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ABSTRACT

The objective of this study was to evaluate the anti-
bacterial and antimycobacterial potential of the by-products
of white shrimp (Litopenaeus vannamei). The following ex-
tracts were obtained: exoskeleton hexanic, methanolic and
acqueous extracts (ExHex, ExMe, ExAc); and cephalothorax
hexanic, acetonic and methanolic extracts (CeHex, CeAce,
CeMe). Antibacterial effect was determined by the broth
microdilution method against Gram-positive bacteria: En-
terococcus faecalis American Type Culture Collection (ATCC)
51299, Staphylococcus aureus ATCC 25293, and Staphylo-
coccus epidermidis; Gram-negative bacteria: Escherichia coli
ATCC 25922, Klebsiella pneumoniae, Pseudomonas aeruginosa
ATCC 10145, and Salmonella typhimurium; and Mycobacte-
rium bovis bacillus Calmette-Guérin (M. bovis BCG) Danish
strain. CeHex resulted active against all Gram-positive and
Gram-negative bacteria (MIC, = 400 ug mL") and against M.
bovis BCG (MICmO: 250 pg mL"). Gas chromatography (GC)
of CeHex identified oleic, linoleic, palmitic, stearic, behenic,
palmitoleic and linolenic fatty acids. The strong antibacterial
activity of CeHex and the identification of its main chemical
constituents justify further studies on the clinical applica-
tions of this marine by-product.
Keywords: Litopenaeus vannamei, antimicrobial, Mycobacte-
rium, by-products, fatty acids

RESUMEN

El objetivo de este estudio fue evaluar el potencial
antibacteriano y antimicobacteriano de los sub-productos
del camarén blanco (Litopenaeus vannamei). Fueron obteni-
dos los siguientes extractos: extracto hexanico, metandlico
y acuoso del exoesqueleto (ExHex, ExMe, ExAc); y extracto
hexanico, aceténico y metandlico del cefalotérax (CeHex,
CeAce, CeMe). El efecto antibacteriano fue evaluado median-
te el método de microdilucién en caldo contra las bacterias
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Gram-positivas: Enterococcus faecalis American Type Culture
Collection (ATCC) 51299, Staphylococcus aureus ATCC 25293,
y Staphylococcus epidermidis; bacterias Gram-negativas:
Escherichia coli ATCC 25922, Klebsiella pneumoniae, Pseudo-
monas aeruginosa ATCC 10145, y Salmonella typhimurium; y
Mycobacterium bovis bacilo Calmette-Guérin (M. bovis BCQG)
cepa Danesa. CeHex resulté activo contra todas las bacterias
Gram-positivas y Gram-negativas (MIC, = 400 ug mL") y con-
tra M. bovis BCG (MIC, .= 250 pg mL™). Mediante cromatogra-
fia de gases (GC) de CeHex se identificaron los acidos grasos:
oleico, linoleico, palmitico, estearico, behénico, palmitoleico
y linolénico. La fuerte actividad antibacteriana de CeHex y
la identificacién de sus principales components quimicos
justifican estudios posteriores en las aplicaciones clinicas de
este sub-producto marino.

Palabras clave: Litopenaeus vannamei, antimicrobiano,
Mycobacterium, sub-productos, acidos grasos

INTRODUCTION

Mexico's shrimp farming sector harvest a total of
177,000 tonnes in 2021 according to the National Commis-
sion of Aquaculture and Fisheries (CONAPESCA). Mexico has
around 900 shrimp farms, 45 hatcheries and over 40 shrimp
processing plants. Sinaloa is the main producer of farmed
shrimp (40.3 %), followed by Sonora (39.7 %) and Nayarit (7.5
%) (TheFishSite, 2021).

Only 65% of the crustacean is used for human con-
sumption, the rest corresponds to the exoskeleton and
cephalothorax (NUfez-Gastélum et al.,, 2011). The waste is
almost completely discarded, except that only a little is pro-
cessed as an excellent animal feed supplement (Nwanna et
al., 2004).

