

Avances en Ciencias e Ingenierías

ISSN: 1390-5384 ISSN: 2528-7788 ISSN-L: 1390-5384 avances@usfg.edu.ec

Universidad San Francisco de Quito

Ecuador

Sangoquiza-Caiza, Carlos A.; Zambrano-Mendoza, José L.; Subía García, Cristian R.; López Guerrero, Victoria; Racines Jaramillo, Marcelo; Pincay Verdezoto, Ana; Hwan Park, Chang Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador Avances en Ciencias e Ingenierías, vol. 16, núm. 2, e3290, 2024, Junio-Diciembre Universidad San Francisco de Quito Ecuador

DOI: https://doi.org/10.18272/aci.v16i2.3290

Disponible en: https://www.redalyc.org/articulo.oa?id=726180116009

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc Red de revistas científicas de Acceso Abierto diamante Infraestructura abierta no comercial propiedad de la academia

Artículo/Article Sección B/Section B Vol. 16, nro. 2

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Carlos A. Sangoquiza-Caiza¹¹©, José L. Zambrano-Mendoza¹©,Cristian R. Subía-García¹®, Victoria López-Guerrero¹®, Marcelo Racines-Jaramillo¹®, Ana Pincay-Verdezoto²®, Chang Hwan Park²®

¹Instituto Nacional de Investigaciones Agropecuarias INIAP- Estación Experimental Santa Catalia, Programa de Maíz. Cutuglagua. Km 1½. Meiía. Pichincha. Ecuador

- ² Korea Partnership for Innovation of Agriculture (KOPIA). Cutuglagua, Mejía, Ecuador
- *Autor para correspondencia: carlos.sangoquiza@iniap.gob.ec

Effect of the plastic mulch planting system on the agronomic behavior and profitability of four varieties of corn in the Sierra del Ecuador

Abstract

In the Andean region of Ecuador, the predominant agricultural sector is largely managed by small-scale farmers who lack access to modern technologies. Consequently, their crop yields remain low, rendering their production systems vulnerable to various factors such as drought, cold weather, and labor shortages caused by significant migration. Introducing plastic mulching in agriculture offers a promising solution to enhance yields by optimizing water and nutrient utilization, accelerating harvests, and improving product quality. Moreover, it reduces the labor burden, which is increasingly scarce and costly in rural areas. This study aimed to assess the impact of plastic mulch on the agronomic performance and profitability of four different open pollinated varieties of maize: INIAP-101 (floury white), INIAP-122 (floury yellow), INIAP-193 (floury black), and INIAP-199 (chulpi-sweet). Four independent experiments were conducted using a randomized block design with three replications at two locations within the region. Two treatments were compared: (T1) plastic mulching and (T2) conventional management (without mulching). The results revealed significant improvements in plant height, increasing from 1.55 to 2.01 m, and a remarkable 85 % boost in average maize yield under the mulching system, rising from 2.91 t ha⁻¹ to 4.95 t ha⁻¹ compared to conventional management (T2). However, the benefit-to-cost ratio (B/C) was higher for the mulched system (2.55) compared to the conventional system (2.14). The unit production cost was also lower in the mulched system, averaging at 0.67 USD per kilogram, in contrast to the conventional system's average of 0.77 USD per kilogram. These findings suggest that adopting plastic mulch for planting and cultivation could offer a sustainable means to intensify maize production in the Andean region while enhancing producers' incomes.

Keywords: plastic mulching, maize, yield, technology, innovation.

Licencia Creative Commons Atribución-NoComercial 4.0

Editado por / Edited by: María Gabriela Albán

> Recibido / Received: 11/04/2024

Accepted: 03/06/2024

Publicado en línea / Published online: 21/08/2024

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

Resumen

En la región Andina del Ecuador la mayor superficie destinada a la agricultura está en manos de pequeños agricultores que no tienen acceso a tecnologías. Como resultado de ello se visibiliza el bajo rendimiento de sus cultivos, aumentando la vulnerabilidad de sus sistemas productivos por otros factores como: la seguía, las bajas temperaturas y la falta de mano de obra por la elevada migración. El uso de acolchado plástico en la agricultura es una tecnología que permite aumentar los rendimientos a través del empleo eficiente del agua, el aprovechamiento de los nutrientes, el adelanto de las cosechas y la calidad del producto; además que permite un ahorro significativo de mano de obra, que cada vez es más escaso y costoso en el campo. El objetivo de esta investigación fue evaluar el efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y la rentabilidad de cuatro variedades maíz de diferentes tipos de grano: INIAP-101 (blanco harinoso), INIAP-122 (amarillo harinoso), INIAP-193 (negro harinoso) e INIAP-199 (chulpi-dulce). Para el efecto, se establecieron cuatro experimentos independientes con un diseño experimental de bloques completamente al azar, con tres repeticiones en dos provincias de la Sierra del Ecuador. Se evaluaron dos tratamientos: (T1), acolchado plástico y (T2), manejo convencional (sin acolchado). El sistema de acolchado plástico incrementó significativamente (p<0,01) la altura de planta y el rendimiento, pasando de un promedio de 1,55 a 2,01 m de altura y de 2,91 t ha⁻¹ a 4,95 t ha⁻¹ de grano, respectivamente. El incremento promedio del rendimiento de grano en los cuatro ensayos fue del 85 % respecto al del manejo convencional. La relación B/C promedio fue de 2,14 para el sistema convencional y de 2,55 para el sistema con acolchado. El costo unitario de producción por kilo de grano producido fue más bajo en el sistema con acolchado, con un promedio de 0,67 USD kg⁻¹, en comparación con el sistema convencional, que tuvo un promedio de 0,77 USD kg⁻¹. Los resultados obtenidos permiten concluir que el cultivo con acolchado plástico puede ser una alternativa para intensificar de manera sostenible la producción de maíz en la región Andina y mejorar los ingresos de los productores.

