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Abstract

Introduction/purpose: The paper presents the theory and design issues of a discrete-time communication system used for
discrete-time pulse transmission with and without filtering. Signals are analyzed in both the time domain and the frequency
domain.

Methods: The system is theoretically analyzed using block schematics expressed in terms of mathematic operators and the
system simulation is performed to confirm the theoretical findings.

Results: Discrete-time signals are presented in the time domain and the frequency domain as well as confirmed by a simulation
designed in Matlab.

Conclusion: The results of the paper contribute to the theoretical modeling and design of modern discrete communication
systems.

Keywords: discrete communication system, system design, discrete pulse transceiver, filtering, correlation receiver.

Pesrome

Beepenue/nean: B aanHHOMN cTatbe 06CYXKAAQIOTCS BOIPOCHI TCOPUM M PaspabOTKM CHCTCMBI CBSISH B AMCKPETHOM BpPEMCHH,
HCIIOAB3YEMOH AASL IIEPEAAUN UMITYABCOB AUCKPETHOTO BpeMeHH ¢ puabTpanucii n 6e3 Hee. CUTHAABL aHAAMBHPYIOTCS KaK BO
BPEMEHHOI, TaK M B YaCTOTHOH 00AACTAX.

Meroap:: CucreMa TECOPETHYECKH IIPOAHAAMBHPOBAHA HA OCHOBE OAOK-CXEMBI, KOTOpas Oblaa IIPEACTABACHA B BHAC
MATEMATUYECCKUX OHCPaTOPOB, no KOTOPI)IM BBIITOAHEHO MOACAI/IPOBaHI/IC CHCTEMBI AA HOATBCP)KACHI/IH TCOPCTH‘IeCKI/IX
BBIBOAOB.

PCByAbTaTbIZ CI/IrHaAbI APICKPCTHOTO BpeMCHI/I HpeACTaBACHbI BO BPCMCHHOﬁ u ‘IaCTOTHOﬁ O6AaCT5[X, u HOATBCP)KACHI)I METOAOM
MMHTALMOHHOTO MOACANPOBaHUsL, paspaborannoro B Matlab.

BriBoabr: PesyabraTsl AQHHOTO HCCACAOBAHHS BHOCAT BKAQA B TCOPETHYECKOE MOACAMPOBAHME M PaspabOTKy COBPEMCHHBIX
AUCKPETHBIX CHCTEM CBSI3H.

KAlO‘iCBbIC CAOBA:! AMCKPETHAs CHUCTEMA CB3H, pa3pa60TKa CUCTEMBI, IEPEAATINK AUCKPETHBIX MMIIYABCOB, q)HAprauI/m,

KOPPEASLIMOHHBIN IPUEMHUK.
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YBoa/Lum: Y pasy ¢y NpHUKa3aHU TEOPHja U AH3AjH TEACKOMYHHKALHOHOT CyCTeMa KOjH PaAd y AUCKpeTHOM Bpemeny. OH ce
KOPHCTH 32 IPEHOC (QUATPUPAHOT M HEPUATPUPAHOT AMCKpeTHOT nyAca. CHIHAAH Cy aHAAMSHPAHHU Y BPEMEHCKOM U
PpexBeHIINjCKOM AOMEHY.

Meroae: CucreM je TeOpHjcKM aHAAUBUPAH HA OCHOBY 6A0K-IIEME KOja je mpuKasaHa y pOpMH MaTeMAaTHYKHX OIEPATOPA, IIpeMa
K0jOj je M3BPIIEHA U CUMYAAIIMja CHCTEMA KAKO 6u ce HOTBPAUAHU TEOPHjCKU HAAAZH.

Pesyararn: CHrHaAM AHMCKPETHOI BPEMCHA HPE3CHTHUPAHH Cy y BPEMEHCKOM M (PEKBEHLIMjCKOM AOMEHY U HOTpreHI/I
CUMYAQIIHjOM Y Maraa6y.

3akmyyak: Pesyararn oBor papa AONpHHOCE TEOPHjCKOM MOACAOBABY M AH3AjHY MOACPHHX AMCKPETHHX KOMYHHKALIMOHHX
cucrema.

Keywords: AUCKPETHU KOMYHHKAIIMOHHM CHCTEM, AM3QjH CHUCTEMA, HNPUMOIPEAAHUK AMCKPETHOT IIyAca, QUATpUpAEE,

KOpCAAITHOHH HPI/I] CMHHK.
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Introduction

Most of the analyses of modern telecommunication systems are based on the presentation of signals in
the continuous-time domain, i.e., as continuous functions of time. Consequently, these systems are known
under the name of digital communications systems (Haykin, 2001; Proakis, 2001). However, signals of
modern communication systems are represented by discrete-time functions and are known under the
name of discrete communication systems (Rice, 2009; Berber, 2021; Abramowitz & Stegun, 1972).

This paper aims to present the theoretical base of a discrete communication system assuming that the
modulating signal is a rectangular discrete-time pulse. The content of the paper will include the issues of
mathematical modeling and design of a discrete communication system that includes a transmitter, a
transmission channel, and a receiver. The signals processed in the system will be presented in the discrete-
time domain represented by functions of the discrete-time variable. The system operating in the
continuous time domain is named the digital system, while the system operating in the discrete-time
domain is named the discrete system (Miao, 2007; Benvenuto et al, 2007).

