence {yn} are equal i. e. for some n ∈ N, yn = yn+1. As yn = fxn = gxn+1 = fxn+1 = gxn+2 = yn+1 we have fxn+1 = gxn+1. Let fxn+1 = gxn+1 = z. So xn+1 is a point of coincidence of the pair (f, g). As the pair (f, g) is weakly compatible we have fz = gz. Now we show that fz = z. Suppose, if possible on the contrary, that fz z so fz fxn+1. By using equation (3) we have
i.e.
M(z, fz, t) > (M(z, fz, t))(1−α−β) , for all t > 0 implies (M(z, fz, t))(α+β) > 1, which is not possible. Hence fz = z. Therefore, z is a common fixed point of the pair (f, g) in this case.
So we can assume the consecutive terms of the sequence {yn} are distinct.
Again, to see the existence of a common fixed point in other cases, we first show that all the terms of the sequence {yn} are distinct.
CASE II Suppose yn = ym, for some m > (n + 1), then as all the consecutive terms of the sequence {yn} are distinct, we claim that yn+1 = ym+1. Suppose if possible on the contrary yn+1 ym+1 then yn yn+1 ym+1 ym implies yn ̸ym which contradicts our assumption. So we have yn+1 = ym+1. Also and
Thus
So
i. e. M(yn, yn+1, t) < M(yn, yn+1, t), which is not possible. So this case does not arise.
Thus, we conclude that for distinct n, m ∈ N, yn ym. Therefore, the elements of the sequence {yn} are distinct. From equation (8) we have
for all t > 0. Thus, {M(yn, yn+1, t)}, for each t > 0, is a strictly increasing sequence, which is bounded above by 1. Therefore, by lemma 5, for t > 0,
Now we prove that the sequence {yn} is M-Cauchy. Suppose if possible on the contrary that it is not true; then there exist η ∈ (0, 1), t0 > 0 and the sequences {p(n)}, {q(n)} (p(n) being the smallest ones of the index)
STEP 2: In this step, we show that limn→∞ M(yp(n)−1 , yq(n)−1 , t0) = 1 − η. Now for all n ≥ 1, 0 < λ < t0/2, we obtain,
Let
Taking the limit supremum on both sides of equation (11), and using the properties of M and ∗, and by lemma 3, we obtain
using (10).
Since M is bounded with the range in (0, 1], continuous and nondecreasing in the third variable t, it follows from lemma 3, that h1 is continuous from the left. Therefore, for λ → 0 , we obtain
Let
Again, for all n ≥ 1, λ > 0
using (10).
Taking the limit infimum as n → +∞ in the above inequality, we obtain
using (9).
Since M is bounded with the range in (0, 1] , continuous and nondecreasing in the third variable t, it follows from lemma 3, that h2 is continuous from the right. So letting λ → 0 , we obtain
Combining the inequalities (12) and (13), we get
STEP 3 In this step, we show that limn→+∞ M(yp(n) , yq(n) , t0) = 1 − η. From equation (10) we have
Also for all n ≥ 1 and λ > 0 we have
Taking the limit infimum as n → +∞ in the above inequality, using (9), (14) and the properties of M and ∗ and by lemma 2, we obtain
Since M is bounded with the range in (0, 1], continuous and nondecreasing in the third variable t, it follows from lemma 3 that is a continuous function of t from the right.
Therefore, for λ → 0 , we obtain
Combining inequalities (15) and (17), we get
STEP 4 In this step, we show that the sequence {yn} is an M-Cauchy sequence.
Using equations (9) and (14) at t = t0, we have
Therefore
And
For n → +∞ and using equations (20) and (21), we have
implies that (1 − η)(α+β) ≥ 1., which is not possible as(1 − η) < 1. So,{yn} is an M-Cauchy sequence in g(X) which is M-complete. Therefore, there exists z ∈ g(X) such that
i. e.
As z ∈ g(X) there exists v ∈ X such that
STEP 5 Now we show that gv = fv. Suppose, on the contrary, that fv gv(= w). Then exists a positive integer n0 such that gv
gxn, for all n ≥ n0.
Now
For n → +∞ and using equations (9), (23) and (24) we get
M(z, fv, t) ≥ [M(fv, z, t)]β i. e. M(fv, z, t)]1−β > 1, which is not possible if fv z. Hence fv = u and we have
As the pair of self maps (f, g) is weakly compatible, we have
STEP 6 Now we show that fz = z. Suppose, on the contrary that fz z. Then gz
z.
and
i. e. M(fz, z, t)(α+β) > 1 which is not possible as the left hand side is less than 1.Thus, fu = gu = u.
Taking g = I in Theorem 2, then the sequence {xn} = {x0, fx0, · · ·fnx0, , · · ·} becomes a Picard sequence for the self map f and we have
COROLLARY 1. Let f be an interpolative fuzzy Meir-Keeler contractive map on a M-complete fuzzy metric space (X, M, ∗).Then the map f has a unique fixed point in X.
REMARK 4. If we take α = 0 and β = 0 in the above corollary, we obtain Theorem 3.1 of Zheng and Wang (Zheng & Wang, 2019).