Palabras clave: acolchado plástico, variedades, rendimiento, tecnología, innovación.

INTRODUCCIÓN

El Instituto Nacional de Estadísticas y Censos para el 2022 reportó que la superficie sembrada de maíz suave (*Zea mays* L. var. *amylacea*) en el Ecuador fue de 57 309 ha, con rendimientos promedio de 1,07 t ha-1 en grano en seco y 3,23 t ha-1 en choclo [1]; que se encuentran entre los rendimientos más bajos de América Latina. El 98 % del maíz suave cultivado en el país se produce en la Sierra, lo que lo convierte en uno de los cultivos más importantes para los pequeños y medianos agricultores que ven afectados sus rendimientos debido a causas bióticas y abióticas presentes en diferentes etapas de desarrollo.

El Ecuador es considerado a nivel mundial como un país de amplia biodiversidad. Para el caso particular del maíz, en la Sierra se encuentra diversidad de colores, formas y tamaños que han permitido la identificación de 17 razas cultivadas [2]. Producto del aprovechamiento de la amplia base genética en trabajos de mejoramiento de

Artículo/Article Sección B/Section B

Vol. 16, nro. 2 e3290

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

esta especie, se han liberado variedades adaptadas a las diferentes condiciones agroecológicas del Ecuador. Actualmente, se encuentran vigentes para la zona Andina alrededor de 10 variedades de maíz INIAP entre las que podemos mencionar maíz blanco, amarillo harinoso, chulpi y maíz morado, entre otros [3].

El impacto causado por los efectos del cambio climático, como la poca disponibilidad de agua a través del tiempo, está promoviendo cada día más el desarrollo de una agricultura protegida mediante el establecimiento de estrategias que permitan hacer un uso racional y eficiente de este recurso. El uso de acolchado que se refiere a cualquier manto de restos vegetales que se forman naturalmente o son aplicados a la superficie del suelo sin ser incorporados al mismo, así como a cualquier material sintético que se coloca sobre la superficie del suelo es una alternativa tecnológica para mejorar los rendimientos de manera más temprana [4,5].

Dentro de la plasticultura, el acolchado o *mulching* consiste en cubrir las camas o surcos de cultivos con películas plásticas. Su uso ha demostrado ser una tecnología que incrementa el rendimiento de los cultivos debido, entre otras cosas, a un uso eficiente del agua, siendo la agricultura el mayor demandante de este líquido vital al consumir alrededor del 70 % del agua dulce disponible en el mundo [6,7,8]. Esta tecnología se ha utilizado desde hace varios años en la agricultura, principalmente en las áreas de horticultura. El principal motivo de la implementación de los acolchados es ganar precocidad y mejorar la productividad del cultivo con la protección del sistema radicular del frío, de la sequía y del exceso de humedad [9,10]. También evita la presencia de malezas, incrementa la temperatura del suelo y disminuye la evaporación de agua del suelo [11,12].

Las películas plásticas o acolchados utilizados para recubrimientos agrícolas ocupan el segundo lugar en importancia, después de los invernaderos. En términos de volumen de plástico empleado a nivel mundial, la superficie cultivada con este tipo de recubrimiento alcanza las 4 530 000 hectáreas, siendo China el país que más usa esta tecnología con 2 000 000 hectáreas; seguido por Japón con 150 000 hectáreas, y Francia y España con 100 000 hectáreas cada uno. En América Latina esta aplicación ha experimentado un menor desarrollo, al ser México el país que más la utiliza con apenas 9 000 hectáreas [13].

Gracias a los beneficios que proporciona el uso del acolchado plástico, este ha sido utilizado de forma satisfactoria pues permite modificar el medio de crecimiento e incrementa el rendimiento y la calidad de los productos cosechados [14]. Sin embargo, son varios los factores que modifican la temperatura del perfil superior del suelo; entre ellos se encuentran la composición y el color de plástico utilizados de acuerdo con el cultivo y su manejo [15,16].

Sobre los costos y beneficios que representan el uso de acolchados en agricultura, se sabe que depende mucho del cultivo, de las condiciones ambientales donde se usa el acolchado, de la calidad de plástico, entre otras variables. De manera general, al obtener mayores rendimientos que mejoran los ingresos, se cubre el incremento de los costos que la tecnología representa, generando beneficios económicos para los productores de la región Andina [12,17].

Con estos antecedentes, el objetivo del estudio fue evaluar el comportamiento agronómico, productivo, la rentabilidad y el beneficio/costo de cuatro variedades

de maíz harinoso cultivado con cobertura plástica, en condiciones de clima y suelo característicos de la región alto Andina de la Sierra ecuatoriana.