Seafood by-products are valuable natural resources
that show range of functionalities and hence potential
materials for biomedical and nutraceutical industries (Se-
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nevirathne and Kim, 2012; Hernandez-Zazueta et al., 2021a;
Herndndez-Zazueta et al., 2021b).

Shrimp industry wastes have attracted attention due
to the presence of valuable bioactive compounds as prote-
ins, lipids, pigments (carotenoids), chitin/chitosan, oligosac-
charides, vitamins, etc. (Sachindra et al., 2006; Nirmal et al.,
2020). Bioactive evaluations reported include antimicrobial
activity (Stenotrophomonas maltophilia, Enterobacter cloacae
and Bacillus subtilis; Lactobacillus helveticus, L. innocua, S.
aureus, Citrobacter freundii, E. coli, and P. fluorescens) (Vilar et
al., 2016; Djellouli et al., 2020), antioxidant, ACE (Angiotensin |
converting enzyme) inhibitory activity, and antiinflammatory
(Nirmal et al., 2020).

Natural products take the leading place in drug dis-
covery of antimicrobial agents highlighting the fact that ap-
proximately 70% of antibiotics clinically used for treatment
of infectious diseases are derived from nature (Brown et al.,
2014).

To the best of our knowledge, this is the first report
of of these L. vannamei by-products extracts activity against
this set of clinical relevance bacteria (E. faecalis, S. aureus, S.
epidermidis, E. coli, K. pneumoniae, P. aeruginosa, S. typhimu-
rium; and M. bovis BCG).

MATERIALS AND METHODS
Shrimp material

A sample of white shrimp (L. vannamei) was obtained
in the central-western region of the state of Sonora, in the
town of Bahia de Kino (28°49'22 "N 111°5627 " W).The raw
material was separated into exoskeleton and cephalothorax,
ground (Osterizer, Oster, USA) and stored in polyethylene
bags at -18 °C until use.

Preparation of shrimp extracts

Twenty g of shrimp material were homogenized with
60 mL of solvent (proportion 1:3 weight/volume) (n-hexane,
acetone, metanol or water, Quimicos Fermont, Mexico) in a
blender (Osterizer, Oster, USA) at high speed for 1 min and
the resulting mixture was keppt in an Erlenmeyer flask at
room temperature for 24 h in darkness. Solids were filtered
out (filter paper Whatman no. 1), the extracts concentrated
by evaporation under reduced pressure at 30 °C in a rotary
evaporator (HS-2005S-N, Hahnvapor Hahnshin Scientific Co.,
Republic of Korea), and dried under N, stream (Lopez-Saiz et
al., 2014; Osuna-Ruiz et al.,, 2016). The following extracts were
obtained: exoskeleton hexanic, methanolic and acqueous
extracts (ExHex, ExMe, ExAc); cephalothorax hexanic extract,
acetonic and methanolic extracts (CeHex, CeAce, CeMe).

Antibacterial Activity
Bacterial strains

Bacterial strains used in this study: Gram-positive
bacteria (Enterococcus faecalis American Type Culture Co-
llection (ATCC) 51299, Staphylococcus aureus ATCC 25293,
and Staphylococcus epidermidis) and Gram-negative bacteria
(Escherichia coli ATCC 25922, Klebsiella pneumoniae, Pseudo-
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monas aeruginosa ATCC 10145, and Salmonella typhimurium),
obtained from the ceparium of the Department of Chemical
Biological Sciences of the University of Sonora. Before tes-
ting, all bacterial strains were maintained frozen at — 70 °Cin
10 % glycerol broth.

Preparation of working solution

Each organic extract was dissolved in 100 % dimethyl
sulfoxide (DMSO, Sigma-Aldrich, USA) (20 mg mL") and main-
tained at room temperature for 1 h to assure their sterilization
(Molina-Salinas et al., 2006). These extracts were diluted with
fresh Mueller Hinton broth (BD DIFCO, Sweden) to their final
concentrations of 50, 100, 200 and 400 ug mL™.

