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Speed of Pitch Change in People with 
Parkinson’s Disease: A Pilot Study
Velocidad de cambio de tono en personas con enfermedad de 
Parkinson: un estudio piloto
Supraja Anand1  
1 Department of  Communication Sciences and Disorders; University of  South Florida; Tampa; Florida; United States.

Abstract
Objective. To examine laryngeal maximum performance through a novel pitch dia-
dochokinetic (DDK) task in people with Parkinson’s disease (PD) and healthy controls.

Methods. This exploratory pilot study included a total of  eight people with PD 
(seven male and one female) and eight healthy controls. Participants were instruct-
ed to rapidly transition or alternate between a chosen comfortable low and high 
pitch and were instructed to complete the task as a pitch glide. An Auditory 
Sawtooth Waveform Inspired Pitch Estimator-Prime model was used to first ex-
tract the pitch contour and then a customized MATLAB algorithm was used to 
compute and derive measures of  pitch range and pitch slope.

Results. Pitch range and slope were reduced in some participants with PD. Effects 
of  age and disease duration were observed in people with PD: reductions in both 
pitch measures with increase in age and disease duration. 

Conclusions. A novel pitch DDK task may supplement the conventional laryngeal 
DDK task in the evaluation and treatment of  motor speech and voice disorders. In-
dividual variability analysis may provide specific diagnostic and therapeutic insights 
for people with PD. 

Keywords
Parkinson’s disease (PD); laryngeal system; maximum performance; diadochokinesis 
(DDK); pitch.

Resumen
Objetivo. Examinar el máximo rendimiento laríngeo a través de una novedosa ta-
rea diadococinética de tono (DDK, por sus siglas en inglés) en personas con enferme-
dad de Parkinson (EP) y controles sanos.

Métodos. Este estudio piloto exploratorio incluyó un total de ocho personas con EP 
(siete hombres y una mujer) y ocho controles sanos. Se instruyó a los participantes 
para que hicieran una transición rápida o alternaran entre un tono bajo y uno alto 
que les resultara cómodo y se les indicó que completaran la tarea como un desliza-
miento de tono. Se utilizó un modelo de Estimador de Tono Inspirado en la Forma 
de Onda de Diente de Sierra Auditiva-Prime para extraer primero el contorno del 
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tono y luego se utilizó un algoritmo MATLAB personalizado para calcular y derivar 
medidas de rango de tono y pendiente de tono.

Resultados. El rango y la pendiente de tono se redujeron en algunos partici-
pantes con EP. Se observaron efectos de la edad y la duración de la enfermedad 
en personas con EP: reducciones en ambas medidas de tono con el aumento de la 
edad y la duración de la enfermedad.

Conclusiones. Una nueva tarea de DDK de tono podría complementar la tarea 
DDK laríngea convencional en la evaluación y el tratamiento de trastornos motores 
del habla y de la voz. El análisis de la variabilidad individual podría proporcionar 
información específica de diagnóstico y terapéutica para personas con EP.

Palabras clave
Enfermedad de Parkinson (EP); sistema laríngeo; rendimiento máximo; diadococi-
nesis (DDK); tono.

Introduction
Parkinson’s disease (PD) is a chronic neurodegenerative disorder caused by the progres-
sive loss of  dopaminergic neurons primarily in the substantia nigra pars compacta, but 
also in other areas of  the brain [1,2]. From a clinical perspective, PD is manifested by 
cardinal motor impairments of  tremor, rigidity, akinesia or bradykinesia, and postural 
instability, as well as non-motor impairments of  mood, cognition, and autonomic and 
sensory systems [3]. Furthermore, approximately 90% of  patients with PD develop 
hypokinetic dysarthria during the course of  their illness [4-6]. Hypokinetic dysarthria is 
characterized by vocal (e.g., hypophonia, harsh/breathy voice), articulatory (e.g., im-
precise consonants), and prosodic (e.g., monopitch, reduced stress, and variations in 
speech rate) impairments. Among these, vocal impairments have been cited as one of  
the earliest, most frequent, and salient symptoms in people with PD [6-12]. In their 
seminal investigation, Logemann and colleagues revealed that 89% of  the total 200 
patients with PD experienced voice impairments followed by 45% with articulatory 
impairments through perceptual analyses of  speech. Rates of  co-occurrence for 
these impairments also showed a predominance with over 45% of  the patients re-
porting voice impairments solely. 