MATERIALES Y MÉTODOS

La presente investigación se realizó entre los años 2019 y 2022 en los ciclos agrícolas tradicionales de siembra y cultivo de maíz entre octubre y junio, en las provincias de Pichincha y Cotopaxi (Figura 1).

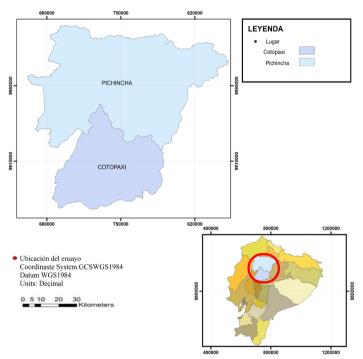


Figura 1. Mapa de ubicación de los ensayos de investigación en campo. Fuente: ArcGis

El tipo de suelo en la provincia de Pichincha (Cutuglagua, EESC) presentó una textura franca con 9,70 % de materia orgánica y un pH ligeramente ácido de 5,17; a diferencia de la provincia de Cotopaxi (Guaytacama, Pilacoto), donde los suelos fueron de textura arenosa, con 4,80 % de materia orgánica y un pH alcalino de 7,87.

Se sembraron las variedades de maíz de libre polinización INIAP-101 [18], INIAP-122 [19], INIAP-193 [20] e INIAP-199 [21], que mejor se han adaptado a las condiciones ambientales de los lugares seleccionados (Tabla 1), y que se establecieron bajo dos tratamientos: (T1) con acolchado plástico y (T2) sin acolchado plástico o manejo convencional del agricultor. Los ensayos se establecieron bajo el Diseño de Bloques Completos al Azar (DBCA) con cuatro repeticiones en cada localidad.

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincav-Verdezoto / Hwan (2024)

Tabla 1. Variedades de maíz y localidades de implementación de los ensayos para evaluar el sistema de acolchado plástico en la producción de grano en la Sierra del Ecuador.

Variedad	Año de siembra	Provincia	Cantón	Parroquia	Latitud ¹	Longitud ¹	Altitud m.s.n.m ¹
INIAP-101 (Blanco harinoso)	2021	Pichincha	Mejía	Cutuglagua	-0.369381	78.562635	3 089
INIAP-122 (Amarillo harinoso)	2021	Pichincha	Mejía	Cutuglagua	-0.367171	78.554895	3 095
INIAP-193 (Chulpi)	2019	Cotopaxi	Latacunga	Guaytacama	-0.816071	78.654113	2 700
INIAP-199 (Negro harinoso)	2019	Cotopaxi	Latacunga	Guaytacama	-0.805452	78.654113	2 700

S1 Datos tomados por GPS.

En el sistema de siembra bajo acolchado plástico, cada unidad experimental constó de tres camas de 10 m de largo por 1,2 m de ancho distanciadas a 0,4 m entre camas con un área total de 48 m². Se sembraron dos hileras por cama con una planta cada 0,25 m en la hilera por 0,6 m entre hileras. La parcela con el manejo convencional (sin plástico) estuvo formada por 6 surcos de 10 m de largo distanciados a 0,8 m con área total de 48 m² donde se sembraron entre 3 y 4 semillas cada 0,5 m. En el raleo del sistema de acolchado se dejó una planta por sitio y en el sistema convencional se dejaron 2 plantas por sitio equivalente a una población de 50 000 plantas por hectárea en ambos tratamientos (Figura 2).

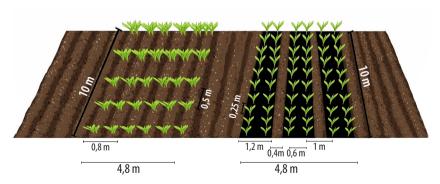


Figura 2. Distribución de las unidades experimentales de la evaluación de acolchado plástico en el cultivo de maíz.

La preparación del suelo se realizó con arado y rastra, se fertilizó de acuerdo a la recomendación para la siembra de maíz en la Sierra del Ecuador: 107 kg ha⁻¹ N fraccionado en dos aplicaciones a la siembra y a los 45 días, 45 kg ha⁻¹ P_2O_5 , 86 kg ha⁻¹ K_2O , 11 kg ha⁻¹MgO y 9 kg ha⁻¹ S [3]. El tipo de plástico utilizado en la investigación fue *mulch* negro (1,40 m de ancho, 45 micras, ReyFilm Black, REYENVAS S.A, Sevilla, España).

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

Se registraron datos de altura de planta (m) y rendimiento en grano seco (t ha¹), siguiendo los protocolos establecidos por el CIMMYT para el manejo de ensayos de maíz [22]. Se realizó el análisis de varianza y Tukey al 5 % como prueba de comparación de medias empleando el paquete estadístico "INFOSTAT" para *Windows*, versión 2020 [23]. Se realizó el análisis económico de presupuesto de producción con la metodología de costos fijos y variables [3]. Los costos fueron ajustados a una hectárea y se calcularon en dólares los siguientes indicadores financieros: costo total, beneficio bruto, beneficio neto, costo unitario de producción, rentabilidad simple (%) y la relación beneficio/costo (B/C).

