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Abstract

This reflection paper addresses the importance of the interaction between voice
perception and voice production, emphasizing the processes of auditory-vocal in-
tegration that are not yet widely reported in the context of voice clinicians. Given
the above, this article seeks to 1) highlight the important link between voice pro-
duction and voice perception and 2) consider whether this relationship might be
exploited clinically for diagnostic purposes and therapeutic benefit. Existing theories
on speech production and its interaction with auditory perception provide context for
discussing why the evaluation of auditory-vocal processes could help identify associ-
ated origins of dysphonia and inform the clinician around appropriate management
strategies. Incorporating auditory-vocal integration assessment through sensorimotor
adaptation paradigm testing could prove to be an important addition to voice assess-
ment protocols at the clinical level. Further, if future studies can specify the means
to manipulate and enhance a person’s auditory-vocal integration, the efficiency of
voice therapy could be increased, leading to improved quality of life for people with
voice disorders.

Keywords

Voice disorders; dysphonia, auditory feedback; auditory-vocal impairment; motor
control; voice assessment; voice therapy; DIVA model; altered feedback; sensorimo-
tor processing; SimpleDIVA model.

Resumen
Este articulo de reflexion aborda la importancia de la interaccion entre la percepcion
y la produccién de la voz, haciendo hincapié en los procesos de integracion auditi-
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vo-vocal, los cuales atin no han sido muy divulgados en el contexto de los clinicos de
voz. Dado lo anterior, este articulo busca: 1) destacar la importante relacion entre la
produccion y la percepcion de la voz y 2) considerar si esta relacion pudiese explo-
tarse clinicamente con fines diagnosticos y terapéuticos. Las teorias existentes sobre
la produccion de la voz y su interaccion con la percepciéon auditiva proporcionan el
contexto para discutir por qué la evaluacion de los procesos auditivo-vocales podria
ayudar a identificar los origenes asociados a cierto tipo de disfonias e informar al cli-
nico sobre las estrategias de abordaje adecuadas. La incorporacion de la evaluacion
de la integracion auditivo-vocal a través de la prueba del paradigma de adaptacion
sensoriomotora podria ser una importante adiciéon a los protocolos de evaluacion de
la voz a nivel clinico. Ademas, si los estudios futuros pueden especificar los medios
para manipular y mejorar la integracién auditivo-vocal de una persona, la eficacia
de la terapia de la voz podria aumentar, lo que llevaria a mejorar la calidad de vida
de las personas con trastornos de la voz.

Palabras clave

Trastornos de la voz; disfonia, retroalimentacion auditiva; alteracion auditivo-vocal,
control motor; evaluacion de la voz; terapia de la voz; modelo DIVA; retroalimenta-
ci6n alterada; procesamiento sensoriomotor; modelo Simple DIVA.

Introduction

Human communication is a complex process that can be considered from various
perspectives. It depends on several factors, one of which is the interaction between
speech perception and speech production. The perceptual-motor relationship is in-
extricably integrated not only in speech tasks but also in perception, auditory system,
cognition, and language, among others [1-3]. One of the critical aspects of motor
speech production is phonation, which plays an essential role in the listener’s speech
perception and auditory self-voice feedback received as an individual speaks [4].

From the listeners’ perspective, voiced sound carries selective spectral modification
comprised from articulatory gestures of the vocal tract, resulting in a signal contain-
ing harmonic energy in a wide range of frequencies, covering at least the vocal tract’s
first acoustic resonances [5]. Furthermore, vowel formant frequencies and transitions
(change in formant frequency of a vowel immediately before or after a consonant)
can affect the interpretation of vowels and the adjacent consonant, generating the
perception of a word [6-11].

Regarding the speaker, auditory self-voice feedback plays a unique role. Once
vocalization is initiated, auditory feedback monitors possible acoustic changes that
may occur during speech, allowing control over the speaker’s vocal and articulatory
output [12,13]. The above are examples of the inherent interaction between speech
production and speech perception in both speaker and listener. Nonetheless, this phe-
nomenon of interaction between auditory feedback and voice has not yet been incor-
porated into the routine clinical evaluation of voice problems.