Modern designs of transmitters and receivers in a communication system are based on digital
technology, primarily on FPGA and DSP platforms. These technologies are in extensive use replacing the
analog technologies that are used to implement signal processing functions inside both the baseband and
intermediate frequency transceiver blocks. These trends in the design of communication systems became
possible due to advances in the theory of discrete-time signal processing, and particularly by the
development of the mathematical theory of discrete-time deterministic and stochastic processes
(Manolakis et al, 2005; Berber, 2009).

In this paper, all signals inside the transmitter and receiver blocks are analyzed in both the discrete-time
domain and the frequency domain. Two different structures of the receiver are analyzed; the first with a
low-pass filter and the second with a correlator receiver. To understand the consequences of signal
filtering, the transceiver is separately analyzed for the case when a filter is used to reduce the spectrum of
the modulating signal, and, consequently, to limit the bandwidth of the modulated signal. The presented
system structures are expressed in terms of mathematical operators and their operations are explained
using exact mathematical expressions. The designed system is simulated to confirm the theoretical model
(Quyen et al, 2015; Ingle & Proakis, 2012).

The related powers and energies of the related signals are precisely calculated for an ideal transmission of
signals in the noiseless channel and their filtering. These calculations allowed a clear understanding of the
transceiver operation and possible losses in signal power caused by signal processing in the transmitter and
receiver blocks.

The theory of discrete-time communication systems is of vital importance for researchers, practicing
engineers, and designers of communications devices because the design of these devices is impossible
without a deep understanding of the theoretical principles and concepts related to their operation in the
discrete-time domain (Rice, 2009; Berber, 2021). Modern communication devices, like wireless and cable
modems, TV modems, consumer entertainment systems, and satellite modems are based on the use of
digital processing technology and the principles of the discrete-time signal processing theory.

Discrete-time communication system structure and operation

A discrete-time communication system, including the basic operation of signals, is presented in Figure 1.
The system is composed of a transmitter, a band-pass noise generator, and two types of receivers. The first
receiver will demodulate the received band-pass (BP) signal using a low-pass filter (LPF). The second
receiver will use a correlator to demodulate the received discrete pulse and generate binary zero (0) or
binary one (1) at the output. These two receivers will be separately analyzed. In the case of the system
simulation, a band-pass noise generator should be used to generate BP discrete-time noise that will be
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added to the modulated discrete-time signal. The BP noise generation and application for the system
investigation is a separate topic.

BP Noise
Generator

s_(n) = cos(2n) s.(n) = cos(£2n)

s(n)=m(n)-cos(£2n) N Sm(n) [LpE] | Mma(n)
m(n) — " > * ’

MQ) | S(Q)  S©Q) S(Q)  SWQ) MAQ)

Transmitter Receiver

5.(n)=cos(£2n)

DC
_ % Sm(n) . z md{:"'-"}h . +Bil
! ! 1797 1,0

SAQ) Sa(Q) Mﬁh{ﬂ

Correlation Receiver

Figure 1

Discrete communication system
Puc. 1 — AuckperHas cucrema cBsI3u
Canxa 1 — AHCKpPETHH TeACKOMYHHKAI[HOHH CHCTEM

Transmitter operation

Suppose the output of the transmitter is a product of a modulating discrete-time (dt) rectangular pulse
m(n) and the discrete-time carrier s.(n)=cos2n resulting in a dt modulated signal s(n), expressed in this
form

s(n)=m(n)cos2n o

as shown in Figure 1. We are to find the expression in the time domain and in the frequency domain of
the modulated signal and all signals involved in signal processing, assuming that the dt rectangular pulse is
of an amplitude A and a duration N while the frequency of the carrier is £2¢.

The rectangular pulse in the time domain and the frequency domain. The graphs of the dt rectangular
pulse in the discrete-time domain are presented in Figure 2. The rectangular pulse in the time domain can
be expressed in terms of Koronecker’s delta function as a convolution of the signal and the delta functions,
ie.,

4 0<n<N-I > =
= — k 5 —k —_ k 5 _k
M =1 0 herwise ;:Z_:Lm( )o(n-k) ;m( )o(n-k)
(2)
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for its amplitude A = 2 and duration N = 8 as shown in Figure 2. The pulse values are defined for each
whole number n and have no values in the intervals between neighboring numbers. We can say that the
signal does not exist in these intervals. The intervals are used to process the discrete signal values

m(n)

n
0 N

Figure 2
Discrete-time modulating signal for N =8 and A =2

Puc. 2 — Moayaupyomuii CMrHaA ¢ AMCKPETHBIM BpeMeHeM Ast N =8 u A =2

Caunka 2 MOAyAI/IIJ.lth/I CHUTHAA AUCKpeTHOT BpeMeHa3aN=8nu A =2

To find the amplitude and magnitude spectral densities of the pulse, we need to find the discrete-time
Fourier transform (DTFT) of the modulating signal which is a discrete-time rectangular pulse. Based on
-1

the property of Kronecker’s delta function, the DTFT of the dt pulse that has A values in the interval from
0 to (N-1) can be expressed in the following form (Berber, 2021)

