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ABSTRACT:

Introduction/purpose: Starting from the Hamiltonian an alternative description of quantum mechanics has been given, based on
the sum of all possible paths between an initial and a final point.

Methods: Theoretical methods of mathematical physics. Integral method based on the path integral.

Results: The method and concepts of the path integral could be applied to other branches of physics, not limited to quantum
mechanics.

Conclusions: The Path Integral approach gives a global description of fields, unlike the usual Lagrangian approach which is a local
description of fields.

KEYWORDS: path integral, quantum mechanics, quantum field theory.

Pe swowMme

Beeacnne / neas: Mcxoast M8 raMMABTOHMAHA B HACTOSAINEH CTaThe AAHO AABTEPHATHBHOE OINMCAHHME KBAHTOBOM MEXaHHKH,
OCHOBAHHOE HA CYMME BCEX BO3MOYKHBIX TPAEKTOPHH MEKAY HAYAABHOH U KOHEYHOH TOYKAMH.

Mertopst: Teopernueckne MeTOABI MaTeMATHIECKOH $U3HKU. FIHTErpaAbHBLl METOA HA OCHOBE HHTETPAAA ITO TPACKTOPHSIM.
PesyabraTsr: MeToa 1 KOHLICIIIMN HHTETPAAQ II0 TPACKTOPHSIM MOTYT IIPHMEHSITCS B ADYTUX 00AACTSX QH3UKH, HE OTPAHUIMBASICH
KBaHTOBOM MEXaHHUKOM.

BeiBopsr: ITopAxoA MHTerpasa IO TPacKTOPHAM AACT BCECTOPOHHEE OIIMCAHHC MOACH B OTAMYME OT OOBIMHOTO AArpaH)KeBOIO
IIOAXOAQ, KOTOPBIH IPEACTABASIET AOKAABHOE OIUCAHUE TTOAEH.

KnonwueBbBe cJugoBa: HWHTCIPAA IIO TPACKTOPHAM, KBAHTOBASI MCXaHHKA, KBAHTOBAsI TCOPUS ITOAL.

ABSTRACT:

VBoa / nun: I[Toaasehu op XaMHUATOHHUjaHa, AAT je AATEPHATHUBHHU OIMMC KBAHTHE MEXaHMKE, 31CHOBAH Ha 361/1py CBHUX Moryl’mx
myTeBa H3Meby HoYeTHE U pUHAAHE TAUKe.

Metoae: Teopujcxe MeToae MaTeMaTH4ke Guusnke. FIHTerpasHM METOA 3aCHOBAH HAa MHTErPAAY IyTa.

PesyaraTu: MeToae ¥ KOHLIENITH HHTErPaAa IyTa MOTY 6uru IIPUMEEHU U Ha ApyTe IpaHe PUIUKE, HUCY OTPAaHUYECHH Ha KBAHTHY
MEXaHUKY.

3axwydak: [Ipucryn 3acHOBaH Ha MHTErpaAy IyTa Aaje rA0GaAHU OITHC OMAA, 32 Pa3AHKY 0A yo61/maj €HOT MPHCTYIA 3aCHOBAHOT Ha
AarpamkHjaHy KOjU HPEACTaBoA AOKAAHH OITHC IT0MbA.

KEYWORDS: HHTETPaA ITyTa, KBAHTHA MCXaHUKA, KBAHTHA TCOPI/Ija 1oMma.
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PATH INTEGRAL

The standard formulations of quantum mechanics, developed by Schrodinger, Heisenberg and others in the
20-ies, have shown to be equivalent to one another soon thereafter.

In 1933, Dirac (Dirac, 1933) made the observation that the action plays a central role in classical
mechanics — he considered the Lagrangian formulation of classical mechanics to be more fundamental than
the Hamiltonian one, but it seemed to have no important role in quantum mechanics as it was known at the

? /#S Where

time. He arrived at the conclusion that the propagator in quantum mechanics “corresponds to
S is the classical action evaluated along the classical path.

In 1948, Feynman developed Dirac’s suggestion (Feynman, 1948), and succeeded in deriving the third
formulation of quantum mechanics, based on the fact that the propagator can be written as a sum over all
possible paths, not just the classical one, between the initial and final points (Feynman, 1950, 1951). Each

(WS to the propagator. So while Dirac considered only the classical path, Feynman showed

path contributes e
that all paths contribute: in a sense, the quantum particle takes all paths and the amplitudes for each path
add according to the usual quantum mechanical rule for combining amplitudes.