In general terms, a comprehensive voice assessment is based on information from
numerous sources, including acoustics, acrodynamics, endoscopy of the larynx, clini-
cal judgment of vocal quality, and the patient’s self-perception of their voice in terms
of its quality and impact on their life [14]. Just in recent years, the important role of
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auditory feedback in voice production has begun to be described for both voice assessment
and voice therapy; however, some aspects related to auditory-vocal integration are still not
widely known by voice clinicians. Because of the above, this reflection article has two pur-
poses: 1) to highlight the important link between voice production and voice perception and
2) to consider whether this relationship might be exploited clinically for diagnostic purposes
and therapeutic benefit. Existing theories on speech production and its interaction with audi-
tory perception provide context for discussing why the evaluation of auditory-vocal processes
could help identify associated origins of dysphonia and inform the clinician around appropri-
ate management strategies.

Speech Perception and Production

Voicing is the primary outcome of the process of speech production. Spoken utterances are
then perceived by both the listener and the speaker. The role of auditory input on speech
and voice production can be considered from at least two perspectives. First, it is recognized
that auditory signals external to the speaker impact how a person produces their voice. The
Lombard effect is an example of an external auditory signal that can cause individuals to
increase their loudness involuntarily [15]. Also, the Lombard effect causes acoustic and pho-
netic modifications, including an increase in the fundamental frequency (fo), a change in
the first (/) and second formants (F5), and an increase in vowel duration [16-18]. Research
involving people with Parkinson’s disease (PD) has shown that the Lombard effect could even
positively affect voice therapy. By altering the subjects’ auditory feedback, the person with PD
increased their f;, voice intensity, and stability [19]. A second type of auditory input occurs
when a speaker perceives their own voice in near-real-time (self-voice feedback). It is this type
of feedback that we are most closely considering within this reflection.

Dating back several decades, researchers have conducted auditory-feedback perturbation
studies, shedding light on the role of auditory feedback on voice control. In general, auditory
perturbation studies involve altering some aspect of the acoustic signal (e.g., vowel formant)
that a person is producing and presenting this in near real-time to the same speaker to see if
or how they adjust the speech production [20]. As an example, research has verified that when
the f, of one’s own voice is modified and presented to the individual during or before vocal-
ization, a compensatory response engages, in which the person adjusts the intended target
fo to match the f, —adjusted stimulus, evidencing that f; responds dynamically to auditory
self-voice feedback [21].

Classical models of speech and language production incorporate perception and produc-
tion as components in their structural features, such as the Broca-Wernicke-Lichtheim model
[22]. In recent decades, scientific evidence, based on neuroimaging studies, has been collect-
ed. This evidence shows a cortical and subcortical connection related to the self-perception of
speech, processing, and language production [23]. New neurocomputational models incorpo-
rate interactive networks, or streams, in their structure, allowing for a better understanding of
the interaction between perception and speech production and relating comprehension and
production processes to ventral and dorsal regions of the brain [24.,25].

We can mention models that attempt to explain this phenomenon, to relate some of their
components to voice control and production: the Directions Into Velocities of Articulators
(DIVA), the State Feedback Controller (SFC), and recently the Simple DIVA models [24,26,27].
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The DIVA and SFC models are neurocomputational models to describe the speech pro-
duction process [24]. These models emphasize the role of auditory and sensorimotor feed-
back in planning speech motor responses. In addition, these incorporate anatomical labels
of different brain regions at each stage, or map, which are connected by synaptic projection
[24,28,29]. Specifically, the DIVA and SFC models’ systems both include auditory feedback
that allows detection of speech errors, so that corrections can be attempted and a desired
speech motor response is generated [29,30]. The model encodes movement velocities for
the lips, tongue, jaw, and larynx [24,28,29]. The difference 1s that DIVA relies primarily on
feedforward controls, whereas SCI integrates internal predictions through efference copies,
allowing for an increased gain during vocalization [26,31].