= i m(n)e " = i im(k)ﬁ(n—k)e‘f””

n=—a0 k=I()

n=(N-1)

i i o(n-k)e " :EAe'-’m = Z Ae“’ﬂ"
=0 fat k=n

(3)
Then, the amplitude spectral density can be calculated as

N-1 n={N— l— e JON
=T =Y e
k=0 o=

1TE L _ geiem-nn sin(2N /2)
e sin(£2/2)
0= ﬂk}r, k=0.1.2.3

AN

Ao~ iAN-D2 sin({2N /2)

- otherwise
sin(£2/2)

(4)

Having the amplitude spectral density, we can calculate the magnitude spectral density expressed as
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AN  Q=+2kz.k=0,12.3...)
M(o\=! |« g
‘ ( )‘ A SH}(“QN; 2) otherwise
sin(£2/2) ) 5

and the phase spectral density is expressed as

sin(£2N /2)

sin(£2/2) ©

which are presented in Figure 3 for the case of N = 8 and A = 2. Note that the amplitude value of M (£2
) for £ = 0 is equal to AN, which can be easily obtained by calculating this value from the defining
expression for the DTFT. The magnitude spectral density M(£2) is a periodic function with a period of 2
TU. The zeros crossings in this function occur for the condition sin(€20N/2), i.e., for QN/2 =kTC, k = 1,
2, ..., N-1. For N = 8, we may have Q = £ 2kTU/N = ®£kTU/4, and k = 1, 2, ..., N-1. The phase

discontinuities of JU radians occur at the same frequencies.

IM(Q)//AN

arg M (£2) =—%(N—l)+arg

1

-7 -4 0 74 g2 374 T

£ M(Q)

T8

w4 Y 4 P

-T7/8
Figure 3

Magnitude and phase spectral densities of the modulating signal

Puc. 3 — CriekrpasbHasi IAOTHOCTb KoAcOaHUI U a3l MOAYAHPYIOIIErO CUTHAA
Cauka 3 — CrekTpasHa r'ycTHHA MATHHTYAC U (ase MOAyAI/lLLlthF CHI'HaAQ

The power and energy of the pulse can be calculated in the time domain and in the frequency domain.
In the time domain, the power is
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Em (n)=— Z/P A

and the related energy is calculated as
n=17
E,=P,-N= Zm (n)= Zf =847,
(8)

The modulating signal m(n) is an energy signal. Therefore, its energy spectral density can be calculated
as

. sin(2N /2)[
sin(£2/2) o

This function can be calculated as the DTFT of its autocorrelation function (Berber, 2019). The energy

E,(2)=|M (£

is the integral of the energy spectral density calculated as (Integral calculator, 2023)

L (£ (@)de=2
2

. 2 5
S | o= Lier—sa,
sin(£2/2) 2

(10)

Em -5
27 2

s = H

and the power of the pulse is

P =E = A

m

(11)
The energy inside the first arcade (Figure 3) can be calculated as

2 x/d . 2 y)
= [ [2RA42 = 2 45.64495506949089),
27 3 [sin(2/2) 27

(12)
and the energy inside both the first and second arcades is
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) 72 . 2 2
A sn4Q | oA 4829464599062311,

E, ;= 2_ X
77, |sin(£2/2) 2

(13)
which corresponds to 90.81% and 96.08% of the total signal energy, respectively. Therefore, if we are
filtering the first arcade of the signal, we will use only 90.81% of the signal power.
Discrete-time carrier in the time domain and the frequency domain. Suppose the discrete-time carrier has

a unit amplitude, i.e., it is expressed as s.(#) =cosQn s5.(n) =cosQn_ Suppose the carrier has only N = 4 samples

per oscillation. Therefore, we can calculate its frequency 2=27///,=22/N.=7/2, and express it in the discrete-
time domain as

s.(n)=cosfQn=cos2zn/ N, =cosan/2,

which is shown in the graphical form in Figure 4. The carrier in the frequency domain can be directly
found for any N simply applying Euler’s formula on the time domain signal as

s (ﬂ) — l [echn + e—chn] — l[ejz,?m/Nc + e—jZ;rn/NC] — l[ejZfrnJNE + ejE;m(N(.—l)ch. ] .
‘ 2 2 2

For the case analyzed N, = 4 and 2. =TU/2, we may express the carrier in the time domain as

| |
s.(n)= > [e/™ +e/™7],
(15)

and in the frequency domain as

27

(2)=>Y""6(Q+k-Q)=15(2+2)+75(2-02).

i1 2
(16)

Because this signal is a periodic function of the continuous frequency €2 with a period of 27T, it can be

represented by a periodic stream of Dirac’s delta functions (Papoulis & Pillai, 2002), as presented in Figure
4.
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Se(n)

S(£2)

1]

-T -2 -4 0 74 22344 =« 32 Tmd 2nr
Figure 4

a) Waveshape of the carrier, b) related amplitude spectral density
Puc. 4 - a) Popma Hecymeil BOAHDL, b) OTHOCHTEABHAS CIIEKTPAABHAS TAOTHOCTb KOACOAHHI
Cauka 4 — a) TaaacHu 06AMK HOCHOLIA, §) OAHOCHA CIIEKTPAAHA IYCTHHA AMITAHTYAC