Researchers and clinicians often evaluate the degree of  these vocal impairments 
using sustained vowel phonations and connected speech tasks [e.g., 9,13-23]. Prior 
research has extensively relied on sustained vowel phonations for three primary 
reasons: (a) The production of  sustained vowels is a fairly easy and repeatable 
speech task, (b) acoustic measures of  voicing (e.g., jitter, shimmer, cepstral peak 
prominence) are readily available from several commercially available software 
(e.g., KayPENTAX, Montvale, NJ), and (c) analysis of  connected speech is more 
complex due to confounding cognitive, articulatory, and prosodic variables. In ad-
dition to the conventional tasks, vocal impairments have also been examined us-
ing diadochokinetic (DDK) tasks that require patients to produce /Ɂ/ and/or /
hʌ/ at a rapid pace [24,25]. These studies in older (>60 years) and younger (<50 
years) disease onset PD patients have revealed lower repetition rates and regular-
ity compared to age-matched controls. Such maximum performance tasks assess 
the patient’s ability to alternate vocal fold abduction and adduction and have also 
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been used as a measure of  speech deterioration in other neuromotor diseases such as amy-
otrophic lateral sclerosis [26] and more recently to examine the effects of  aging (across the 
adult lifespan) in healthy normals [27]. 

Alternatively, laryngeal coordination can be assessed through a vocal pitch control task 
that assesses the patient’s ability to modify vocal fold tension by alternating between high and 
low pitch. However, only a few studies have examined such a task, and these have not been in 
disordered populations [28-30]. In their seminal investigation, Sundberg [29] measured the 
maximum speed of  pitch change. However, this study was conducted on trained professional 
voice users. Five male and four female singers were asked to alternate between two given 
pitches as rhythmically and as quickly as possible. Results were compared to five male and six 
female untrained participants who were given voice training for one week. Instructions were 
augmented with distinct hand movements or by clicks in earphone combined with flashes 
of  lamp. Fundamental frequency (f0) was measured using a low pass filter connected to a 
zero-crossing detector. Response time was measured as the time needed by the subject to pro-
duce 6/8th of  the pitch change. In singers, the response time was shorter, suggesting that they 
were able to perform pitch elevations more quickly due to their musical training experience. 
Additionally, rising time was longer than the falling time in untrained subjects whereas this 
difference was less pronounced in singers. These results were supported by physiological ex-
planations of  muscle memory being greater in singers and the properties of  the cricothyroid 
muscle (development/training). 

A majority of  the DDK studies in people with PD have investigated the limb-motor (e.g., fin-
ger tapping; [31,32]) and oral-motor function (e.g., /pʌ/, /pʌtʌkʌ/; [33-36]). However, there 
is a paucity of  literature in assessing the functional integrity and efficiency of  the laryngeal 
system through dynamic vocal range tasks, as evidenced through the limited literature cited 
above. Although tasks that target the laryngeal DDK are far less common, they have significant 
potential to reveal neuromuscular mechanisms (e.g., control and coordination) and impair-
ments (e.g., rigidity) affecting the laryngeal system. Therefore, the purpose of  this study was to 
explore laryngeal coordination in people with PD through a rapid/speeded pitch DDK task 
based on (a) the assumption that dysarthria in PD largely presents with vocal impairments, (b) 
the need for maximum performance task to assess the laryngeal tension control, and (c) that 
dynamic measures of  the laryngeal system will provide more insight into the temporal control 
of  movements rather than obtaining measures from a ‘steady state’ vowel production. 

Methods
This study was approved by the institutional review board at Michigan State University (IRB 
Nos. 12-967 and 13-443). Written informed consent was provided by all the participants be-
fore speech and voice recording.