EXAMPLE 1. (of Theorem 4.1) Let X = [0, 1] . Define a self map f : X → X by f(x) = x/2 , and g(x) = x, the identity map on X. Taking M(x, y) = 1/1+d(x,y) , then (X, M, .) is a complete stationary fuzzy metric space with the product t-norm. Define δ as follows:
Then δ ∈ △.
Taking α = 0 = β. observe that for all values of x, y ∈ X, f(x), f(y) ∈ [0, 1/3 ). We show that the quadruple (X, M, δ, f) is an interpolative MeirKeeler contractive. For this we prove the following condition:
Therefore, the inequality ϵ− < M(x, y) ≤ ϵ gives
which implies that x, y ∈ [0, 1]. Hence
Thus, the quadruple (X, M, δ, f) is an interpolative Meir-Keeler contractive and x = 0 is the unique fixed point of the map f.
References
Banach, S.1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French).Available at: https://doi.org/10.4064/fm-3-1-133-181.
George, A. & Veeramani, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), pp.395-399. Available at: https://doi.org/10.1016/0165-0114(94)90162-7.
Grabiec, M. 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), pp.385-389. Available at: https://doi.org/10.1016/0165-0114(88)90064-4.
Gregori, V. & Minana, J-J. 2014. Some remarks on fuzzy contractive mappings. Fuzzy Sets and Systems, 251, pp.101-103. Available at: https://doi.org/10.1016/j.fss.2014.01.002.
Gregori, V. & Sapena, A. 2002. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), pp.245-252. Available at: https://doi.org/10.1016/S0165-0114(00)00088-9.
Jain, Sho. & Jain, Shi. 2021. Fuzzy generalized weak contraction and its application to Fredholm non-linear integral equation in fuzzy metric space. The Journal of Analysis, 29, pp.619-632. Available at: https://doi.org/10.1007/s41478-020-00270-w.
Jain, Sho., Jain, Shi. & Jain, L.B. 2009. Compatible mappings of type (β) and weak compatibility in fuzzy metric space. Mathematica Bohemica, 134(2), pp.151- 164. Available at: https://doi.org/10.21136/MB.2009.140650.
Karapinar, E. & Agarwal, R.P. 2019. Interpolative Rus-Reich-Ćirić type contraction via simulation functions. Analele ştiinţifice ale Universităţii ”Ovidius” Constanţa. Seria Matematică, 27(3), pp.137-152. Available at: https://doi.org/10.2478/auom-2019-0038.
Kramosil, I. & Michalek, J. 1975. Fuzzy metric and statistical metric spaces. Kybernetica, 11(5), pp.336-344 [online]. Available at: https://dml.cz/handle/10338.dmlcz/125556 [Accessed: 25 August 2022].
Mihet, D. 2008. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), pp.739-744. Available at: https://doi.org/10.1016/j.fss.2007.07.006.
Mihet, D. 2010. A class o fcontractions in fuzzy metric spaces.Fuzzy Setsand Systems, 161(8), pp.1131-1137. Available at: https://doi.org/10.1016/j.fss.2009.09.018.
Rhoades,B. E. 2001. Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applicationss, 47(4), pp.2683-2693. Available at: https://doi.org/10.1016/S0362-546X(01)00388-1.
Saha, P., Choudhury, B.S. & Das, P. 2016. Weak Coupled Coincidence Point Results Having a Partially Ordering in Fuzzy Metric Spaces. Fuzzy Information and Engineering, 8(2), pp.199-216. Available at: https://doi.org/10.1016/j.fiae.2016.06.005.
Schweizer, B. & Sklar, A.1983. Probabilistic Metric Spaces. Mineola, NewYork: Dover Publications. ISBN: 0-486-44514-3.
Tirado, P.P. 2012. Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets. Fixed Point Theory, 13(1), pp.273-283 [online]. Available at: http://hdl.handle.net/10251/56871 [Accessed: 25 August 2022].
Wardowski, D. 2013. Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, pp.108-114. Available at: https://doi.org/10.1016/j.fss.2013.01.012.
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.
Zheng, D. & Wang, P. 2019. Meir-Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, pp.120-128. Available at: https://doi.org/10.1016/j.fss.2018.08.014.
Author notes
vuk.stojiljkovic999@gmail.com
Additional information
FIELD: Mathematics
ARTICLE TYPЕ: Original scientific paper
EDITORIAL NOTE: The third author of this article, Stojan N. Radenović, is a current member of the Editorial Board of the Military Technical Courier. Therefore, the Editorial Team has ensured that the double blind reviewing process was even more transparent and more rigorous. The Team made additional effort to maintain the integrity of the review and to minimize any bias by having another associate editor handle the review procedure independently of the editor – author in a completely transparent process. The Editorial Team has taken special care that the referee did not recognize the author’s identity, thus avoiding the conflict of interest.
Alternative link
https://scindeks.ceon.rs/article.aspx?artid=0042-84692204818J (html)
https://aseestant.ceon.rs/index.php/vtg/article/view/39820 (pdf)
https://doaj.org/article/58ed5b3a52c042f98aaa699629742641 (pdf)
https://elibrary.ru/item.asp?id=49550392 (pdf)
http://www.vtg.mod.gov.rs/archive/2022/military-technical-courier-4-2022.pdf (pdf)