Preparation of inoculum

Bacterial colonies grown on Mueller Hinton agar
(MCD Lab, México) for 18 - 24 h (log phase of growth) were
transferred to a sterile vial containing 15 mL of sterile 0.85 %
saline solution. The bacterial suspension was disaggregated
by agitation using a Genie Il vortex, speed 3, for 1 minute,
and left to stand for 10 min at room temperature. The super-
natant was then adjusted to the optical density of OD, ==
~0.095, a turbidity matching the 0.5 McFarland standard (1.5
x 108 colony forming units CFU mL").

Antibacterial assay

In vitro antibacterial studies were carried out by the
broth microdilution method as described previously (Velaz-
quez et al., 2007; Navarro-Navarro et al., 2013). Briefly, 15 pL
(2.25 x 10° CFU) of the inoculum (Velazquez et al., 2007) were
inoculated into each well of a flat 96-well microplate (Costar,
Corning, USA), containing 200 L of different concentrations
of the organic extracts (50-400 pug mL") in Mueller Hinton
Broth (BD DIFCO, Sweden). Additionally, each antibacterial
test included wells containing the culture media plus DMSO
(2 %), in order to obtain a control of the solvent’s antibacterial
effect. Gentamicin (12 ug mL") (AMSA, México) was used as
positive control of bacterial growth inhibition. Bacterial cul-
tures were incubated at 37 °C for 48 h. Plates were read at 630
nm in an enzyme-linked immunoassay (ELISA) microplate re-
ader (Benchmark Microplate Reader, Bio-Rad, Hercules, USA)
at6, 12, 24,and 48 h.The optical density (OD,, ) was correc-
ted by subtracting the OD,,, from wells with extracts alone
in sterile broth. The minimal inhibitory concentration was de-
fined as the lowest extracts concentrations that inhibited at
least 50 % (MIC, ) or 90 % (MIC, ) of the bacterial growth after
incubation at 37 °C for 24 h. MICs were determined using the
following criteria (Baizman et al., 2000; Velazquez et al., 2007):

MIC, (OD63Onm untreated bacteria - 0D, ., test con-
centration)/(OD,, untreated bacteria) x 100 > 50 %.
MIC,: (OD,, .. untreated bacteria - OD test con-

630 nm
centration)/(OD untreated bacteria) x 100 > 90 %.

630 nm
Antimycobacterial Activity of Shrimp Extracts
Mycobacterial strain

Mycobacterium bovis bacillus Calmette-Guérin (M.
bovis BCG) Danish strain was obtained from the ceparium of
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the BSL3 laboratory of the Biomedical Research Institute of
the National Autonomous University of Mexico.

M. bovis BCG inoculum preparation

M. bovis BCG strain was cultivated in 50 mL of Middle-
brook 7H9 broth (Becton Dickinson, USA) supplemented with
0.2 % (v/v) glycerol, and 10 % (v/v) ADC (albumin, dextrose,
catalase enrichment) (Becton Dickinson, USA) (MDB 7H9) to
which 0.02 % (v/v) tyloxapol (Sigma-Aldrich, USA) was added.
Bacteria was incubated at 37 °C until an OD,,  of 0.39 was
reached (equivalent to 1 McFarland unit). Working bacteria
solution was prepared by a 1:25 dilution in MDB 7H9 (Pefiue-
las-Urquidez et al., 2013; Guzman-Gutiérrez et al., 2020).

Resazurin microtiter assay (REMA) to evaluate inhibitory
activity against M. bovis BCG

This assay was adapted from Collins and Franzblau
(1997). In 96-well polystyrene flat bottom plates, 200 pL of
sterile distilled water were added to the perimetral wells, and
100 pL of MDB 7H9 broth were added to the remaining wells.
Working solutions of extracts (2000 ug mL™") were distributed
into the first well of each row, and 2-fold dilution series were
made using the following four wells. 100 pL of inoculum
was added to each test well. The final concentrations in-test
ranged from 31.25 to 500 pg mL". The controls of this expe-
riment were: rifampicin (Sigma-Aldrich, USA) (concentrations
of 16-9.7x10* pg mL"), MDB 7H9, MDB 7H9 with bacteria,
extracts (without bacteria), 2.5 % DMSO, and 2.5 % DMSO
with bacteria. The microplate was sealed with parafilm and
incubated for 6 days at 37 °C. Further, 30 pL of 0.01 % resa-
zurin sodium salt (weight/volume) (Sigma-Aldrich, USA) (Pa-
lomino et al., 2002) were added to each well and plates were
reincubated for 48 h. The minimum inhibitory concentration
(MIC) was defined as the minimum concentration of crude
extract that prevented the color shift from resazurin (blue)
to resorufin (pink). Experiments were performed in triplicate.