RESULTADOS

El análisis estadístico para cada tipo de maíz demostró que el uso de acolchado plástico incrementó de manera significativa (p < 0,01) la altura de planta en las variedades de maíz INIAP-101, INIAP-122 e INIAP-199; no así en la variedad INIAP-193 que no presentó diferencias estadísticas. Para la variable rendimiento en grano seco t ha-1 se observaron diferencias estadísticas altamente significativas (p < 0,01), incrementándose la producción en todas las variedades al usar acolchado plástico (Tabla 2).

Tabla 2. Altura de planta y rendimiento de cuatro variedades de maíz con el uso de acolchado plástico en la Sierra del Ecuador.

Variedad	Tratamiento	Altura de planta (m) *	Rendimiento (t ha ⁻¹) *		
INIAP-101	Plástico	2,48 a	7,75 a		
	Convencional	1,65 b	4,65 b		
	CV (%)	7,87	14,03		
	Valor p	0,0004	0,0024		
	Plástico	2,18 a	3,13 a		
INIIAD 122	Convencional	1,39 b	1,35 b		
INIAP-122	CV (%)	12,69	19,46		
	Valor p	0,0001	0,0012		
	Plástico	1,98	4,88 a		
INIAP-193	Convencional	1,97	2,40 b		
IINIAP-193	CV (%)	11,12	8,3		
	Valor p	0,9261	0,0001		
	Plástico	1,48 a	4,03 a		
INIAP-199	Convencional	1,15 b	2,95 b		
	CV (%)	9,79	9,2		
	Valor p	0,011	0,0032		

^{*} Medias con una letra común no son significativamente diferentes según el análisis de Tukey (p > 0,05)

Para la variable rendimiento t ha⁻¹ bajo los sistemas de siembra (convencional y acolchado plástico), se muestra que el rendimiento promedio fue significativamente mayor en el sistema de siembra con acolchado 4,95 t ha⁻¹ en comparación con el sistema

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

convencional 2,91 t ha⁻¹. Así mismo para la variable altura de la planta se muestra un mayor crecimiento en el sistema de acolchado 2,01 m en comparación con el sistema convencional 1,55 m (Tabla 3).

Tabla 3. Promedios de altura de planta y rendimiento para sistemas de siembra de maíz en la Sierra del Ecuador.

Sistema	Altura de planta (m) *	Rendimiento (t ha ⁻¹) *		
Plástico	2,01 a	4,95 a		
Convencional	1,55 b	2,91 b		
CV (%)	9,05	14,13		
Valor p	0,0002	0,0001		

^{*} Medias con una letra común no son significativamente diferentes según el análisis de Tukey (p > 0,01)

En la Figura 3, se presenta el incremento porcentual del rendimiento en grano seco de cuatro variedades de maíz cultivadas en el sistema de acolchado plástico, observándose incrementos de: 67 % para la variedad INIAP-101, 132 % para INIAP-122, 103 % para INIAP-193 y 37 % para la variedad INIAP-199.

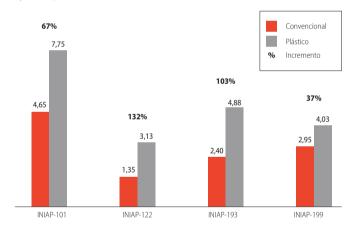


Figura 3. Rendimiento t ha⁻¹ de cuatro variedades de maíz con el uso de acolchado plástico y siembra convencional en la Sierra del Ecuador.

ANÁLISIS ECONÓMICO

En la Tabla 4 se presentan los costos de producción y los indicadores económicos de las cuatro variedades con los dos sistemas de siembra en estudio, donde se observa que el sistema convencional (control) reporta un costo promedio de 1835,21 USD ha⁻¹, mientras que en el sistema de acolchado plástico el costo promedio fue de 2618,59 USD ha⁻¹, lo que representa un 47,82 % de incremento en los costos totales.

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

Tabla 4. Costos de producción del sistema de siembra bajo acolchado plástico con cuatro variedades de maíz en la Sierra del Ecuador.

Variedad	INIAP-101		INIAP-122		INIAP-193		INIAP-199	
Sistema	Control	Acolchado	Control	Acolchado	Control	Acolchado	Control	Acolchado
Costos (USD ha ⁻¹)								
Preparación suelo	150,00	150,00	150,00	150,00	150,00	150,00	150,00	150,00
Siembra y fertilización	568,00	1168,00	568,00	1198,00	568,00	1198,00	568,00	1198,00
Labores culturales	473,00	413,00	473,00	413,00	473,00	413,00	473,00	413,00
Cosecha, poscosecha	374,40	482,00	174,00	351,30	190,10	437,90	185,20	425,30
Total costos variables	1565,40	2213,00	1365,00	2112,30	1381,10	2198,90	1376,20	2186,30
Total costos fijos	434,81	531,95	404,75	516,85	407,17	529,84	406,43	527,95
Costo total	2000,21	2744,95	1769,75	2629,15	1788,27	2728,74	1782,63	2714,25
Indicadores	Indicadores							
Ingreso bruto (USD ha ⁻¹)	5812,50	9687,50	2025,00	4695,00	3600,00	7320,00	4425,00	6045,00
Ingreso neto (USD ha ⁻¹)	3812,29	6942,55	255,25	2065,86	1811,74	4591,27	2642,37	3330,76
Relación beneficio/costo	2,91	3,53	1,14	1,79	2,01	2,68	2,48	2,23
Costo unitario (USD kg)	0,43	0,35	1,31	0,84	0,75	0,56	0,60	0,67
Diferencia % costo por kg de las tecnologías	- 19		- 36		- 25		12	
Tasa multiplicación (kg x 1)	155	258	45	104	80	163	98	134