Participants
Sixteen native speakers of  American English, including 8 people (7 M and 1 F) with a clinical 
diagnosis of  ‘idiopathic’ Parkinson disease (PD) and 8 controls (7 M and 1 F) were recruited for 
the current study. The mean±standard deviation ages of  the PD and control participants were 
62±10 (range = 50 to 74) and 56±5 (range = 52 to 64) years, respectively. Participants were recruited 
from different support groups around Lansing community and the Neuro-Ophthalmology clin-
ic at Michigan State University. The mean disease duration since the time of  diagnosis was 7±6 
(range = 1 to 19) years. All participants passed the hearing screening (air-conduction pure-tone 
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thresholds below 40 dB HL at 500 Hz, 1 kHz, 2 kHz, and 4 kHz in at least one ear). Further, 
they also passed the cognitive and depression screenings evaluated by the Mini-Mental State 
Examination [37] and Beck Depression Inventory [38], respectively. The cognitive screening 
ensured that all participants could follow the task instructions. Given the known relationship 
between severity of  depression and measures of  pitch (e.g., limited pitch range in people who 
are depressed), a depression screening was completed. MMSE and BDI scores were not avail-
able for the first three participants. Therefore, self-reports were obtained for cognition and 
depression for these three participants. For the remainder of  participants with PD, the mean 
MMSE score was 28.6±1.92 (range = 25.5 to 30) and mean BDI score was 7.6±3.29 (range 
= 4 to 12). To ensure that participants did not suffer from any other co-morbid voice impair-
ments, self-reports of  medical history were obtained. None of  the participants had any acute 
upper respiratory tract infections at the time of  voice recording. Participants were excluded if  
they had prior musical training. None of  the participants had prior speech/voice therapy. Most 
of  the participants were under levodopa-carbidopa medications and recordings were obtained 
during their “ON” state (mean time since last medication was 3 hours). Table 1 depicts demo-
graphic characteristics of  all participants.

Table 1. Demographic characteristics of participants with Parkinson’s disease (PD) and controls (HC).

Subject Number Group Age (years) Sex Years since diagnosis MMSE 
(≥25)

BDI 
(≤13)

Time since last 
medication (hours)

S01 PD 53 M 7 NA NA 3.5

S02 PD 50 M 6 NA NA 3.5

S03 PD 54 F 3 NA NA 3

S04 PD 66 M 3 28 6 2

S05 PD 58 M 19 25.5 10 0.5

S06 PD 71 M 1 29.5 4 4

S07 PD 74 M 7 30 12 3

S08 PD 72 M 11 30 6 1

S01 HC 52 M

S02 HC 51 M

S03 HC 52 F

S04 HC 64 M

S05 HC 59 M

S06 HC 56 M

S07 HC 60 M

S08 HC 57 M

Note. MMSE: Mini-Mental State Examination; BDI – Beck’s Depression Inventory.
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Experimental Procedure
Voice samples were recorded using a Shure Beta53 high-quality omnidirectional head-worn 
condenser microphone, digitized directly to a TASCAM DR-40 recorder with a 44.1 kHz 
sampling frequency and a 16-bit quantization rate. The microphone-to-mouth distance was 
approximately 5 cm at an angle of  about 45 degrees. All recordings were made in a sound 
booth. Participants were instructed by the author (S.A) to rapidly transition or alternate be-
tween a chosen comfortable low and high pitch (on the vowel /a/) and were instructed to 
complete the task as a pitch glide. Since the goal was not to analyze the absolute pitch match-
ing accuracy, participants could choose any pitch that elicited a healthy phonation without 
voice breaks/fatigue. Participants were provided with step-by-step instructions, demonstra-
tions, and visual feedback via PRAAT software [39] to ensure that the participants chose an 
adequate pitch glide range and performed the task as rapidly as they could for approximately 
5-10 seconds. Step 1 of  the instruction was to choose the lowest comfortable pitch and per-
form it in 2 trials. Step 2 was to choose the highest comfortable pitch and perform it in 2 trials. 
Step 3 was to perform a pitch glide between the selected pitches at a habitual rate for four to 
five cycles. Feedback was provided and participants were asked to repeat Step 3 for one more 
trial. Step 4 was to perform the pitch glide between the selected pitches at a fast rate for four 
to five cycles. Feedback was provided and participants were asked to repeat Step 4 for one 
more trial. No additional practice trials were completed by any of  the participants. Feedback 
was in the form of  demonstration by the author as well as the visual feedback from PRAAT 
software. The goal was to ensure smooth pitch glides without any breaks and with adequate 
voice quality and range. At least four cycles were secured for each experimental trial and a 
total of  three experimental trials were elicited from each participant. During the actual exper-
imental task, there was no visual feedback.