Based on (14), the power of the carrier can be calculated in the time domain as

l n=3 5 1 n=3 1 1 n=3 1 1
P =_st (fm;’Z):—Z—(chs;rn):— -
1 =0 A n=0 2 4 n=>0 2 2 (17)

The carrier is a power signal (Cavicchi, 2000; Berber, 2021). Therefore, its average power is to be
calculated in an infinite interval, according to this expression

P —llm— chs (ﬂn}—th Z l(l+v::+c:rs,1f1nvfr)—llmiz—ﬂ—l

a—»o0 a—x 2H 2 A= 2(.1 2 2

n=—a n=—a
(18)
resulting in the same value as in (17). Because the carrier is a power signal, its energy is expected to be
infinite. We can confirm that by calculating the energy of the signal in the frequency domain as
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1 % I 7«27 ’
E = _£|Sf(Q)|dQ=2—j 275(!2%@) dQ

27 T\ k=%l

?(52 (2+ _Qf)+26(_0+QC)§(Q—QC)+§2(Q—QC))dQ

—an
oo

M| Y

5(Q2+02)5(2+02)d2+0 % [o(2-0)502-0)do

—an

q N

=502 +02)+0(2 - Q) =76(0) ==

(19)
because the integral of the product of the two delta functions is zero and the integral of the delta
function squared can be considered infinity. The infinite energy value can be confirmed by its calculation
in the time domain as

R o 1 .2
E =lim z cos’(2.n) = lim Z E(1+CDS n) = 1111'17{'1 =,
a—m = a—w = f—»ao (

20)
Modulated signal in the time domain and the frequency domain

Plot the graphs of all signals in the frequency domain assuming that the number of samples of the
rectangular pulse is N = 8 and there are two oscillations of the carrier inside the pulse, i.c., one oscillation
of the carrier is represented by N. =4 samples. The rectangular pulse in the discretetime domain has
already been expressed by (2). With a precise definition of the modulating signal m(n) in the time domain,
the modulated signal can be expressed in terms of Kronecker delta functions as

s(n)=m(n)cos 2n = cc:s.QnEm(k}J(n-k} = Em(ﬁc}ﬁ(n-k}cos n

=0 k=0

(21)
and graphically presented as in Figure 5. We may get the amplitude spectral density of that signal as the
convolution of the modulating signal and the carrier in the frequency domain (Berber, 2021), which will
give the modulated signal as



STEVAN M. BERBER. MATHEMATICAL MODELING AND SIMULATION OF A RECTANGULAR PULSE TRANSCEIVER OPERATING
IN THE DISCRETE-TIME DOMAIN

S(2)=M(£2)*S.(2)= ﬁ T M(2)-S.(2-2A)dA =

T (/1)-2%5(!2+!2 —-A)dA+ —IM(A) —5(.1.’2 02 —-A)dA -

—o0

"z

_%M(Q+Q)+2M(Q—,q)

(22)
Based on the expression for the amplitude spectral density of m(n) (5), the required frequency-shifted
components in (22) can be expressed as

IM(H+Q) A —.f[ﬂ -"'2:'“4' ]}.,Sln((ﬂiQ)NIZ)
2 2°¢ sin((£2+42)/2)
AN /2 Q+0Q =+2km,k=0,1,2,3,..]
=14 i@ sixT (2+2)N/2) hormise
2 sin((£2+4)/2)
(23)

The magnitude spectral density of the modulated signal is presented in Figure 5.
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s(ny=m(n)-sdn)

2|S(Q)/AN

b
) |

- -72 -w4 0 74 72 3m4 m 5744 372

-0, Q.
Figure 5

a) Discrete-time waveshape, and b) magnitude spectral density of the modulated signal
Puc. 5 — a) Popma BOAHBI ¢ AUCKPETHBIM BPEMEHEM 1 b) crieKTpasbHast TAOTHOCTb MOAYAMPOBAHHOTO CHTHAAA T10 BEAMYHHE
Cauxka S — a) Tasacuu 06AHK y AMCKPETHOM BpeMeHy, 6) ClIeKTpaAHa I'YCTHHA MATHUTYAE MOAYAHCAHOT CUTHAAQ

The magnitude spectrum is a periodic function with a period of 27U. The two-sided spectrum of the
signal can be investigated inside the bandwidth around the carrier frequency of JT/2. We can calculate the
signal energy and power in the time domain

N-I n=7
E =P-N=>s(n)= Zs (n) =44°
n=>0 (24)

and the power is

P=E /N=44/8=4*/2.
' ' (25)

The energy calculated in the frequency domain confirms calculations in the time domain, i.e.,

L7 2 oo LTl _ 2
E_H_—EDS{.QH dﬂ_zﬂyz[M(Q Q)+ M2+ Q)] d

Azf sin((2+2)4) zdﬂ—A—zlﬁf 4
4x sm((ﬂ‘LQ)"fz] 4

(26)

:iA_j|M{ﬂ Q)P do=
T4 -

T
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The modulated signal is an energy signal having finite energy. The power calculated in the signal interval
is finite.