El ingreso neto promedio bajo el sistema de acochado plástico fue 4 283 USD ha¹ mientras que en el tratamiento control (sistema convencional) fue 2130 USD ha¹. La rentabilidad simple fue positiva en todos los casos. En cuanto a la relación B/C promedio, en el sistema de control fue de 2,14 mientras que en el sistema con acolchado fue de 2,55. El costo unitario promedio de producción por kilogramo fue de 0,77 USD en el sistema de control y de 0,67 USD en el sistema de acolchado. Esto se debe al mayor rendimiento obtenido con el acolchado, que en promedio fue de 164,92 kg, en comparación con los 94,58 kg del sistema de control.

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

DISCUSIÓN

El sistema de siembra en acolchado permitió un mayor crecimiento de las plantas en las variedades de maíz, con excepción de la variedad INIAP-193, que no mostró diferencias significativas en altura de planta, lo que posiblemente se debe a la capacidad que tiene el acolchado plástico de crear un microclima favorable en el suelo al retener la humedad y acumular calor de acuerdo a las condiciones ambientales existentes el momento del cultivo, lo que estimula el crecimiento de las plantas. Resultados similares fueron obtenidos por Velásquez et al. [24], al cultivar ají con acolchado plástico y películas fotoselectivas; las variables agronómicas mostraron que los tratamientos con acolchado fueron significativamente superiores. Además, la cosecha se aceleró en 21 días en comparación con los tratamientos sin acolchado.

Para la variable de rendimiento en grano seco t ha¹, se observó un incremento significativo en todas las variedades cultivadas con acolchado. El incremento promedio de rendimiento fue del 85%, lo que demuestra que esta tecnología agrícola es eficaz para mejorar la producción y tiene el potencial de duplicar la productividad del maíz en la Sierra del Ecuador. Este aumento puede atribuirse a una mayor eficiencia en el uso de los nutrientes, los cuales son mejor captados y asimilados por las plantas bajo el sistema de acolchado.

Estudios realizados por Wang et al. [25], corroboran los efectos positivos de este sistema en el cultivo de maíz (*Zea mays* L.), demostrando que la presencia de nitratos en el suelo, así como la absorción de nitrógeno por las plantas crecidas en suelos con acolchado plástico es mayor que en plantas crecidas en suelos sin acolchar. Esto hace que las plantas incrementen la absorción y distribución de nitratos y, por ende, presenten mayor desarrollo y producción en los cultivos.

En otras investigaciones sobre el uso de acolchado plástico para la producción de maíz forrajero se observaron plantas más altas en los sistemas de acolchado con respecto a las plantas sin acolchar. En cuanto a los valores del peso de mazorca se evidenció que el acolchado plástico mejora las características del maíz y se encontró un incremento en producción del 8 % al 17 % [26]. El estudio en maíz realizado por Taday et al. [27] reportó diferencias significativas en altura de planta con incrementos de entre 8,5 a 9,5 cm del sistema de acolchado plástico respecto del testigo, mientras el diámetro de tallo aumentó 0,18 cm. Al analizar las variables de producción, se encontró un mayor desarrollo en la longitud, diámetro y peso de la mazorca, resultados que concuerdan con los reportados por López et al. en estudios similares [17]. Estos resultados destacan la importancia del acolchado plástico como una tecnología que puede mejorar tanto el crecimiento de las plantas como los rendimientos del cultivo de maíz, lo que sugiere su utilidad en prácticas agrícolas destinadas a aumentar la productividad y la eficiencia de los cultivos.

Dentro del análisis económico se observa que existen diferencias en los costos de producción entre los tratamientos evaluados, lo que se debe al incremento en el rendimiento y reducción de actividades de manejo o utilización de insumos en las distintas labores del cultivo. En la siembra, los mayores costos están asociados con el sistema acolchado debido al uso del plástico y a la mano de obra necesaria para colocar la lámina plástica en el campo. Dentro de las labores de manejo del cultivo, se observa

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

que el costo del tratamiento testigo (convencional) es mayor debido al rascadillo, al aporque y a la fertilización complementaria que demandan un considerable uso de mano de obra, en contraste con el sistema de acolchado donde se reduce el costo, ya que solo se realiza un raleo y una fertilización complementaria. En la etapa de cosecha y poscosecha, los costos varían en función del rendimiento o volumen producido por cada variedad y sistema de siembra. En el sistema de acolchado, retirar el plástico del suelo genera un costo adicional debido a la necesidad de mano de obra para retirar este material del campo después de la cosecha.