This discovery remains valid even for relativistic quantum mechanics, represented by quantum field theory.
While the usual Lagrangian approach is alocal description, the path integral approach corresponds to a global

description of fields, being integrated over all possible configurations.
YOUNG’S EXPERIMENT

Suppose to create a Gedankenexperiment inspired by the original Young’s two slit diffraction experiment
(Feynman & Hibbs, 1965). A source S emits non classical particles (for instance, electrons) that end on a
detector sited in O. In between, there is a screen with two slits, A; and A,. The source emits particles at
the time t = 0 that are detected at the time t = T. From quantum mechanics, we know that because of
the superposition principle, the amplitude of particle detection is obtained by summing over all possible
amplitudes, that is, the amplitude of traveling through the slit A; to O, and the amplitude of traveling
through the slit A,, namely

2
A(Starting from S, detected at O) = ZA(S — A; — 0),
i=1 (1)

and of course one sums over different A;s when having more slits than two.

Add now another screen between A and O, with slits B;. Then another one between B and O with slits
C; and so on. We have to add all these intermediate steps, so in the limit of infinite screens with the infinite
number of slits we have the relation

A(From S detected at O travelling in the time T") =
Z A(S — O in the time T for a particular path) ,

path )

so we have to sum over all possible paths that start from S and end in O in the time T.
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We shall now fully translate eq. (2) in the quantum mechanics language. Remember that the Hamiltonian
H is the generator of time translations, so the amplitude to propagate from an initial point q; to a final point
gr in a time T is given by

(

Dirac suggested, and Feynman first used eq. (3) to obtain an expression for eq. (2) by splitting each path
into infinitesimal elements and then taking the continuum limit.
Divide the time T in N parts cach lasting 8t = T /N, then eq. (3) could be rewritten as

—iTH |

a) - (3)

—'MLHP—-:'L".I'!H —idl H

(ar e ar) = (qr |e e ar)

(4)

the term e *H being repeated N times. Now use the fact that |g# is a complete set of states, that is,
Jaa/2)#2 |96l = 1, and insert 1 between every exponential factor exp(—idtH):

(qr |7 TH | qr) =
I dg, —id —id
— w 1€ gN-1/\dN-1 |E gN-2} .- -
H/ 2;_ ‘ ﬁ!H‘ Y ‘ ﬁ!H‘ )
(g2 !E—HIH‘ g\ ‘E—MEH‘ ar) -

(5)

FEYNMAN’S FORMULATION OF QUANTUM MECHANICS

The key ingredient of eq. (5) is the factor #g;+1 |e"*H|q; #. From quantum mechanics we know the explicit
form of the Hamiltonian function,

p
+V
o T V() o

H =

where 7.q are the usual operators with eigenspace si) = plp). dla) = dlo). Since the spaces g and , are connected

via a Fourier transformation, they have the property that #q|p# = €4, #p|q# = e 9, and the |, space is
complete as well as the ¢ space: fap/(20)2 [n)l = 1. From the explicit form of the Hamiltonian (6),

ﬂ—wLH _ E—-;M;u',fﬂmﬂ—'téﬂ' (4) _. (7)
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and by a judicious insertion of factors 1 coming from the completeness of the g and , spaces we find
—idtH
(gj+1 ‘P ‘ ‘ gj) =

1 idtp” [ 2m
2—qu [dp (gj11 e~ /2m
Y[} | (8)

Itis clear that for any function 7. f(a)la) = f(a)la) and 7()» = f@)l»). because it is acting on eigenstates. Therefore,
we could drop the symbol of the operator in eq. (8) and write

p)(p|e V@

9)(q| g;) -

—i&H‘ a) =

(gj+1 ‘f‘
1

- dg /d}'} E_.@ﬁrpzjzme_g‘su,f(f‘.]<qj+1 )| @)q| ;) =

/dq fdp e—i&;uifﬂ'ﬂte—ie’ii1"{Q)€'£'N;j+1E—ipqd-(q . QJ) _

e—-iﬂff’r"[qj} \/df? e—-iﬁ!pzfﬂwleip[fjj+1—qj]l .
)

We could readily recognize that the last integral over , is Gaussian and can be solved with the aid of eq.
(57) of (Fabiano, 2021a):

(Q;;'+1 ‘e—i&H‘ qj) —

Lo\ 1/2
—i6V (g f dp e~ 01 /2m giplar1—a) _ g=idtV(3;) ( ‘2;””) y

. 1/2
limla;1—a;)%)/26t _ —idtV (q;) (—2?””1) ot (m/2)[(g541—a;) /8117

ot (10)
Putting this result into eq. (5) gives us
(gr |e7TH]| q1) =
omim\ N/2N-1 _ _
(%) 11 / dg; ei0t{(m/2) T35 (9+1-4:)/847 =V (@) }
= (11)

where go=gq and qn=gqr. We can now go to the continuum limit, that is, 8t > 0 or N > 400, so we can

replace [(qj+1—q;)/3t]* with ¢ * and sums with integrals.
A very important definition is the integral over paths:
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—2mim\ V2N
/Pf}'{t} = Jm (T) /dfﬁ -.