However, if the average power is calculated in the infinite interval, it would be of zero value which
complies with the definition of the power signals.

Simulation of the transmitter operation

We performed a simulation of the transmitter presented in Figure 1 (Ingle & Proakis, 2012).

The signals are generated in the time domain and the frequency domain.

The modulating signal and the carrier obtained by simulation in the time domain and the frequency
domain are presented in Figure 6.

They are equivalent to the signals obtained by calculations and presented in Figures 3 and 4,
respectively.
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Figure 6
Magnitude and phase spectra: a) the modulating signal, b) the carrier

Puc. 6 — AMIANTYAHBII 1 pa3OBBII CIIEKTPHL: 2) MOAYAHPYIOLIETO CUTHAAQ, b) HecyIweil BOAHDI

Cauxa 6 — Criektpu MarHHTyA€ 1 (ase: a) MoAyaniyhu curxaa, 6) HocHAan

A simulated modulated signal in the time domain and the frequency domain is presented in Figure 7.
The presentations are equivalent to the graphs obtained by calculations and shown in Figure 5.

Modulated signal
209 :

0 20 40 60

n
1 FT of modulated signal

80

|S(omg)|/8
=
o

-2 0 2
OMEGA

Figure 7
Magnitude spectral density of the modulated signal in the time domain and in the frequency domain
Puc. 7 — CriexTpasbHast IAOTHOCTh KOACOAHHI MOAYAHPOBAHHOTO CUTHAAA BO BPEMEHHOI U YaCTOTHOH 00AACTsIX

CAI/IKa 7 el CHCKTPaAHa ryCTI/IHa MaFHI/ITyAC MOAyAI/ICaHOr CHUTI'HAAaQ y BPCMCHCKOj u (l)pCKBCHLlI/leKOj AOMCHH
Receiver operation with the implementation of a low-pass filter
The demodulation of the discrete modulate signal results in the discovery of a modulating signal that is

in the form of a rectangular pulse. The procedure of demodulation takes place inside the receiver as
presented in Figure 1. We will first analyze the case when a low-pass filter is used to demodulate the



VOINOTEHNICKI GLASNIK/MILITARY TECHNICAL COURIER, 2023, voL. 71, No. 2, APRIL-JUNE, ISSN: 0042-8469 /
2217-4753

modulated signal. We use a coherent receiver in this case. Firstly, the received signal is multiplied by the
carrier to get the multiplied signal

|
s (n)=m(n)cos® Qn=12 A(l+cos202n) 0<n<N-I
m [
0 otherwise 27
The wave shape of this signal is shown in Figure 8. The signal is represented by 4 discrete amplitude A
values. The dashed graph notifies what the shape of the corresponding continuous-time signal would look
like. The DC component of the signal having amplitude A/2 is also presented in Figure 8. The double

frequency term of the discrete time signal is cos22n=cos4zn/ N, =cos4zn/4=coszn,

Sm(n)=m(n)-sc(n)

0 Ne¢ N

Figure 8

The output of the signal multiplier
Puc. 8 — BrIXOAHOI CHTHAA YMHOXKHTEAS CUTHAAQ
Cauxka 8 — M3aa3 MHOXa4ya cUTHaAa

The DTFT of this signal gives its amplitude spectral density of the form

S (£2)= éFT{m(n)(l+cns ZQH)} = %FT{TN(H) +m(n)cos Z_Q,H}

= %M(Q)+%[M(Q—2Q)+M(Q+2Q)]
(28)
where the amplitude spectral density of the low-frequency part is

AN /2 Q=+2kr k=0,12,3,..

1

—M(02)= v n_t1/a S

2 ( ) ée_ﬂg{’\”“’z 511?(!2NI2} otherwise
2 sin(£2/2)

(29)
The amplitude spectral density of the LF signal part is shown in Figure 9. This spectrum has the same
waveshape as the spectrum of the modulating signal in Figure 3, but all of its amplitudes are two times
smaller due to the processing inside the demodulator.
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Figure 9
Magnitude spectral density of the demodulated pulse

Puc. 9 - AMnanTypHAas CrieKTpasbHAs MAOTHOCTD ACMOAYAHPOBAHHOTO HMITYAbCA
Canxa 9 — CriekrpasHa IryCTHHA MATHUTYAE ACMOAYAUCAHOT ITyACa

Also, the shifted components of the signal are

A — 24242 J(N-1)/2 Siﬂ({ﬂi‘ZQ}N:"Z)

L5y, (2+20)=Ze :
4 4 sin((2+20)/2)
AN /4 Q+20 =2k7,k=0,1,2,3,...]’
= ée—;‘[ﬂlEL& JN-1)2 Sit‘l ((ﬂilﬁ; )N/ 2) otherwise
4 sin((L2+202)/2)
(30)

and the spectrum of the signal at the output of the multiplier is presented in Figure 10.
AM(DAN, ISl QAN

S@4 Ix2 x4

Figure 10

The spectrum of the signal at the output of the multiplier
Puc. 10 — Criextp curHasa Ha BEIXOAC YMHOXKHTEAS
Cauka 10 — Criexrap currasa Ha U3Aa3y MHOXKa4a