Si bien el promedio del costo de producción total por hectárea es mayor en el sistema de cultivo con acolchado plástico respecto al sistema convencional, el ingreso neto, la rentabilidad simple y la relación beneficio/costo promedio son más altos en los sistemas con acolchado debido al significativo incremento de la producción reportada bajo este sistema. El costo unitario de producción también es más bajo en el sistema acolchado, lo que se atribuye a las mayores tasas de multiplicación. Estos resultados son consistentes con investigaciones anteriores realizadas por Zambrano et al. [12], López et al. [17] y Zhang et al. [28], donde señalan que el uso de acolchado plástico genera mayor beneficio económico, ya que la inversión del plástico fue superada por el ahorro en mano de obra de las labores culturales que la práctica convencional requiere. De la misma manera, Calderón et al. [29], en su estudio señaló que el tratamiento con acolchado plástico tuvo un costo total superior al tratamiento sin acolchado y al final coincide con Orozco et al. [30], producto de la experiencia en otros cultivos. Así, señalan que la inversión generada por la implementación del acolchado plástico es compensada con el incremento en la producción, generando una rápida recuperación de la inversión con este sistema de producción.

Nava [31] indica que el tratamiento con plástico puede reducir la mano de obra necesaria para el control de malezas hasta en un 72 % debido a que el plástico actúa como una barrera física que impide la germinación de las malezas, lo que reduce la necesidad de realizar labores de desmalezado manual. Resultados similares fueron reportados por Pat et al. [32], quienes manifestaron que los altos costos de la producción convencional corresponden a la mano de obra utilizada y al control de malezas, plagas y enfermedades, que representa el 50 % del total de los costos de producción. Se observó que en tres variedades se redujo el costo por kilogramo producido entre 19 % y 35 % con el uso de acolchado plástico, lo que no sucedió con el maíz negro debido a que la ganancia en el rendimiento no fue suficiente; razón por la que su comercialización debe ser orientada a obtener mayores ganancias con productos procesados como la harina.

CONCLUSIONES

El uso del sistema de acolchado plástico permitió mayor desarrollo de las plantas de maíz pasando en promedio de altura de planta de 1,55 a 2,01 m. Así mismo, el cultivo de maíz bajo el sistema de acolchado plástico incrementó notablemente el rendimiento en grano seco de las variedades de maíz INIAP-101, INIAP-122, INIAP-193 e INIAP-199. En promedio, la producción pasó de 2,91 toneladas por hectárea con el manejo convencional, a 4,95 toneladas por hectárea con el sistema de acolchado, es decir, se incrementó la producción en 85%.

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

Se determinó que el costo de establecer un cultivo de maíz con acolchado plástico fue mayor que el sistema convencional, pero esa diferencia se redujo cuando se disminuyeron los costos de mano de obra por las labores culturales. El análisis de costo concluyó que el uso de acolchado plástico es una tecnología rentable y eficiente en términos económicos, proporcionando mayores ingresos netos y una mejor relación beneficio/costo, pasando de 2.14 en el sistema convencional a 2.55 del sistema con acolchado.

Por último, el uso de acolchado facilita el manejo del cultivo y mejora la productividad, lo que puede reducir significativamente los costos totales de producción. Por lo tanto, implementar esta estrategia resulta ser una manera efectiva de aumentar tanto la eficiencia como la rentabilidad en el cultivo de maíz.

AGRADECIMIENTOS

Los autores desean expresar su profundo agradecimiento a la Agencia de Corea para la Innovación de la Agricultura (KOPIA) por proporcionar los recursos necesarios a través del proyecto "Desarrollo de tecnologías de cultivo de maíz utilizando biofertilizantes en la Sierra del Ecuador. Fase II", que ha permitido la realización y difusión de esta investigación. Así mismo, agradecemos al Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED) y a la Red Latinoamericana del Maíz por su apoyo en la difusión de nuestro trabajo de investigación.

CONTRIBUCIONES DE LOS AUTORES

Carlos Sangoquiza Caiza y José Zambrano Mendoza concibieron la investigación, desarrollaron la metodología, establecieron los ensayos en campo, analizaron los datos y redactaron el documento; Victoria López Guerrero aporto en el trabajo de campo, tabulación y análisis de los datos; Cristian Subía García aportó en la redacción, revisión y edición del manuscrito; Marcelo Racines Jaramillo realizó el análisis económico y la discusión de los resultados; Ana Pincay Verdezoto participó en el desarrollo de la metodología; y Chang Hwan Park desde la administración del proyecto aportó en la concepción de la investigación, proveyó recursos y la revisión de los resultados.

CONFLICTO DE INTERÉS

Los autores de este artículo desean manifestar que no tienen ningún conflicto de interés que pueda influir en la investigación, análisis o redacción del contenido presentado.

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador

Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero// Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