Computational Measures
A custom-designed algorithm was developed in MATLAB (version 2015b; MathWorks, 
Natick, MA) to measure quantitative metrics of  pitch range and slope (range/time). First, 
pitch contour was extracted using Auditory Sawtooth Waveform Inspired Pitch Estima-
tor-Prime algorithm (Aud-SWIPE’; [40,41]). Aud-SWIPE’ filters the audio signal in a similar 
way to the outer and middle ear by flattening the spectral envelope and using a perceptually 
motivated filterbank. The output from each channel of  the filterbank is half-wave rectified in 
a similar way to inner hair cell rectification. Then, rectified channel signals are converted to 
spectral magnitude, square root compressed, and summed across the channels which approx-
imates a specific loudness function. The Fast Fourier Transform (FFT) analysis frame size is 
about eight fundamental periods of  each pitch candidate value with 50% overlap between ad-
jacent frames. The pitch candidates are spaced between 80 and 400 Hz with 48 pitch candi-
dates per octave. The specific loudness function of  the pitch candidates is correlated with the 
specific loudness function of  a sawtooth waveform for all pitch candidates, and the one with 
the highest correlation (normalized between 0 and 1) is determined to be the pitch. Since the 
Aud-SWIPE’ algorithm uses a frequency scale that is biologically inspired (equivalent rectan-
gular bandwidth, ERB) unlike FFT based algorithms that use linearly spaced bins, it has been 
shown to be more robust than other algorithms in estimating pitch [42,43]. Furthermore, 
prior research has demonstrated that Aud-SWIPE’ provides robust estimates of  pitch even in 
severely dysphonic voices compared to conventional fundamental frequency (f0) tracking algo-
rithms due to its non-dependence on signal periodicity [44]. Aud-SWIPE’ algorithm exported 
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the instantaneous pitch values to an Excel sheet. Second, automated MATLAB plots allowed 
visual inspection of  the pitch contour and hand-correction of  any halving/doubling errors. 
The Aud-SWIPE’ algorithm was re-run with the corrected pitch values for more accurate 
instantaneous values. Pitch range was computed as the difference between the two self-chosen 
pitches and pitch slope was calculated as the ratio of  pitch glide range to the time durations. 
Rise cycle is indicated as “positive” and Fall cycle is indicated as “negative” for pitch range 
and pitch slope measures.

Results
Descriptive statistics for pitch range and slope measures are depicted in Figures 1 and 2, re-
spectively. Pitch range was marginally lower in people in PD compared to controls for both 
rise and fall cycles. There was no difference between the rise/positive and fall/negative cy-
cles for both speaker groups. Similar to the pitch range, pitch slope was marginally lower in 
people with PD for both the cycles. In contrast to the pitch range, pitch slopes were shorter 
in rise/positive cycle compared to fall/negative cycles in both the speaker groups. Due to 
the small sample size, medians and non-parametric tests were used for statistical analysis. A 
Mann-Whitney U test was used to examine for differences in pitch range and slope measures 
between the speaker groups. Results revealed that there were no significant differences be-
tween the two groups for both the pitch measures (p>0.05). Effect size calculated as r=z/√N, 
where z is the z value and N is the total sample size, was 0.21 (a small effect).