We focus on the recent proposal of Kearney and colleagues who described a simplified ver-
sion of the DIVA model, the SimpleDIVA, for being specific in voice self-feedback [27]. This
model is a three-parameter mathematical model that quantifies the associated three subsys-
tems involved in speech control: auditory feedback control, somatosensory feedback control,
and feedforward control mechanisms to sensorimotor adaptation. In this model, the feedfor-
ward controller consists of stored motor sequences updated based on sensory errors. Detec-
tion of sensory errors occurs from an auditory feedback control component in the model that
essentially compares the planned motor speech output from the feedforward controller with
the speaker’s auditory signal. Similarly, a somatosensory feedback control component is part
of the model engaged when somatosensory feedback from articulators detects errors com-
pared to the planned motor output. In this manner, sensory feedback is used to make near-
real-time adjustments to output via error detection. SimpleDIVA offers a new understanding
of speech and voice control, through a phenomenological explanation for the behavioral
responses to the adaptation paradigm challenging to interpret from behavioral data alone. As
the authors state, the SimpleDIVA can better understand sensorimotor learning and control
differences between normal and disordered groups of speakers, which could ultimately iden-
tify new or more refined interventions for those with communication disorders [27].

Contemporary speech motor control models include components within their structure
that help explain different types of auditory-vocal disorders and the relationship to auditory
integration, evidencing underlying mechanisms of sensorimotor-based communication disor-
ders. A valuable means of studying these issues involves a sensorimotor adaptation paradigm
[27]. In this paradigm, a perturbation of the speaker’s auditory feedback is created through
the modification in real-time of formants or f, of the speaker during the repeated production
of a series of words. Generally, auditory feedback is altered in three different ways during the
repetition of utterances after baseline recordings, without auditory feedback manipulation:
“ramp” in which a parameter is shifted incrementally over time; “full-shift” or “hold”, where
a parameter is abruptly altered and held for a time; and “post-shift” or “after-effect”, where
the alteration is removed [28,32,33].

Evidence of Auditory-vocal Impairment and Behavioral Voice
Disorders

Different classification systems have been proposed for voice disorders. Still, one common
designation is the division into functional and organic disorders, with subcategories for func-
tional voice disorders, often referred to as hypofunctional and hyperfunctional disorders. The
hyperfunctional category relates to laryngeal muscle strain and ineffective or inadequate pho-
natory behavior [34]. Hyperfunctional voice disorders are common and have been associated
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with other diagnoses, such as phonoatruamatic and benign lesions of the free edge of the
vocal folds [35]. While studies identify a wide range of clinical symptoms and biomechanical
and laryngeal configurations, there is an incomplete understanding of the cause(s) of hyper-
functional voice disorders, which have been linked to poor vocal hygiene, aberrant or excessive
use of the voice, and psychological and personality factors [32]. Stepp and colleagues, who
evaluated auditory-vocal integration impairment in people with diagnosed hyperfunctional
voice disorders, hypothesized that such impairment may contribute to developing and main-
taining these behavioral voice disorders [32,36]. This hypothesis arose from observing the
auditory-vocal integration impairment in subjects with hearing loss. Individuals with hearing
loss have some voice characteristics similar to those with hyperfunctional dysphonias such as
high glottal resistance, increased phonatory effort, and voice quality changes like strain and
breathiness [32,37].

In normal conditions of auditory-vocal integration, by exposing a person to an increase in
their own f, (feedback), the expected adaptative response is a decrease in the f, of the subject’s
own voice, that 1s, subjects shift their pitch in the opposite direction to the auditory stimulus
as a compensatory response [33]. The brain seeks to predict and recapitulate representations
that best adapt to external stimuli and sources, creating advanced predictive models with
sensory information to minimize error relative to the intended production [38]. Adaptive re-
sponses are influenced by interactions between the feedforward and feedback control systems
and are seen when feedback is consistently perturbed [30,39].