The power and energy of the demodulated signal can be calculated in both the time domain and the
frequency domain. With expression (27), the energy calculated in the time domain can be calculated as



VOINOTEHNICKI GLASNIK/MILITARY TECHNICAL COURIER, 2023, voL. 71, No. 2, APRIL-JUNE, ISSN: 0042-8469 /
2217-4753

n=T n=7 n=T
E, = 2(1 A(1+cos202n))* = Zlfﬁ +2 > A (l + lcos4;;gn)
. n=0 2 n=0 4 4 n=( 2 2
1 2 1 = 2 2
— A+ A =34
n=»0 4 8 n="0

31)
and the power is

E, 34

m N 8 . (32)

Using the magnitude spectral density (28), we can find the energy spectral density. Then, the energy is
calculated as the integral value of the energy spectral density, i.c.,

1 %1 1 1 ,
E, =5 [I5M(Q2)+ 7 M(2-22)+  M(2+2Q)[ d2

1

:{2+14)A2 =34’

4 (33)
which also confirms the value of the signal power expressed in (32).

LPF operation in time and frequency domain. If the LP filter with the cut-off frequency % =7/4 and the

gain Hy is used to eliminate the HF components at the double carrier frequency, as shown in Figure 10,

the demodulated pulse at the output of the LPF, as shown in Figure 1, can be obtained and expressed in

the frequency domain as

H,-M(Q)/2 Q<2 =7/4

M, (£2)=S§,(£)H, (2)~ ,
0 otherwise

(34)
We also assume that the double carrier frequency components in the LP filter bandwidth are negligibly
small. We intend to find the signal at the output of the LPF in the time domain. For that purpose, we can
perform a convolution of the LPF input signal and the impulse response of the filter. Therefore, we need
to calculate first the impulse response of the filter h(n). The LPF here is considered an LTT system. Then,
the impulse response of the filter is the DTFT of the filter impulse response, i.c.,

1 7 . % | HQO
h(n)=— [ H,(2)e""d2=— [ H,e"'"dQ==""Lsincn
2 - 2 o T

H, .
= —Lgsincan/4
2=xid
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for the assumed cut-off frequency of the LP filter of Qf = 7/4, as shown in Figure 10. The zero crossings

are calculated as: sin(zn/2)=0,(zn/2)=kz, and n = 2k. The demodulated pulse in the time domain can be
obtained as the convolution of the input signal s, (n) and the impulse response h(n), i.e.,

{=uo f=m I=n
m,(n)=">Y h(n—Ds, ()= s, (n=Dh(l)= Y s, (n—Dh(l).
I=—m I=—m I=n—{ N-1)
(36)
The procedure of doing the convolution is presented in Figure 11. For a fixed position of the

demodulated signal on the n-axis, the time-inverted impulse response is shifted from minus infinity to plus
infinity, and the corresponding products are added for every n value, as notified in Figure 11.

sm(n), h(n)

Figure 11

Convolution of the signals
Puc. 11 — Ceprxa curuasos
Cauxka 11 - KonBoaynuja curnasa

The energy of the received rectangular pulse is expressed as (34),

2 2 - 2
E, (2)=|M () =|H, M)/ 2] =i |p(o)f =Hi p S0V /D)
4 4 sin(£2/2)
(37)
The energy is the integral of the energy spectral density calculated as
I H: T " . 2 2 q j
Ep=om [ B (@)d0="020 [| 002 40 =20 g, =242,
27 -, 4 277 |sin(£2/2) 4
(38)
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and the power of the pulse is

— E.'rrd' — Hj Em H

_ M p
“ N 4 N 4 " (39)

Comparing relation (39) with expression (11), we can see that the power of the modulating signal at the

transmitter side is attenuated #;/4 times. If we assume that the filter is defined by Hd = 1, the power will
be attenuated 4 times, or 6.02 dB as it can be seen from this simple calculation.

a=10log,(P,,/ P,)=10log,,(4/ H;)=10log,, 4 =6.02 dB. o

In a real system, we will have additional attenuation of the signal due to the propagation and the
influence of noise and fading, which will further complicate the procedures of signal processing inside both
the transmitter and the receiver.

Simulation of the receiver

We performed a simulation of the receiver presented in Figure 1.

The signals are generated in the time domain and the frequency domain. The demodulated signal
obtained by simulation in the time domain and the frequency domain is presented in Figure 12.

The waveshapes of this signal are equivalent to the signals obtained by calculations and presented in

Figure 8 and Figure 10.