REFERENCIAS

- Instituto Nacional de Estadística y Censos (2022). Estadísticas Agropecuarias. Instituto Nacional de Estadística y Censos. https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/
- [2] Yánez, C., Zambrano, J., Caicedo, M., Sánchez, V. y Heredia, J. (2003). Catálogo de recursos genéticos de maíces de altura ecuatorianos conservados en el banco de germoplasma del Departamento Nacional de Recursos Fitogenéticos y Biotecnología (DENAREF). INIAP. http://repositorio.iniap.gob.ec/jspui/handle/41000/43
- [3] Zambrano, J.L., Velásquez, J., Peñaherrera, D., Sangoquiza, C., Cartagena, Y., Villacrés, E., Garcés, S., Ortíz, R., León, J., Campaña, D., López, V., Asaquibay, C., Nieto, M., Sanmartín G., Pintado, P., Yánez, C. y Racines, M. (2021). Manual Técnico No. 122: Guía para la producción sustentable de maíz en la Sierra ecuatoriana. Repositorio digital INIAP. http://repositorio.iniap.gob.ec/handle/41000/5796
- [4] Hernández Pérez, A., Torres-Olivar, V., García Santiago, J. C. e Ibarra-Jiménez, L. (2021). Efectos del color del acolchado plástico en la producción de melón: dos ciclos. Ecosistemas y recursos agropecuarios, 8(1). doi: https://doi.org/10.19136/era.a8n1.2758
- [5] Zambrano, J., Cartagena, Y., Sangoquiza, C., López, V., Parra, R., Maiguashca, J., Rivadeneira, J. y Park, Ch. (2022). Evaluación del acolchado plástico en la producción de maíz harinoso (Zea mays L. var. amylacea St.) en la Sierra del Ecuador. En A. Chávez, W. Guillén y F. Escobal (Eds.), Memorias de la XXIV Reunión Latinoamericana de Maíz (pp. 60-71). INIA.
- [6] Munguía-López, J., Zermeño-González, A., Gil-Marín, A., Quezada-Martín, M., Ibarra-Jiménez, L. y Arellano-García, M. A. (2011). Balance de energía en el cultivo de chile morrón bajo acolchado plástico. *Terra Latinoamericana*, 29(4), 431-440. https://www.redalyc.org/articulo.oa?id=57322342009
- [7] Li, X., Shi, H., Šimůnek, J., Gong, X. y Peng, Z. (2015). Modeling soil water dynamics in a drip-irrigated intercropping field under plastic mulch. *Irrigation Science*, 33, 289–302. doi: https://doi.org/10.1007/s00271-015-0466-4
- [8] Singh, A. (2014). Simulation—optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23-29. doi: https://doi.org/10.1016/j.aqwat.2014.04.003
- [9] Cantamutto, M., Ayastuy, M., Kroeger, I, Elisei, V. y Marinangeli, P. (2015). Efecto del sistema de iniciación y del acolchado del suelo sobre la producción de melón en el sur de la provincia de Buenos Aires, Argentina. Revista de la Facultad de Agronomía, La Plata, 104(2), 157–162. https://dialnet.unirioja.es/servlet/articulo?codigo=1994588
- [10] Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J. y Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation. *Science of the total* environment, 550, 690-705. doi: https://doi.org/10.1016/j.scitotenv.2016.01.153
- [11] Zribi, W., Faci González, J. M. y Aragüés Lafarga, R. (2011). Efectos del acolchado sobre la humedad, temperatura, estructura y salinidad de suelos agrícolas. ITEA, información técnica económica agraria, 2, 148-162. https://dialnet.unirioja.es/servlet/articulo?codigo=3689040
- [12] Zambrano, J.L., Cartagena, Y., Sangoquiza, C., Pincay, A., Parra, A.R., Maiguashca, J., Rivadeneira, J.L., Subía, C. y Park, C.H. (2024). Exploring Plastic Mulching as a Strategy for Mitigating Drought Stress and Boosting Maize Yield in the Ecuadorian Andes. Water 2024, 16(7), 1033; https://doi.org/10.3390/w16071033
- [13] Zenner de Polanía, I. y Peña Baracaldo, F. (2013). Plásticos en la agricultura: beneficio y costo ambiental: una revisión. Revista UDCA Actualidad & Divulgación Científica, 16(1), 139-150. doi: https://doi.org/10.31910/rudca.v16. n1 2013 868
- [14] Kader, M. A., Senge, M., Mojid, M. A. y Ito, K. (2017). Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 168(1),155-166. doi: https://doi.org/10.1016/j.still.2017.01.001
- [15] Maida, P., Bisen, B.P. y Diwan, G. (2019) Effect of Plastic Mulch on Growth and Yield of Chilli (Capsicum annuum L.). International Journal of Current Microbiology and Applied Sciences, 8, 2056-2062. doi: https://doi.org/10.20546/ ijcmas.2019.812.243
- [16] Mendonca, S.R., Ávila, M.C.R., Vital, R.G., Evangelista, Z.R., Carvalho Pontes, N. y Reis Nascimento, A. (2021) The effect of different mulching on tomato development and yield. Scientia Horticulturae, 275, 109657. doi: https://doi. org/10.1016/j.scienta.2020.109657

Efecto del sistema de siembra en acolchado plástico sobre el comportamiento agronómico y rentabilidad de cuatro variedades de maíz en la Sierra del Ecuador Sangoquiza Caiza / Zambrano Mendoza / Subía García / López Guerrero//

Racines-Jaramillo / Pincay-Verdezoto / Hwan (2024)