14

12

10

8

6

4

2

0

Positive Negative

M
ea

n±
 S

E

Pitch Range (ST)

PD

HC

Figure 1. Pitch range in semitones (ST; Mean±SE) for rise (positive) and fall (negative) 
cycles for people with PD and controls (HC).

https://doi.org/10.46634/riics.246


Revista de Investigación e Innovación en Ciencias de la Salud · Volume 5, Number 2, 2023 · https://doi.org/10.46634/riics.246
155

Pitch diadochokinesis
Anand

Given the heterogeneity of  symptoms in people with PD, individual participant data was 
also examined. To do it, each participant with PD was assessed with a healthy control par-
ticipant. Accordingly, Figures 3, 4, 5, 6, 7, 8, 9 and 10 depict potential individual differences 
across talkers with PD. For the first 5 participant comparisons, age-matching was ±1 or ±2 
years. Each figure represents the raw data with the 3 experimental trials (trial 1- blue, trial 2 - 
green, and trial 3 - red). A visual analysis of  the figures revealed marked lower pitch slopes in 
PD for half  of  the participants, namely S02 (Figure 4), S05 (Figure 7), S07 (Figure 9), and S08 
(Figure 10). However, it is important to note that for S07 and S08, the age difference between 
PD and HC was greater than 10 years. PD S03 and S04 demonstrate festination/hastening 
patterns (more number of  cycles within the 4 to 5 sec time duration) similar to those found in 
motor and oral DDK movements and speech. There seems to be no difference in the number 
of  pitch DDK cycles between PD and HC. Moreover, the data does not reveal any major 
fatigue effects for both populations across the three trials evidenced through smaller slope 
values across the three trials/colored lines in the figures. 

The absolute range and slope values for rise/positive and fall/negative cycles were aver-
aged to investigate the potential effects of  age and PD disease duration. As age increased, 
pitch range decreased in both people with PD (r = -0.58) and controls (r = -0.51). Similarly, pitch 
slope also decreased in people with PD (r = -0.73; p = 0.04) and controls (r = -0.32) with an 
increase in age. As disease duration increased in people with PD, both pitch range and slope 
measures decreased (r = -0.52 & -0.45, respectively).
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Figure 2. Pitch slope in semitones per second (ST/sec; Mean±SE) for rise (positive) and 
fall (negative) cycles for people with PD and controls (HC).
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Figure 3. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x 
axis). The left panel depicts data for a male PD subject 01 and the right panel depicts data for 
a male HC subject 01. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate 
individual DDK trials.

Figure 4. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x 
axis). The left panel depicts data for a male PD subject 02 and the right panel depicts data for 
a male HC subject 02. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate 
individual DDK trials.

Figure 5. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x axis). 
The left panel depicts data for a female PD subject 03 and the right panel depicts data for a 
female HC subject 03. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate 
individual DDK trials.
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Figure 6. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x axis). 
The left panel depicts data for a male PD subject 04 and the right panel depicts data for a male 
HC subject 04. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate individual 
DDK trials.

Figure 7. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x axis). 
The left panel depicts data for a male PD subject 05 and the right panel depicts data for a male 
HC subject 05. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate individual 
DDK trials.

Figure 8. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x axis). 
The left panel depicts data for a male PD subject 06 and the right panel depicts data for a male 
HC subject 06. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate individual 
DDK trials.
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Discussion
The use of  maximum performance tasks such as diadochokinetic (DDK) tasks, has been 
a common standard in the clinical assessment of  motor speech disorders [26,36]. There is a 
significant preference for using a higher-faster-further method to motor speech testing since 
these tasks frequently push the limits of  motor, respiratory, vocal tract, or laryngeal perfor-
mance [45]. A component of  normal voice production is the modification of  pitch. The current 
study examined a novel laryngeal maximum performance task in the form of  a speeded pitch 
DDK task, to explore the ability of  older adults with and without PD, to modify their vibrat-
ing vocal fold mass, flexibility of  the vertical laryngeal position, and vocal fold tension rather 
than vocal fold abduct/adduct mechanism. It is probable that reductions in the maximal per-
formance in PD patients are caused, at least in part, by physiological deficiencies. The main 
results are (a) pitch range and slope are slightly reduced in people with PD compared to con-
trols, (b) there is a significant age effect on pitch slope in people with PD, and (c) performance 
variability is observed across individual participants. 