j=0 (12)

where the D symbol means that one has to integrate over all possible paths 4(t) with fixed start and ending
points, q(0) = qrand q(T) = qg . It is a functional integration.
We have thus obtained the so called path integral representation for the amplitude:

(qr ‘ﬁ—er| ar) = qum i Sy dt tmi*—v(q) _ /qu gi o dt Llag)
(13)

Comparing both sides of eq. (13), one could notice that starting from the Hamiltonian we have naturally
ended up with the Lagrangian. In classical mechanics, the action S is defined starting from the Lagrangian
as s - [far c.. and is a functional of q(t). By restoring Planck’s constant # and by dropping the explicit ¢
notation for the functional measure, we could rewrite eq. (13) as

I::qF ‘I!':-_{i_,."'j]}TH‘ fj"f} = qu t-:-fi_.u"nl"tj.“:-'[qj .
(14)

It is worth noticing that the quantum mechanical amplitude of eq. (14) involves the explicit calculation
of the classical action S. The path integral is the only occurrence where the action is explicitly needed, where
in all other cases only the extremisation of the action, that is, the equations of motion, are required.

SCHRODINGER EQUATION

Our next step is to derive the Schrodinger equation by means of path integral formalism. Since it is a
differential equation we need only to find out the infinitesimal evolution of the wave function in time and
space. Setting the initial conditionsast;=0,q1=q' ,te=t,qg=q;0t=tandn=q’ - qareinfinitesimal.
The time and space evolution for the wave equation from the point (0,q’ ) to the point (q, t) is given by

+oo
(g, t) = f dg¢' K(qg.t:q",0)(q",0),
—o0 (15)

where K is the evolution amplitude with proper normalisation, as |\l/|2 = 1. From eq. (10), we have the
explicit form for a propagation amplitude between two points, so restoring # we can write

12 e " Ea® VP
K(q,6t:¢'.0) = ( = ) ciot/i{ (m/2)[(a—q¢') /8 -V (g}

2mwihot (16)

By changing the integration variable to y=q’ —qand reinserting eq. (16) into eq. (15), we obtain
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. m\1/2 it /K] (m/2)[n/6t] =V (q+n) }
i — idt /Ry (m/2)[n/8t]" —V(q ) by .
¥(g, ot) (2"1'; -iﬁ.ﬂt) f dne V(g +n,0). (17)

Now, we have two infinitesimal quantities, v and dt. Because of the speed of light, we have the limit n/
dt<1 and both are infinitesimals of the same order. So we can expand the potential and the wave function
at the same time

-

ot

eIV @) — 1 i [V(g) +1V'(q) + OGr")] =
ot . ot -
L—iV(g) - '-'-En‘v"[q) + 05t n°)
: (18)
and
1 . .
P(a+n) = ¥(g,0) + 1 (q,0) + 51°%"(¢,0) + O(n") - -
Plugging Taylor expansions back in eq. (17) yields
[ 172 +oo 2 f (¢
zb(q, 5t) _ (2 ”;}1(5{) / / d’qe””’” X(z.ﬁ.ét)x
mihdt o
ot 1 .
|:?|[J(Q1 U) _ ZEV(Q)w(Qa U) + Tﬂ-b!((b U) + §Tf2d””(Q=U) + O(étQ, ’1’33)] . (20)

By inspection, the integral in % is reduced to Gaussian momenta given in eq. (58) of (Fabiano, 2021a),
where linear terms vanish because of symmetry. By resolving integrals, we obtain

e 1/2
»(q, 6t) = (27;,’;&)”2 {(mm) (1/)((;,0) - i%V(q}t})(q,{})) +

m

V" (g,0) + O(5t%)

T 2m

(2mﬁ5t) 2 it

| ih 10 )
¥(q,0) + ot [%1/) (g,0) — eEV(q)d(q, 0)] + O(6t%) . o

After moving the first term Y(q, 0) to lhs and dividing it by dt, we obtain

ot i [

_ﬁd—q? + V(q]l P(q,0) + O(5t%) ,
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(22)
and by taking the limit 3t > 0 we obtain the time dependent Schrodinger equation
., 0(q,t) hZ 92
i VAL B IS VR | VYR
o omog + V@] V(@0 -

RELATIVISTIC FIELD THEORY

Instead of dealing with fixed initial and final positions q; and qr we are often faced with specifying more

general initial and final states |I# and |F #. Then we are interested in calculating #F|e ™"|I#, that can be
obtained from eq. (13) by inserting two complete sets of states

(Fle™TH|I) = f f dqr dar (Flar)(ar e | qr) (ar|T) . »

Almost always initial and final states are the same, that is, the ground state |0#. The amplitude #0|e ™|
0# is denoted by Z,

Z = (0]~ "0) (25)

because Zustandssumme, that is, the “sum over states” was the original German term for the partition
function.