20
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Figure 12
a) The demodulated signal, b) the impulse response of the LP filter for N = 8, Omegag = Pi/4and Hy = 1

Puc. 12 - a) AeMoAyanpoBaHHBIi curHaa, b) ummyabcHas xapakrepucruxa LP-¢puastpa aast N = 8, Omegap = Pi/4n Hy =1

Canxa 12 - a) AeMopyancanu cHrHaA, 6) IMITYACHH 0A3UB HucKoTporycHor guatepa 3a N = 8, Omegag = Pi/4m Hy =1

22
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Figure 13
a) Convolution procedure of the demodulated signal and the impulse response, b) the output signal obtained by
convolution
PI/IC. 13 - 3.) HPOHCAyPa CBCPTKI/I ACMOAYAHPOBQHHOFO CHUT'HaAa 1 MMITYAbCHOI'O OTKAHKA, b) BBIXOAHOﬁ CHUTHaA, HOAY‘{CHH]}H‘//I
IIyTCM CBCPTKI/I
CAI/IKa 13 - a) HOCTYHB.K KOHBOAyLU/IjC ACMOAYAHCAHOT CUTHAaAa U UMITYACHOT OA3HMBa, 6) H3AA3HHU CUTHAaA HAKOH
KOHBOAyLU/I)C

The impulse response of the LP filter is presented in Figure 12b). The procedure of the correlation is
presented in Figure 13a) while the waveshape of the LP filter output is presented in Figure 13b).

Correlation receiver implementation and operation

As we have seen, the demodulation of the discrete modulated signal using the LPF results in the
discovery of the modulating signal that is in a form of a rectangular pulse. Based on the sign of the pulse
received, the Decision Circuit decides on the binary value of the transmitted signal. For the positive pulse,
it is said that 1 was transmitted and for the negative pulse, it is said that 0 was transmitted.

For the same structure of the transmitter, the procedure of demodulation takes place inside the
correlation receiver as presented in Figure 1 (lower block on the right). The received signal is first
multiplied by the carrier to get the signal sm(n) as in (27). This signal in the frequency domain is given by
expression (28). The wave shape of this signal is shown in Figure 8. The samples of the signal are
accumulated inside the correlator adder to get

N-1 N-1 N-1 N-1
m,(N)= zgm(n) = Z% A(l+cos20n) = Z% A+ chsfl!)cn = %AN :
n=0 n=0 n= n=l

(41)
The Decision Circuit decides on the mg(N) value and generates, at its output, 1 or 0 according to this

decision rule

1 m,(N)=0
DCI}HE - 0 N 0
m;(N) < (42)

If we send a stream of bits 1 and 0 (by changing the sense of the amplitude A inside m(n)) at the
transmitter side, the receiver will generate the same stream at its output. Each bit will be generated at the
time instants i-N, where i is a set of natural numbers and N is the number of samplers in each discrete pulse
m(n). This is the case when noise is not present in the channel, i.e., the channel is noiseless. Therefore, in
the system with a noiseless channel, the decision will always be correct in the Decision Circuit. Namely, if a
positive pulse is transferred, meaning that the amplitude A is positive, the product (41) will be positive and
the Decision Circuit will generate bit 1 (one) at the output. If a negative pulse is transmitted, the product
(41) will be negative and the Decision Circuit will generate bit 0 (zero) at the output. We design
transceiver blocks and use the noiseless channel to investigate the operation of the transceiver blocks only.
When we are sure the blocks are operating properly, we add the channel simulator to investigate the
properties of the whole system in real conditions. In the presence of noise, the sign of the product (41) can
be changed due to the noise level and the wrong decision can be made.

Discrete communication system for the transmission of a filtered pulse

24
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To reduce interference between communication systems, we can use filtering inside the transmitter.
That filtering limits the spectrum of the transmitted signal. We will analyze the case when the modulating
signal is filtered by an LPF and then transmitted through the transmitter circuits and received by the
receiver circuits in the same way as explained in the previous sections. The block scheme of the transmitter
with the LP filter is presented in Figure 14.

h(n) s.(n) =cos(£2.n)

m,(n)
m(n)%é si{n)=m(n)-cos(L2.n)

M(Q) H(Q) MAQ=MQH(Q) SL£2) SH£2)
Figure 14

Discrete-filtered pulse modulator
Puc. 14 — VIMIIyAbCHBII MOAYASITOP C AUCKPETHON PUABTpaLueii
Cauka 14 — Mopyaarop AUCKPETHOT ¥ pHATPUPAHOT IyAca

At the input of the transmitter, there is a discrete rectangular pulse as in the previously analyzed
transmitter. The pulse is already presented in the time domain and the frequency domain in the previous
sections. At the output of the transmitter, there is the modulated signal sg(n) that corresponds to the
modulated signal s(n) in Figure 1.

The LP Filter operation. To limit the bandwidth of the signal, we will use an LPF of the gain H, which
will filter out the first two arcades of the rectangular pulse defined by the cut-off frequency g, as shown

in Figure 15. In this case, we will limit the power of the filtered pulse to 96.08 % of the pulse total power as
calculated in (13). The filter transfer characteristic in the frequency domain is defined as

H |29 =x/2
0 otherwise

IM(Q)/AN

H(02)=

1

- -m2 -74 0 74  m2 374 T
Qp QF
Figure 15

Spectra of the rectangular pulse and the impulse response of the LP filter

Puc. 15 — CriexTpsl IPSIMOYrOABHOTO HMIIYAbCA M MMITYABCHAS XapakTepucTuka LP-¢puaprpa
Cauxka 15 — Cnexrap npaBoyraoHOr nyAca 1 HMIYACHOT OA3HBA HUCKOIPOIYCHOT QuATEpa

LPF output signal. The output of the filter is a bandlimited signal having the spectrum defined as

25
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ANH Q2=0

M (2)=M(02)-H(Q2)= AHe 122 Sifll(QNfz) Q0 ’
sin(£2/2)

(44)
as presented in Figure 15 between the cut-off frequencies -Qp and +QF.
Analysis of the filter operation in the time domain and the frequency domain. The filtering process is
presented in the frequency domain as the multiplication of the amplitude spectral densities of the input

signal m(n) and the impulse response h(n). This multiplication in the frequency domain corresponds to
the convolution of the signals in the time domain.