Utilizing the sensorimotor adaptation paradigm, Stepp found that the subjects with hyper-
functional voice disorders did not show a typical adaptative response, i.c., when f, increased,
speakers responded by further increasing their f. The authors interpreted these results as ev-
idence that some people with voice disorder have an auditory-vocal integration impairment,
resulting from a deficit between feedforward voice control and auditory feedback. Thus, the
presence of auditory-vocal disorder could explain the occurrence and persistence over time
of hyperfunctional vocal behaviors [32], an aspect that the SimpleDIVA model could also
explain, regarding a deficit in the correction and adaptation of ongoing vocal production due
to errors in auditory feedback [27].

Stepp’s study contributes to understanding how, for example, an initial change in a per-
son’s voice, after phonotraumatic behaviors or an infection of the upper airway, may result
in prolonged changes in voice production that can become chronic. An altered voice quality
received as feedback from an individuals’ own voice, continually altering the feedforward
responses of the system, could also help explain why some interventions are not successful
for specific individuals. A recent article focused on people with benign vocal fold lesions also
implicated auditory-vocal feedback impairments as a factor in developing that specific voice
disorder [40]. Lee’s study incorporated a group of participants with nodules, polyps, and
cysts of the vocal folds and non-dysphonic subjects. The participants were asked to produce
a sustained vowel under different auditory feedback conditions in real-time. Unlike the classic
sensory adaptation experiment, the auditory feedback modifications consisted of integrating
a background noise and enhanced feedback of a self-produced voice. Lee et al. found that
low-frequency modulations (below 3 Hz) of vocal f; of a sustained vowel were significantly
high for subjects with vocal fold nodules over the other groups. The authors interpreted the
results as supportive of the possibility that vocal fold nodules and their vocal behaviors may
be associated with abnormal auditory-vocal feedback integration [40].
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Improving Auditory Feedback as a Therapeutic Approach.
Emerging literature regarding altered sensorimotor integration relating to voice production
suggests an intriguing possibility: targeting auditory-vocal feedback control processes might
be a helpful component of therapeutic interventions, which means voice production might
be improved, in part, through manipulation of sensory mechanisms or auditory-feedback
[40,41]. However, as auditory-vocal integration is just beginning to be studied as a possible
cause and prevalence of some types of dysphonia, there are still many research questions to
be addressed regarding the evaluation and treatment of voice impairment.

Some authors have already started exploring the impact of devices and other interventions
to alter or improve auditory feedback on the voice. A recently published study addressed
whether auditory feedback control of vocal pitch production in subjects with PD could bene-
fit from Lee Silverman voice treatment (LSVT® LOUD) [42]. LSVT LOUD is an intensive
voice treatment program that aims to increase voice intensity in people with hypokinetic dys-
arthria through a sensorimotor recalibration of increased vocal loudness [43,44]. Li’s study
demonstrated the positive effects of LSVT LOUD on auditory-vocal integration in people
with PD [42]. After LSV'T LOUD, subjects showed compensatory responses to auditory feed-
back similar to the performance of healthy subjects. Additionally, significantly greater EEG
cortical responses (P2) were observed in response to pitch perturbations after LSVT LOUD,
reflecting the intervention’s possible top-down modulatory effect on auditory-motor integra-
tion for voice regulation in the PD subjects [42].

In addition, it is important to mention that it has been shown that the learning of speech
motor sequences is not only based in areas of the brain classically related to learning, but also
in those associated with auditory and somatosensory feedback-based speech motor learning
and the network of brain regions that participate in both motor and sensory processes [45].
All the above leads us to wonder whether the intensive nature of some voice therapies with a
high number of vocal motor task repetitions and consistently used stimuli could conceivably
improve feedforward phonatory performance, which could also be explained by the DIVA
and SimpleDIVA model.