The path integral formalism can be extended from quantum mechanics to continuum field theories
that describe physical systems with an infinite numbers of degrees of freedom. Starting from q(t), a 0 + 1
dimensional case for quantum mechanics (we have just discretised the time coordinate in section Young’s
experiment) to a field theory in 1 + 1 dimensions for simplicity, d(x, t), the procedure is completely analogue.
The new step is the space discretisation - the length L of space has to be divided in infinitesimal parts dx such
that

L

or = —
o N~ (26)

and by denoting the coordinate as x,,=mdx, with ¢(x;n)=¢m for 0Sm<N' we can define the functional

integral over the field ¢ like:

NJ‘

Do = lim lim H doy, |
L—+oo N'—+oo 0
=

(27)
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in complete analogy to eq. (12). The action is now of course a function of ¢ and 4. s() = fas, £(6,8,6)

An essential difference from the quantum mechanical case, however, is that, from a mathematically
rigorous point of view, the integral just defined in eq. (27) is divergent in the continuum limit. This difficulty
is obviated by absorbing the divergence into a normalisation constant N when computing quantities such
as, for instance, the partition function of eq. (25):

=N /.Dq'ﬁ eli/MS(¢)
. (28)

From this expression for Z, we sce that the integral in the classical limit # > 0 is given by a phase S
multiplied by a large quantity, that is, a rapidly oscillating quantity. Mathematically, it is clear that the major
contribution to the path integral comes from fields that extremise the action, while other configurations tend
to cancel each other by symmetry. Those fields are the ones that satisfy

6S(6) _

o ’ (29)

and such fields are by definition classical fields ¢ that solve Lagrange equations

T
”6(6;;@{3‘{‘1) 0t . (30)

To prove this statement, we will use the so-called saddle point method or stationary phase method that
applies when the integral could be written as some exponential function. For a review on the subject, see, for
instance (Fabiano & Mirkov, 2022). We can expand the action in series to read

52 S(et)
dh?

S(d’) - S(éci) + % ( ) (QS - @(:5)2 + O(((j} - Q&'(:{)S) ’

- (31)

where the linear term is missing by definition because the action is stationary. By plugging this result back
into eq. (28) we have, yet another time, a Gaussian integral in infinite dimensions that can be solved with
the aid of eq. (60) of (Fabiano, 2021a):

14+ O(h)] ,

o 1/2
Z = Ne(f'fﬁjs(q'?d) [ Q?T‘i",h, :| f

det[S" (der)] (32)

and it is clear that the exponential term is the essential contribution as # 0.
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FREE FIELD

We begin with the Lagrangian

1 N2 22
L= 5 [{8:;5) m cf)] . -

that describes the so called free or Gaussian theory. The equation of motion is the well-known Klein-
Gordon equation describing a relativistic boson particle of the mass m

(D -+ m,z)qf; =0, (34)

i(wt—# k#x

where [] = 09, is the d’Alembert operator, with a plane wave solutiond(x, t) = ¢ ) and a

dispersion relation 2 — f2 4 2, Before writing the amplitude, it is customary to add a term like J(x)¢(x) in the
Lagrangian,where J(x) is the so-called source function whose actual form is not relevant, provided integrals
are convergent, as will be clear later. We have

Z =N /’Dd; et [da {i[(0¢)2—m2¢?|+J¢ } ,
| (35)

and focussing on the action integrating by parts, and provided the fields ¢fall off sufficiently rapidly at
infinity, we could rewrite it as

/d:{;’l l[(ddﬂi —m2¢?| + Jp = /(.1:3::4 [_lé(mz 4 Te|
2 : (36)
By putting this new form back into eq. (35)
Z = N/'D‘;f’ e?}_j'd:r“ {_%ﬁb(ug—i—m“)q’)z—{_‘j@}
| (37)

one obtain once again a Gaussian integral, quite similar to the one of eq. (57) of (Fabiano, 2021a). This
time, however, a and b are not numbers, but matrices. Consider the generalisation of the Gaussian integral
to matrices, then we have

o0 oo oo N N 73
‘/+ /} /i Hd“" o ixAXHIX _ l(z'rr)f } A
e = |- : ’
oo S S det(A)

b =

(38)
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where x-A-x=x;A;; x; and J-x=J;x; , with repeated indices summed over. To prove eq. (38), diagonalise A by
an orthogonal transformation O : A = O—1-D - O, where D is a diagonal matrix with elements given by
all eigenvalues of A. This operation is always possible because A is a definite positive matrix, otherwise the
integral would not converge. Define a new variable y=0-x, that is, y;=0O;jx; , then the exponential will reduce
to a sum of squares:

x-A-x=zAjzj=y-O"-A-O-y=y-D-y=yDyy; . (39)

The Jacobian of such transformation is 1 by definition, so eq. (38) reduces to a product of one dimensional
Gaussian integrals, which proves the formula for J = 0. If not a further step is needed, a variable translation

defined asy’ :y+A_1], which again does not change the integration measure, dy’ =dy.