Therefore, the filter output signal in the time domain mg(n) is the convolution of the filter impulse
response h(n), which is the sinc function obtained as the discrete-time inverse Fourier transform (DTIFT)
of the spectrum H(L2), and the input signal m(n). The impulse response of the LP filter is calculated as

H €+_;ﬂn O
h(n)=— J- H(2)e""dQ = — J- He " "d Q2 =
o, 27 jn |,
+jpn = jL2pn
_He € _ 12, —sinQ2,.n = %sinc_QFn
n 2j :rm_QF /4 !
= —sinczn/2
Qp=r/2
(45)

having the zero crossings calculated as: sin(Trn/2)=0, (JTn/2)=kTT, n=2k, as shown in Figure 16.
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h(n), m(n)

H/2

Nl -
o

Figure 16

Impulse response and the output of the ideal LP filter
Puc. 16 — MiMmyabcHast xapaKTepHCTHKA M BBIXOAHOH CHIHAA HA€aAbHOTO LP-$puaprpa
CAI/IKa 16 - I/IMHyACHI/I OA3HB 1 M3Aa3 HACAAHOT HI/ICKOHPOHYCHOI‘ (l)I/IATCpa

The energy of the impulse response in the time domain can be calculated as

- 2
Z gsinc;rmﬁ

fi=—o (46)

E,= i h*(n)=

and in the frequency domain

1 ¢ 2 H* "¢ H’
EH=EJ|H(Q)| dQ=—— [ d2=——

2r o,
(47)

The filtered signal in the time domain is the convolution of the rectangular pulse m(n) and the impulse
response h(n), i.e.,

m,(n) = f m(n—10h(l) = g:fl h(n—10)ym(l) .

[=—x I=—o (48)

This convolution can be calculated if the values of the sinc function are calculated and represented by a
series of numbers (sufficiently long) and then convolved with the values of m(n) represented by a finite
series of ones. Since the discrete-time Fourier transform of the filtered signal is

27
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ANH 02=0
M, (£2)= e A2 sixll(_QN;’ 2) Q<o [
sin(2/2) "
the energy of the signal can be very accurately calculated as it has been already done in (13), i.c.,
; 2

1 7 A* "¢ |sin(Q2N /2 2
Ey~— M. (Q) da2=2 stn N 4= 248295

2~ 2 _7,| sin(£2/2) T

(50)

Having in mind that the carrier is expressed as s.(7) =cos2n and that it has 4 samples per oscillation, the
spectrum of the modulated signal is a shifted version of the spectrum of the filtered rectangular pulse, i.c.,

S, (£2) = FT{m, (n)cos Q2n} = %FT (m, () +&727))

:%[MF(Q—!L{_)wLMF(QJrQ.)]
: (51)
ANH /2 (2-2)=0
1 .
EMF (2-02)= AH _j0-qyny sin((2-4)N/2) 12-Q<Q. |
2 sin((2-0)/2) o
(52)
and
1 ANH /2 (2+Q2)=0
EMF (Qﬂ?c): A_H —j(£2+2)N-1)/2 Sin((QJrQ")Nfz) |_Q+Q <0 5
| 2 sin ((2+2)/2) o
(53)

which is presented in Figure 17.
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Figure 17
Magnitude spectral density of the modulated filtered pulse
Puc. 17 — CnexrpaspHast IAOTHOCTD MOAYAHPOBAHHOTO OTQHUABTPOBAHHOTO HMITyABCA
Cauka 17 — CriexrpasHa IyCTHHA MATHUTYAC GUATPHPAHOT MOAYAHCAHOT ITyACa

The spectrum of the modulated pulse, as a function of the angular frequency, is shown in Figure 17. The
filtered modulated pulse in the time domain is a product of the filtered pulse and the carrier, i.e.,

s.(n)y=s.(n)-m.(n)=coszn/2- I:f h(n—10)ym(l)

(54)
This is the modulated signal which has a limited bandwidth. This signal is transmitted through the

channel and processed in the receiver as presented in the previous sections.
Conclusions

This paper presented a theoretical model and the simulation results of a discrete-time communication
system. The block schematic of the system’s transmitter and receiver is presented in the form of
mathematical operators and all input-output signals are presented in both the time domain and the
frequency domain. The powers and energies of the signals are calculated and the attenuation of the signals
is analyzed.

Two types of transmitters are synthesized: one with an ideal rectangular discrete time pulse and one
with a filtered rectangular pulse. It is shown that the application of a filter inside the transmitter reduces
the modulating signal spectrum thus causing the reduction of the modulated signal bandwidth.
Furthermore, two receivers are analyzed: a receiver that uses a low-pass filter for demodulation and a
receiver that uses a correlator for received signal demodulation. All theoretical results are confirmed by
simulations.
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