- [17] López Guerrero, V. A., Zambrano Mendoza, J. L., Sangoquiza Caiza, C. A., Cartagena Ayala, Y. E., Rivadeneira García, J. L., Maiguashca, J. A. y Parra, R. (2021). Evaluación participativa del uso de acolchado plástico para la producción de maíz suave (Zea mays L. var. amylacea) con agricultores de la Provincia de Cotopaxi en Ecuador. En A. Chávez, W. Guillen, F. Escobal (Eds.), Memorias de la XXIV Reunión Latinoamericana de Maíz (pp. 71-85). INIA. https://repositorio.inia.gob.pe/handle/20.500.12955/1869
- [18] Caviedes, C. (2003). INIAP-101: Variedad de maíz blanco precoz. INIAP. https://repositorio.iniap.gob.ec/ bitstream/41000/2547/1/iniapscpl82.pdf
- [19] Silva, E., Dobronsky, J. y Heredia, J. (1997). INIAP-122 Chaucho Mejorado: Variedad de maíz amarillo harinoso semiprecoz para la provincia de Imbabura. INIAP. http://repositorio.iniap.gob.ec/handle/41000/2578
- [20] Yánez, C., Zambrano, J. L., Sangoquiza Caiza, C. A., López, V., Asaquibay, C., Nieto, M. y Racines Jaramillo, M. R. (2022). La nueva variedad de Maíz Chulpi "INIAP-193". INIAP-EESC. http://repositorio.iniap.gob.ec/handle/41000/5889
- [21] Yánez, C., Zambrano Mendoza, J. L., Caicedo, M., Heredia, J., Sangoquiza Caiza, C. A., Villacrés, E. y Caballero, D. (2017). INIAP-199 "Racimo de Uva": Variedad de maíz negro. INIAP. http://repositorio.iniap.gob.ec/handle/41000/4618
- [22] CIMMYT: Centro Internacional de Mejoramiento de Maíz y Trigo. (1995). Manejo de los ensayos e informe de los datos para el Programa de Ensayos Internacionales de Maíz del CIMMYT. CIMMYT. http://hdl.handle.net/10883/3792
- [23] Balzarini, M. G., Gonzalez, L. A., Tablada, E. M., Casanoves, F., Di Rienzo, J. A. y Robledo, C. W. (2008). InfoStat, versión 2008: manual del usuario (No. 005.30296 B198). Grupo InfoStat.
- [24] Velásquez, J. F., Dávila, J. H. y Jiménez, L. I. (1997). Caracterización agronómica de películas fotoselectivas para acolchado en el cultivo de chile Anaheim con fertirrigación. *Revista Agraria*, 13(1-2), 55-70. doi: https://doi. org/10.59741/agraria.v13i1-2.226
- [25] Wang, X., Wang, N., Xing, Y., Yun, J. y Zhang, H. (2018). Effects of plastic mulching and basal nitrogen application depth on nitrogen use efficiency and yield in maize. Front. Plant Sci. 9(1), 1-11. doi: https://doi.org/10.3389/fpls.2018.01446
- [26] Montemayor-Trejo, J. A., Suárez-González, E., Munguía-López, J. P., Segura-Castruita, M. Á., Mendoza Villarreal, R. y Woo-Reza, J. L. (2018). Acolchados plásticos para la producción de maíz (Zea mays L.) forrajero en la Comarca Lagunera. Revista mexicana de ciencias agrícolas, 9(SPE20), 4107-4115. doi: https://doi.org/10.29312/remexca. v0i20.982
- [27] Taday-Valdez, G., Cajamarca-Crespo, K., Gálvez-Palomeque, P. y Luna-Romero, Á. (2024). Evaluación del rendimiento del cultivo de maíz (Zea mays L.) bajo condiciones de Mulch plástico, Ecuador. Revista Metropolitana de Ciencias Aplicadas, 7(1), 172-180. doi: https://doi.org/10.62452/3xmmyf38
- [28] Zhang, P., Wei, T., Cai, T., Ali, S., Han, Q., Ren, X. y Jia, Z. (2017). Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China. Frontiers in plant science, 8, 512. doi: https://doi. org/10.3389/fpls.2017.00512
- [29] Calderón Reyes, B.G. y Flores Pérez, C.L. (2005). Evaluación del desarrollo fenológico y productivo del cultivo de tomate variedad 3057 bajo dos sistemas de producción, acolchado y sin acolchado, en el Municipio de Chichigalpa en el ciclo 2004. Universidad Nacional Autónoma de Nicaragua-León. http://riul.unanleon.edu.ni:8080/jspui/ bitstream/123456789/917/1/198682.pdf
- [30] Orozco-Santos, M., Preciado, J. C. G., Velázquez-Monreal, J. J., Hernández-Fuentes, L. M., Robles-González, M. M., Manzanilla-Ramírez, M. Á. y Manzo-Sánchez, G. (2023). Uso de Acolchados Plásticos para Reducir Diaphorinia citri 1-Huanglongbing e Incrementar el Rendimiento de Lima Mexicana en el Trópico Seco de México. Southwestern Entomologist, 47(4), 927-934. https://www.researchgate.net/publication/366904166_Use_of_Plastic_Mulch_to_ Reduce_Diaphorina_citri-Huanglongbing_and_Increase_Mexican_Lime_Yields_in_the_Dry_Tropic_of_Mexico
- [31] Nava, J. C. (2011). Beneficios socioeconómicos al utilizar plástico en el cultivo del melón (Cucumis melo L.) en el municipio Miranda del estado Zulia. Revista de Ciencias Sociales (Ve), 17(3), 542-549. https://www.redalyc.org/pdf/280/28022767013.pdf
- [32] Pat-Fernández, V. G., Caamal-Cauich, I. y Caamal-pat, Z. H. (2016). Análisis técnico y económico de la producción de tomate verde en el oriente del Estado de México. Handbook TI, 51. https://www.ecorfan.org/handbooks/Ciencias-ECOH-T_III/HCSEH_TIII_6.pdf