Coming back to eq. (37), the role of A is here played by the differential operator —(# + m?). Its inverse
is given by the function D that obeys

— @+ m*)D(z —y) = Dz —y), (40)

because, since we are dealing with the continuum, Kronecker’s delta 8; for the definition of inverse
operators 43 have to be replaced by Dirac’s delta functions 6(4)(x — y). The resulting function D is the well-
known free propagator for a scalar relativistic particle of the mass m, here written as a less familiar function
of the coordinates x instead of its more popular Fourier transform

We end up with

2(J) = Co~ /2] [ded'y J@)DE-)IW) = ¢W) | )

where D(x — y) obeys eq. (40). The overall normalisation factor C clearly does not depend on J, but on the
determinant of D which has no interest.Observe that C =Z(J = 0) so that

Z(J) = Z(J = 0)e) | (42)
and

1
Wi(J)= -5 / f{_14!1: d*y J(z)D(z — y)J (y)

(43)

is only quadratic in J, while Z(J) depends on arbitrarily high powers of J.

GREEN FUNCTIONS

By going in momentum space, eq. (40) is easily solvable (Schwinger,1951). Remembering the Dirac delta
function in momentum space
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4
§"(z — y) = {gﬂ§4 ey »

one obtains

. dik etk
(J—' - U) = ](Z?T)d kﬁ _ ?13‘2 B 1€ . (45)

With the help of egs. (59) and (61) of (Fabiano, 2021a), it is possible to obtain the explicit form for D(x)
in Euclidean space. By rewriting the denominator with eq. (61) of (Fabiano, 2021a) and computing the
Gaussian integral, we obtain

D(x 1 +°°] ~D/2 % —tm?
{Jf) = m A dt t e A =

1 Kop 2)/2{|$|) (D—2)/2
(2m) D) |g|D-272 " ’

(46)

where K, (x) is a Bessel function. For a half integer argument, Bessel functions reduce to elementary
functions, for example in D =1

1

D(’B) _ _B—m|:c| 1
2m (47)
while for D =3
D(z) = Lt”. mja|
m|x| (48)

Equation (46) can be used to obtain asymptotic behaviours for D(x); one finds for |x| » 400

1/2 ’ . .
D(z) = (E) (21)~D/2|5|(-D/241/2) 1y (D/2-3/2) p—mla]

2 (49)

while for |x| > 0 we have

D

1 s ‘
D(z) = ;lw_”fzf (5 — 1) lz| " P*2 for D > 2,
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(50)

and

D(z) = (4m)~P/2r (1 — E) mP~2 for D < 2
2 (51)
respectively.

We shall see next the importance of the source function. From eq. (35),we see how a functional derivative
in J(x) will furnish us the expectation value of the field. Using the fact that

4]
J(y) = 89 (x — ),
dJ(x) ) ( ) (52)

as per definition of a functional derivative, from Z(J) we could obtain the propagator, or the time ordered
two point function as

) )
—iG(x —y) = —iG(z,y) = (0|T¢(x)p(y)|0) = ———=—%Z(J])
6J(z) 6.J(y) -0 (53)
It is straightforward to generalise this expression to an n—point function:
G(z1,m2,...,2n) =" (0[Td(z1)P(z2) . .. p(2n)| 0) =
0t Z(J)
0J(x1)00 (x2) ... 0 (an) |y (54)
Explicitly calculating the four point function yelds:
g . " " " — 542(!}-)
_<[]' 1 (/)(,;',1)(/)(.}‘,2)(f)(.}',g)(f)(.f,4)| 0) = — 5J(;‘g1 )(SJ(_I;Q)(SJ(Q;:;)(SJ(;&,_L) o
= G(x1 — 22)G(23 — 34) + G(21 — 23)G (23 — T4) +
Gz — 24)G (29 — x3) | (55)

the sum of all possible combinations of x; comes out because of the functional derivative that sports also
a Dirac’s delta. In this manner, we have derived Wick’s theorem on contractions starting purely with ¢-
numbers expressions.

Z(J) can also be written as a power series in J. Calling
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" Z(J)
Z0(zy, o, ... 2q) = - ~ ,
( T S0 (20)0 (22) .. 0 (2n) | g 56
and noting besides the equivalence with eq. (54), we can write
+o0 1
Z(J) = Zm//dm oz (1) . I (@) 2 (@, . a)
n=0 (57)

In this manner, we have shown that path integral formalism can rederive all the expressions earlier known
of canonical formalism without using operators algebra.

CONNECTED GRAPHS

When analyzing Feynman graphs, there are two distinct types of diagrams: connected and disconnected
graphs (Coleman, 198 5): the latter can be separated into two, or more, distinct parts without cutting a line;
not so for the former. For instance, a propagator is a connected graph.