Determination of the fatty acid profile

The fatty acid profile was determined as fatty acid
methyl esters (FAMEs), which were prepared adding to 10 mg
of the CeHex, 200 uL of benzene and 200 pL of the derivati-
zing reagent Meth-Prep Il (GraceTM AlltechTM). This reagent
is @ 0.2 N methanolic solution of (m-trifluoromethylphenyl)
trimethylammonium hydroxide. The transesterification re-
action was carried out at room temperature for 30 minutes
to obtain the FAMEs mixture. 1 pL of the FAMEs mixture was
injected to the gas chromatograph (Agilent 6890) equipped
with a flame ionization detector (FID), and the AT-FAME
column (30 m x 0.25 mm). The analytical conditions were:
injection 1 mL, injector temperature 250 °C, detector tempe-
rature 250 °C. The temperature gradient in the column oven
starts at 180 °C for 15 min, followed by 10 °C/ min increments
up to 230 °C. The FAME standards retention times were used
to identify the chromatographic peaks of the samples. Fatty
acid content was calculated, based on the normalized peak
area of detected FAMEs.

Statistical analysis

Antibacterial results were expressed as mean * stan-
dard deviation of three independent experiments. Statistical
analysis performed was one-way analysis of variance (Tukey)
and the graphs of bacterial growth kinetics were made with
GraphPad Prism © Version 5.01 software.

RESULTS AND DISCUSSION
Antibacterial activity

CeHex was the most potent extract, active against
all Gram-positive and Gram-negative bacteria tested with a
MIC, = 400 ug mL"; subsequently, CeAce was active against
E. faecalis, E. coli and K. pneumoniae (MIC, =100, 400 and 400
pg mL7, respectively). While CeMe resulted inactive. It is clear
that the shrimp cephalothorax extracts were the most po-
tent antibacterial samples tested. Non-polar or low polarity
compounds may be the main responsible of the antibacterial
activity described in CeHex. Despite antibacterials are collec-
tively classified as large and polar compounds with relatively
low lipophilicity (Mugumbate et al., 2015), in this research
increasing polarity of solvents diminished the antibacterial
activity. Solvent polarity is usually the most influential fac-
tor on the yield of the extraction (Bayona et al., 2018), has
a great impact on selectivity, and influence directly on the
solutes extracted, related to the chemical structure of the
compounds (Lefebvre et al., 2020). Recent research described
that the shrimp oil extracted from cephalotorax (with a 1:1
hexane/isopropanol mixture) possesses an important amou-
nt of cholesterol (89.1 + 0.6 mg/g) (Raju et al., 2021), then it is
possible that cholesterol is also present and abundant in the
acetonic and methanolic extracts, affecting the antibacterial
activity.

All exoskeleton extracts were inactive except for ExMe
(MIC, = 50 ug/mL"), active against E. faecalis, which was the
most susceptible bacteria to shrimp extracts, followed by E.
coli and K. pneumoniae (Figure 1, Table 1).

Regarding L. vannamei waste, various studies have
reported the inhibitory and bactericidal activity of chitosan
prepared from shell waste against Gram-negative bacteria
and Gram-positive bacteria (Vilar et al., 2016); moreover, its
antibacterial activity against Xanthomonas sp. isolated from
leaves affected with citrus canker was proven (Mohanasrini-
vasan etal.,, 2014).

A very interesting review about the utilization of
seafood processing by-products was published describing
peptides, oligosaccharides, fatty acids, enzymes, oils, and
biopolymers isolated from fishes, crustacean shells, and
shellfish, with many biological activities as antibacterial,
antiviral, and anticancer (Senevirathne and Kim, 2012).