Other tools that could favor therapeutic use of auditory feedback include, for example, the
Escera-assessed device called Forbrain® (Sound For Life Ltd/Soundev, Luxemburg, model
UN38.3) as an Auditory Altered Feedback (AAF) device by evaluating changes in voice qual-
ity-related acoustic measures such as smoothed cepstral peak prominence (CPPS) and long-
term average spectrum (LTAS) [41]. The device allows the users to have real-time improved
auditory feedback through bone conduction and amplification of the high or low speech
frequencies. The results indicated that the Forbrain® altered the voice signal in the manner
described by the manufacturer. However, the AAF feedback had some paradoxical results.
The values of the trendline of the LTAS were consistent with improved voice quality. Still, the
values of the CPPS, a measure associated with voice quality, decreased, which is associated
with worsened quality. The author states that this effect may be due to a typical response to
AAF devices, where motor feedforward is altered as a consequence of motor adaptation to
improve auditory feedback; conversely, motor output is more accurately adjusted when there
is altered feedback. These results can be taken as a research opportunity to test this kind of
device by setting different types of auditory feedback perturbation. If beneficial, these tools
could be of great utility for voice rehabilitation processes and research due to their ease of
implementation and design, which allows performing ecological studies.
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Another interesting fact related to tools that modify auditory feedback is an additional
result of Lee’s study mentioned above. Bone conduction feedback of the self-produced voice
significantly reduced the low-frequency modulations of vocal f, of a sustained vowel. From
this result, the authors raise the reasonability of such an auditory feedback aid being incor-
porated as a therapeutic modality for vocal folds nodules [40]. Following the same dynamic,
these studies in subjects with voice disorders and auditory-vocal impairment could be an
excellent opportunity to assess this type of device’s usefulness in a population that would
probably benefit the most.

Final Considerations

The production of voice and speech is a complex process that requires interaction with au-
ditory perception. Sensorimotor adaptation provides another avenue to consider in under-
standing and treating individuals with voice disorders: assessing and manipulating a person’s
capabilities relative to vocal motor control. Comprehending key and current aspects linked
to speech perception and its disorders opens the door to a broader view on understanding
the process of human voice production. It is beneficial for a voice researcher and clinician to
advance knowledge of the neurobiological mechanisms that support speech and voice per-
ception and how production is shaped by sensory experience (i.e., auditory and somatosen-
sory). This understanding can lead to novel ways to assess and treat a person who has a voice
disorder. Therefore, understanding voice production requires an integrated approach [5],
where physiology, acoustics, biomechanics, and neurological processes must be considered
holistically and not in isolation. Part of an integrated approach involves determining how
voice self-perception and production are related.

Emerging work establishing that auditory-vocal impairment is often present in those with
functional dysphonia is an important step that may eventually influence the diagnostic and
therapeutic voice practice [32,40]. An impairment in auditory perception could impact feed-
forward processes of voicing and subsequently impact the recovery process after acute dys-
phonia. Incorporating auditory-vocal integration assessment through sensorimotor adapta-
tion paradigm testing could eventually prove to be an important addition to voice evaluation
protocols. Further, suppose areas of improvement within a person’s auditory-vocal integra-
tion can be identified. In that case, voice therapy efficacy and efficiency could be increased,
leading to improved quality of life and possibly reduced health-related costs. Moreover, DIVA
models suggest that motor output changes may become more long-term by persisting on the
integration of auditory feedback within voice therapy. One of the challenges for the future is
to take advantage of such information and consider how auditory and somatosensory feed-
back modifications in subjects with auditory-vocal impairments can be assessed and manipu-
lated. These models can provide important information about the complex and multifactorial
nature of the voice production process, which clearly is linked to a person’s auditory and
somatosensory voice perception.

There are still many challenges about the relationship between voice and auditory feed-
back. An alteration in the integration between auditory feedback and voice production ap-
pears to be a potentially important issue for some people who have a voice disorder. How-
ever, the best ways to identify and characterize how a person’s auditory-vocal integration is
impaired have not been developed to a point where application within a clinical setting can
be applied. Similarly, the best approaches to modify and improve a person’s auditory-vocal
integration capabilities remain to be developed.
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