Z(J) is also known as the generating functional, and it generates both types of Feynman diagrams described
above. However, in a variety of physical problems, for example renormalisation theory, and statistical
mechanics, it is useful to generate only connected graphs. Also, the scatteringamplitude receives contribution
only from connected diagrams. We have already defined such generating functional in eq. (42), called W (J).

By neglecting the normalisation constants, we have the relation !

W(J) = —ilog Z(.J) (8)
among two generating functionals. By taking repeated derivatives with respect to J, we find
W i 0z WA % EVA
0J(x1)8J(x2)  Z260(x1) 8J (1) 2260 (x1)80 (21) (59)
and
5w (i 6%7Z 627 .
8J(21)0J (22)8.J (w3) 6. (wq)  \Z28J(x1)6.J(x2) 6. (23)6.] (24)
srmutation ) ! 0’2
C LAL1011S —_— = .
P Z 6J(21)0J (22)0J (23)0J (z4) (60)

Following the Taylor expansion of eq. (57), we could write an analogous series for W :
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+oo
1
W(J) = Z = /H‘/d:r:l cooday () ... ._J'(.:J;n)W(n)(:f:l, R

n=>0 (61)

By taking J = 0 and comparing the two series, we arrive at:

?:W(?')(fﬂ] ,Tg) = Z2) (x1,22) , (62)

rather unsurprisingas the propagator is connected. To higher orders, however, the relations becomes non-

trivial:

W(4)(371,372,313,3I4) =1 [Z(Z)(:r:l,:J:Q)Z(z)(mg,md) + p(:rmntat.ions} -
2(4)(:1:1,:;:2, x3,24) . (63)

It is possible to prove that W generates only connected graphs to all orders, that is, that W (n) is the n—
point connected Green function.

EFFECTIVE ACTION

Besides connected and disconnected diagrams, there is another important class of Feynman graphs, the one
particle irreducible (1PI) diagrams.These diagrams cannot be disconnected by cutting any internal line. In
other terms, one cannot obtain two Feynman diagrams by cuttinga line of the 1PI diagram. Sometimes they
are also known as strongly connected diagrams, because they are basically diagrams connected by more than
one line.

They have a generating functional called effective action, defined by a Legendre transformation (Coleman,

1985)
[(¢) = W(J) - [ dtz J(z)(x) .
. (64)

The fields ¢ and J have a duality relation among them, like p and 4 coordinates in Hamiltonian and
Lagrangian formalism. The inverse transformation gives the relation

W(J)=T(¢)+ f(14m J(z)p(x) .

(65)

Deriving eq. (64) with respect to ¢ gives us
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or
@) _ ),
dop(x) (66)
while the derivative of eq. (65) with respect to J furnishes us with the result
oW (J
D ).
J(x) (67)

By comparing eqs. (54) and (67) we also see that

_Sloe2() _ o)) _
5.J(x) (0]0) > (63)

that is, the classical field, defined as the vacuum expectation value (VEV) of the quantum field, could be

obtained by deriving the generator of connected graphs W with respect to the source field J.
By taking repeated differentials of egs. (66) and (67) we find

o FW ()
G(z,y) = _5_;(:?:)5,](?,,) o _5.1(1.';) ’

(69)

and

52T 5.J(x)
Nz,y) = ————7-— = — )
©9) = Soyodly) ~  sd(y) o)

I'(x,y) and G(x, y) are inverse of each other. Treating them as matrices with continuous indices, we could

write

52W 52T
Jaty o) = = [t g =
W 60@)8I) o)
d? = — Wz — 2).
f Y 8J(y) dop(2) 6o (2) (e=2) (71)

About the third derivatives of functionals, it is clear from the last line of eq. (71) that [d*y G(x, y)I'(y, z)
does not depend on J. In fact, by taking the derivative with respect to J(u) we find
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) 4 P FW 6°T
5.7 (u) /d y G(a,y)l(y,2) =0 = /d Y 8J(x)6J (y)dJ (u) 5(b(jg)5ff?(z)+
/d4 2w 5T
Y 8J(2)8.J(y) 6p(y)dp(2)8.J (u) (72)

Now for the second term we can write

/d4 2w ) [ 52T ] _
Y §J(2)6J(y) 8.J(u) | 5d(y)dd(z) N

1, 52W Erw. d¢ y") d 82r B
/ T S T@5 () / Y 5700 56 laqs(y)aqs{z)] N

S S ) e — /d‘dy’ G(u,y' )
f " 8T (x)8.T(y) G ')&;5(?;)&;5(2‘)&:5(?;’) (73)

because 3¢(y’ ) /8J(u) = —G(u,y’ ). By combiningeqs. (72) and (73) one obtains

fdd" W s2r
! 5T (@)5T(y)8T (u) 5b(y)ob(z)