Moreover, marine sponges, produces interesting
antibacterial compounds, in example: Arenosclera brasiliensis
produces alkaloids active against resistant S. aureus and P,
aeruginosa (Torres et al., 2002); Cribrochalina sp. produces
alkaloids (cribrostatin 3) active against Neisseria gonorrheae
(Pettit et al., 2000), just to mention a few (Laport et al., 2009).

Volumen XXIV, Numero 2
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Figure 1. Antibacterial activity of shrimp cephalothorax hexanic extract, CeHex, evaluated at 50-400 ug mL" (e, 50 ug mL"; m, 100 pg mL", A, 200 pg mL";
,400 ug mL"; ¢, gentamicin 12 pg mL?; o, bacteria). All values represent mean of triplicate determinations + SD. Significant differences (p < 0.05) from

bacterial growth control are marked with an asterisk.
Figura 1. Actividad antibacteriana del extracto hexanico del cefalotérax de camaroén, CeHex, evaluada a 50-400 pg mL" (e, 50 ug mL"; m, 100 ug mL", A,

,400 pg mL'; ¢, gentamicina 12 ug mL"; o, bacteria). Todos los valores representan el promedio de un triplicado + Desviacion Estandar. Dife-

rencias significativas (p < 0.05) respecto al control de crecimiento bacteriano son marcados con un asterisco.

Table 1. Growth-inhibitory activity of shrimp exoskeleton, muscle, and head extracts against different Gram-positive and Gram-negative bacteria.
Tabla 1. Actividad inhibidora del crecimiento de bacterias Gram-positivas y Gram-negativas por extractos de exoesqueleto y cefalotérax de camarén.

Crude shrimp extract®

Strains ExHex ExMe ExAc CeHex CeAce CeMe
MIC,, MIC,, MIC, MIC, MIC, MIC, MIC, MIC,, MIC, MIC, MIC, MIC
Enterococcus faecalis >400  >400 50 >400 >400 >400 400 >400 100 >400 >400 >400
ggz:;;;os"t""e Staphylococcus aureus >400 >400 >400 >400 >400 >400 400 >400 >400 >400 >400 >400
Staphylococcus epidermidis >400 >400 >400 >400 >400 >400 400 >400 >400 >400 >400 >400
Escherichia coli >400 >400 >400 >400 >400 >400 400 >400 400 >400 >400 >400
Gram-negative  Klebsiella pneumoniae >400 >400 >400 >400 >400 >400 400 >400 400 >400 >400 >400
bacteria Pseudomonas aeruginosa >400 >400 >400 >400 >400 >400 400 >400 >400 >400 >400 >400
Salmonella typhimurium >400 >400 >400 >400 >400 >400 400 >400 >400 >400 >400 >400

2Concentration in pg mL"

ExHex: Exoskeleton hexanic extract; ExMe: Exoskeleton methanolic extract; ExAc: Exoskeleton acqueous extract; CeHex: cephalothorax hexanic extract;
CeAce: cephalothorax acetonic extract; CeMe: cephalothorax methanolic extract.

Antimycobacterial activity

M. bovis BCG was used as an alternative to Mycobac-
terium tuberculosis H37Rv as it owns similar profiles of anti-
biotic susceptibility and offers a safer option for screening
anti-tubercular compounds in a high-throughput format
(Taneja and Tyagi, 2007; Altaf et al., 2010).

CeHex was the most active extract with a MIC, ; of
250 ug mL?, followed by CeAce with a MIC,  of 500 pg mL™".
The rest of the extracts (CeMe; ExHex, ExMe, and ExAc) were
inactive against M. bovis BCG (Figure 2).

These results are in accordance to previous reports
where non-polar extracts are recommended to find anti-
mycobacterial compounds (Coronado-Aceves et al., 2016).

Volumen XXIV, Numero 2

Previous studies have considered that an extract is
active against mycobacteria if MIC is <250 ug mL" (as exerted
by CeHex); however, it is also relevant to consider toxicologi-
cal studies (Coronado-Aceves et al., 2016; Jurno et al., 2019).