P
itc

h 
S

lo
pe

, S
T/

se
c

Time, sec

400

200

0

-200

-400
0 2 4 6 8

400

200

0

-200

-400

Time, sec
0 1 2 3 4 5

P
itc

h 
S

lo
pe

, S
T/

se
c

PD S07 HC S07

P
itc

h 
S

lo
pe

, S
T/

se
c

Time, sec

400

200

0

-200

-400
0 1 2 3 4 5

400

200

0

-200

-400

Time, sec
0 1 2 3 4

P
itc

h 
S

lo
pe

, S
T/

se
c

PD S08 HC S08

Figure 9. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x axis). 
The left panel depicts data for a male PD subject 07 and the right panel depicts data for a male 
HC subject 07. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate individual 
DDK trials.

Figure 10. Pitch slope in semitones per second (ST/sec, y axis) as a function of time (sec, x 
axis). The left panel depicts data for a male PD subject 08 and the right panel depicts data for 
a male HC subject 08. Blue (trial 1), green (trial 2) and red (trial 3), markers and lines indicate 
individual DDK trials.
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In addition to serving as a useful marker of  disease progression, maximum performance 
tasks might identify speakers/talkers who have a “reduced reserve” (i.e., whose speech im-
pairment manifests only in certain situations/contexts that tax or increase the complexity of  
the vocal production mechanism) [45]. In this study, this effect was observed in two of  the PD 
patients. The significant age effect only in PD patients combined with the effects of  their dis-
ease duration may demonstrate the merits of  the pitch slope measure and the concept of  eval-
uating individual variability and measurement over time, as a marker of  disease progression. 
A future study with a larger age-matched sample size and balanced sex ratios is needed to 
confirm these results. Similar to the conventional oral and laryngeal DDK, a pitch DDK task 
is easy to administer within a few minutes for healthy older adults and all disordered popula-
tions. It also permits analysis of  well-controlled repetitions and computational analysis can be 
fully automated (intrinsically more reliable and reproducible), as demonstrated in this study. 

Albeit the statistical significance, the nature of  this task itself, (i.e., pitch glide) is a common 
component of  assessment and treatment of  several other voice disorders. Pitch range can be 
affected in people with hyperfunctional voice disorders, such as muscle tension dysphonia, or 
benign lesions, as vocal nodules, as well as people with neurological disorders. Indeed, atypical 
laryngeal DDK results for rate and stability have been reported in people with vocal tremor 
[46] and spasmodic dysphonia [46,47]. Pitch glides are also a part of  comprehensive physi-
ological voice therapy programs such as vocal function exercises [48], Lee Silverman Voice 
Treatment [49], as well as SPEAK OUT!® [50] that target improvement of  pitch range and 
prosody during conversational speech. A speeded maximum performance version, while more 
beneficial for assessment, can also be used in treatment to increase complexity over treatment 
sessions. Producing a vocal siren as in the pitch DDK task requires regulation of  multiple 
parameters, simultaneously including maintenance of  constant volume and voice quality and 
prior research [51] has shown that targeted voice training can decrease PD symptoms.

In addition to the larger sample size, future studies should (a) focus on instructions and 
training (i.e.., effects of  practice and number of  trials for optimum performance), (b) develop 
a large normative, (c) investigate validity and reliability of  the pitch DDK task, (d) analyze 
of  speed vs. range trade-offs, (e) develop quantitative measures beyond the conventional rate, 
range, and regularity, (f) compare oral, laryngeal, and pitch DDK in motor speech and voice 
disorders, and (g) examine physiology to provide direct explanations about the speed of  pitch 
change. Overall, the collective use of  disorder-specific variables pertaining to pitch, energy, 
and temporal variability may provide new diagnostic and therapeutic insights and improve 
the clinical utility of  DDK.

Conclusions
The current study explored a novel pitch DDK task. Pitch range and slope were automatical-
ly derived from Aud-SWIPE’ algorithm. Both range and slope measures were slightly reduced 
in people with PD compared to controls. Moreover, there was an effect of  age and disease du-
ration in people with PD. An analysis with a larger age- and sex-balanced dataset is warranted 
for a comprehensive evaluation. From a clinical perspective, such a task has potential to be 
integrated into future diagnostic or therapeutic practice because (a) it can be sensitive to early 
stages of  PD, and (b) it can be reliably derived from an easily performed task with minimal 
time and equipment requirements. 
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