W 83T
diy ———— [ d% Glu. .
/ Y M(mwty]] v Gy s 2800) >

To summarise, every derivative of I' with respect to J could be swapped with a derivative in ¢ and an
integration with the Green function G, that is,

) ' 5@5(19';) 0 / 4.1 ! 0
= [d* =— [d%% G :
6. (u) / Y 5T (w) 5o(y) 55w (75)

Aswith Z and W, it is possible to expand I' as a power series in ¢:

+oo
1
I'(¢) zzgf.../{'lml...dmn d(x1) ... ()T (2, ... ay) .
n=0

(76)

It is possible to show that F(")(Xl, . » Xp) is the sum of all 1PI Feynman graphs with , external lines.
We can expand the effective action I'(¢) in momentum space, in powers of momentum. If one considers
renormalisable theory, then the effective action could be written as:
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0(0) = [aat |-Vio)+ 0P @)+ |

(77)

where Z2(¢) is the wave function renormalisation, see eq. (14) of (Fabiano,2021b). The term without
derivatives, V (), is called effective potential. To express it in terms of 1PI Green functions, we have to write

F(“) in momentum spacc:

4 4
F(”)(:ﬁh.. , Tp) f /d ki .. d k;;x

(2m)* @M (ky + ... + ky)eiFr-zitthn ﬂ’ﬂ)r(”)(h.... ky) . o8)
Putting this expression in eq. (76) and expanding in the powers of momenta k; gives
ddk] 4 'n
DB fon
jddm ilkrt o) (ks 2y hnn) o
{r(”}(o, e 0)(z1) - - D) + .. ] -
1, N~ 1 [
n n
fd z ZH{I‘ (0,...,0) [6(2)] +} ,
n=0 (79)

where we have used the fact that (27) %@ (ky+...+k,) =] dx ¢kl #-+kn)x, Comparingegs. (79) and (77) we
see that the ,th derivative of the effective potential V (¢) is the sum of all 1PI diagrams with n external lines
carrying zero momenta, that is, with k; = 0 for all i:

+oo 1
)=~ T™,....0) [#()]" .

n=0 (80)
EFFECTIVE POTENTIAL: AN EXAMPLE

Suppose we have a generic Lagrangian written as

L= (00 ~V(9).
(81)
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In this case, a closed form for W (J) is impossible to obtain. However, it can be evaluated using the saddle

point approximation described in egs. (31)-(32). The saddle point field ¢(x) is determined by the equation
W) d[S () + J‘dd‘y J(y)o(y)]

=10.
09 |y, () ¢ (82)

Writing the explicit form of the Lagrangian of (eq. 81) and integrating by parts the kinetic term, that is,

Jd*x 9,00"¢=—[d*x6d%¢ yields

*ps(z) + V'[ops()] = J () . (83)

To estimate Z, we define the integration variable as 4 - 4, + § restore # and write
Z(J) = /MW _ ] Dep L/MIS@I8]

i/ W[S(6.)+76.] ] D eli/1) [d'z 1[(09)* V" (0.)F]

(84)
having expanded in Taylor series of ¢ — ¢; as in eq. (31):
528 .
| =0+ V(%)
s (85)

We observe that for any operator A, d@4 - [1,.. where a; are it seigenvalues. So 1. - =« and this implies

det A = e84 The last part of eq. (84) reads

/RS () +T5.] ] D i/ [d'z §[(00) V" (6.)#]

. 1/2
SIS rag, [ 2wk 117
dot 57 (hs)

i/ B)[S(2)+T.]+4 log(2mih) — 1 Trlog 5" (¢.) (36)

By dropping irrelevant constant terms, we have determined an explicit expression for W :

W(J) = [S(¢s) + Jobs] + %Tr log [0 + V" (¢s)] + O(R?) .
(87)
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The first term gives the classical contribution to the Green’s function. The next term in # gives the first
quantum corrections to the Green’s functions. Next is the Legendre transformation, for which

COW 6[S(6s) + ) G o
= 5J = qu):; 6(} 4 (f)s + O(ﬁ:) — fps + O(ﬁ) ) (88)

@

and so for the effective action

i
T(¢) = S(4) + %Tr log [0% + V"(s)] + O(12) ,
(59)

and the effective potential

ih
Var(9) = V(8) + 5 Trlog [0% +V"(6:)] + O(R?) . o0

It is clear that in general it is not possible to obtain a closed form for the eigenvalues of the operator in eq.
(85). We need to introduce some simplifications: the configurations we will study will be the ones for which

¢ is independent of x. In this case, V' ' (&) becomes a constant related to a mass, u(¢) > The operator

*+V’ ' (¢) becomes translationally invariant and is easily evaluable going to momentum space. After
obtaining thee igenvalues of the operator, we have to calculate the logarithm and sum over for trace. Therefore