Chitosan obtained by deacetylation of chitin extrac-
ted from shrimp shell wastes has been used for the encap-
sulation of panchovillin, isolated from Erythrina schliebenii,
and its antimycobacterial activity was demonstrated over
Mycobacterium indicus pranii using Galleria mellonella larvae
as an in vivo infection model (Rwegasila et al., 2016).

Another study investigated two edible marine algae, Ulva
lactuca and Ulva intestinalis, finding that both extracts inhibit the
mycobacterial biofilm development (Mukherjee et al., 2021).
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Figure 2. Antimycobacterial activity of shrimp extracts. CeHex: shrimp
cephalothorax hexanic extract, MIC, =250 pug mL"; CeAce: shrimp cepha-
lothorax acetonic extract, MIC, =500 pg mL"; Inactive’ represents CeMe,
ExHex, ExMe, and ExAc; BCG: M. bovis BCG.

Figura 2. Actividad antimicobacteriana de extractos de camarén. CeHex:
extracto hexanico del cefalotérax de camaroén, MIC, =250 ug mL"; CeAce:
extracto aceténico del cefalotérax de camaron, MIC, =500 pg mL"; ‘Inacti-
ve'representa a CeMe; ExHex, ExMe, y ExAc; BCG: M. bovis BCG.

Finally, remarkable reviews have been published
describing more than 250 antimycobacterial metabolites
from marine natural products (Daletos et al., 2016; Wang et
al., 2018).

Determination of the fatty acid profile

Some investigations have been carried out to elucida-
te the content of primary and secondary metabolites present
in shrimp, as well as its biological activity of extracts of di-
fferent polarity and/or fractions of the muscle, exoskeleton,
head, and tail (NUnez-Gastélum et al., 2011; Lépez-Saiz et al.,
2014).

Shrimp muscle is reported to have a high content
of high-quality protein and a low proportion of fatty acids
(Lopez-Saiz et al., 2016; AlFaris et al., 2021) and consequently,
itis the part of the shrimp with the highest commercial value.
The exoskeleton, head, and tail are often discarded or trans-
formed into feed for aquaculture or supplemented as feed for
animals (Nwanna et al., 2004). Various bioactive compounds
have been described from all parts of the shrimp (Mandeville
etal., 1992; Heu et al., 2003; Sachindra et al., 2006; Lépez-Saiz
et al., 2014; Bharathi et al., 2019), which is why the waste
generated from this crustacean has attracted attention in
recent years. It has been possible to separate chitin, proteins,

and lipids from shrimp waste (NUnez-Gastélum et al., 2011)
and it has been reported that pigments such as astaxanthins
and fatty acids are found within the lipid fraction (Armenta
etal., 2002; Kandra et al., 2012; Lopez-Cervantes et al., 2010).

The presence of polyunsaturated fatty acids has been
described in shrimp oil obtained from cephalothorax, mainly
EPA (eicosapentaenoic acid) and DHA (docosahexaenoic
acid) (Nunez-Gastélum et al., 2011; Takeungwongtrakul et al.,
2012; Gulzar and Benjakul, 2018). These fatty acids belong to
the group of ®-3 and therefore, they are widely valued for
their nutraceutical and medicinal applications.

Oleic acid has been detected within the most abun-
dant fatty acids extracted from shrimp cephalothorax (Take-
ungwongtrakul et al., 2012).

In order to know a more complete profile of fatty acids
present in CeHex, derivatization was carried out to form the
methyl esters of the fatty acids and they were analyzed by
gas chromatography (GC) (Figure 3). Fatty acid methyl esters
were identified with the use of standards.
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Figure 3. Chromatogram of fatty acid methyl esters of CeHex.
Figura 3. Cromatograma de ésteres metilicos de acidos grasos de CeHex.

Table 2 shows the retention times of the detected
peaks, the area percentage, and the methyl ester to which
it corresponds according to its retention time. The fatty acid
methyl esters that were identified in the highest proportion
are oleate, linoleate, and palmitate (Figure 4). Other fatty acid
methyl esters that were identified in lower proportions are
stearate, palmitoleate, linolenate, and behenate (Figure 4). In
another investigation where shrimp head oil was analyzed by
gas chromatography, 14 fatty acid methyl esters were identi-
fied, of which it is confirmed that the main fatty acids are oleic,
in a similar proportion to linoleic, followed by palmitoleic.

Table 2. Identification of fatty acid methyl esters.
Tabla 2. Identificacidén de ésteres metilicos de dcidos grasos.

# peak Methyl ester Fatty acid 3:::?:?:) % Area
3 Mehyl palmitate C16:0 4.691 25.764
4 Methyl palmitoleate ~ C16:1n7 5.098 2.866
6 Methyl stearate C18:0 8.772 8.338
7 Methyl oleate C18:1n9 9.357 29.294
9 Methyl linoleate C18:2n6 10.875 27.896
11 Methyl linolenate C18:3n3 13.427 1.806
23 Methyl behenate C22:0 20311 4.036
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Figure 4. Structures of fatty acid methyl esters identified by GC.
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Figura 4. Estructuras de los ésteres metilicos de acidos grasos identificados mediante GC.

Similarly, the methyl esters of fatty acids C16: 1n7, C18: 0,
and C18: 3n3 were identified in lower proportions (NUnez-
Gastélum et al., 2011).

DHA, EPA, among other fatty acids could not be iden-
tified by gas chromatography due to the lack of standards.
Additionally, other studies of shrimp by-products show that
the highest proportion of fatty acids are unsaturated (Heu et
al., 2003; Nunez-Gastélum et al., 2011; Takeungwongtrakul et
al., 2012; Gulzar and Benjakul, 2018).

Regarding the antibacterial activity of the FFA found
in CeHex, their main target is the cell membrane, producing
disruption of the electron transport chain (ETC) and oxidative
phosphorylation, interfering with cellular energy production,
inhibition of fatty acid biosynthesis enzyme activity, impair
active nutrient uptake, and induces autolysis and leakage of
cell metabolites by pore formation (Desbois and Smith, 2010;
Yoon etal., 2018).

Oleic acid treatment in S. aureus increases membrane
permeability and fluidity, leading to cell death (Chamberlain
et al, 1991); while, a linolenic acid treatment induces the re-
lease of intracelular content. Morerover, linoleic acid induces
the disruption of the ETC in S. aureus (Greenway and Dyke,
1979). Also, oleic acid or linoleic acid, produce lysis of Strepto-
coccus faecalis (Carson and Daneo-Moore, 1980).

Finally, regarding to the anti-M. bovis BCG activity
of CeHex, MIC values of linolenic acid (a- and y- form) and
conjugated linoleic acid (CLA) against the viability of M. tu-
berculosis were determined as 75 ug mL" and 100 ug mL",
respectively (Choi, 2016). Palmitic, linoleic and oleic acid have
MICs of 25-50, 50-100, and 100 pg mL"' against M. tubercu-
losis H37Rv (Sandoval-Montemayor et al., 2012). Increased
levels of myristic, palmitic, oleic, and linoleic fatty acids in
sera of guinea pigs induced tuberculocidal effect toward M.
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bovis BCG (Kochan and Berendt, 1974); long-chain fatty acids
(oleic, linoleic, myristic, lauric, and palmitic) were reported to
be mycobactericidal; while unsaturated fatty acids showed
strong bactericidal activity in low concentrations (Kondo and
Kanai, 1972; Kanetsuna, 1985).

CONCLUSIONS

Shrimp cephalothorax was the most promising by-
product tested with antibacterial and antimycobacterial po-
tential. Hexanic (non-polar) extract of shrimp cephalothorax
resulted the most active against Gram-positive, Gram-negati-
ve bacteria, and M. bovis BCG. GC analysis of CeHex demons-
trated the presence of three main, and four minoritarian,
fatty acids. The strong antibacterial activity of CeHex and the
identification of its main chemical constituents justify further
studies on its biomedical and nutraceutical applications of
this marine by-product. To the best of our knowledge, this is
the first report of the antibacterial properties and chemical
characterizaction of CeHex.
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