Trlog [0% + V" (¢)] = /ddﬂ: (z|log [0* + V"(¢)]| z) =

1
/(‘14:1-: f% (z|k)(k |log [0 + V()] | k) (k|x) =

/d_ik 10g [_kz + V”(qﬁﬂ
(2m)4 1 (91)

after having inserted a complete set of states. Going to Euclidean space (Fradkin, 1959) and writing the
mass term, we have to deal with the expression

1

I(!”E‘z) = (271_]4

/ddk log (k2 + p2) .
(92)

which as it stands is terribly divergent at infinity, faster than a fourth power. However, if we derive three

times with respect to yz we obtain a finite function,
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d3T(p? : 2 1
IG) _ 76,2y = - 4/&k—y—?q:
; et | Ty
D2 +oo k3 1
dk — T = 55 -
(2m)4 /n (k2 + p2)3  3272p2 (93)
By integrating three times in p* we have
4. 2
y M l(Jg JH 9 v 4
I(p?) = ———=— + A+ Bp* + Cp*,
aswell as three integration constants that can be reabsorbed in the original Lagrangian by renormalisation.
For example, suppose that v - 34 + 34 then for the effective potential we would have obtained
4 (2
m g .4 . p(d)*logp(d)
V. = —¢? 4+ =t + .
(‘ﬂ:((f)) 2 (f’] 4| .l) 647’[2 (95)

1LOOP EXPANSION

We have done perturbative calculations where the expansion parameter is given by the coupling constant of
the theory. Now we will organize the perturbation theory in a different form, of loop expansion, that is an
expansion in increasing number of independent loops of Feynman diagrams. At first order we find the Born
diagrams or tree level diagrams, that is, diagrams without loops. The next order consists of diagrams with one
loop,with integration on internal momenta. Then diagrams with two loops, and so on. The loop expansion
described has a small expansion parameter given by Planck’s constant #.

LetIbe the number of internal linesand V the number of vertices in a Feynman diagram. Then the number
of independent loops L will be the number of independent internal momenta after taking into account the
momentum conservation in each vertex. One combination of momenta conservation will correspond to the
overall conservation of external momenta,so the number of contributing vertices will have to be diminished
by 1. The number of independent loops in a given Feynman diagram will therefore be given by the expression

L=I—-(V-1)=I-V41. 96

In order to relate this loop formula to the powers of #, we have to restore first its value. From the equal
time commutator of canonical variables, were call that

[6(x, 1), m(y, )] = ihd®) (x —y) , (97)

therefore the propagator in momentum space will furnish us with a factor #:
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G(z) = (0|T(x)¢(0)|0) = oy
z) = ) o W © BE_m2 + i€ (98)

(i/#

The other place where # appears is in the action of the path integral, qu) WHS@) Ag this corresponds to

the interaction Lagrangian in the interaction picture

10 )] ‘

this means that each vertex carries a 1/# factor. So for any given Feynman diagram, the power P of # that

appears, #' , is given by

P=1I-V=L-1. (100)
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KOMMEHTAPHH PEAKOAAETHH: Astop aannoi cratsu Huxoaa Pabuano sBasiercst ACCTByOLINM
YACHOM PEAKOAACTHH XypHara «BoeHHO-TexHHMIecKui BecTHUK ». [ToaToMy peakoaaerns mposeaa 6oaee
OTKpBITOE U HOACE CTPOroe ABOMHOE CACIIOE PELICH3HPOBaHHE. PEAKOAACIHS IPUAOXKHAA AOTIOAHUTEABHBIC
YCHAUSL AASL TOTO YTOOBI COXPAaHUTb LIEAOCTHOCTb PELICH3UPOBAHUS U CBECTH K MHUHUMYMY IIPEAB3SITOCT,
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BO H30eKaHHE KOHPAMKTA HHTEPECOB 1103200THAACH O TOM, YTOOBI PELICH3CHT HE y3HAA KTO SIBASCTCS
ABTOPOM CTATbH.

PEAAKIJHJCKH KOMEHTAP: Aytop osor uaanka Huxoaa ®abuano je akryeanu uaan Ypebhusauxor
oabopa BojHoTexunuxor raacHuka. 360r TOra je ypeAHMIITBO CIIPOBEAO TPAHCIIAPEHTHUJU M PUTOPO3HUjHU
ABOCTPYKO CACIIH IPOILIEC pelLieH3Uje. YAOKHAO j& AOAATHH HAIlOP AQ OAP>KH HMHTETPUTET pElleH3Uje M
HEO0jeKTHBHOCT CBEAC HA HAjMalsy MOIyhy Mepy Tako IUTO je APYTH YPEAHHK CapaAHHMK BOAUO IIPOLICAYPY
pCLICH3Hje HE3aBUCHO OA YPEAHHKA ayTOpa, IIPH YEMy je Taj IpOoLeC OHO allCOAYTHO TPAHCIIAPEHTAH.
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KOHQAMKTA HHTEPECA.
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