

Exacta

ISSN: 1678-5428 ISSN: 1983-9308

geraldo.neto@uni9.pro.br Universidade Nove de Julho

illiversidade Nov

Brasil

Carvalho Miranda, Amanda; Carlos Curvelo Santana, José Aplicação da ferramenta PDCA na otimização de equipamentos de análises instrumentais (HPLC-UPLC) na rotina de análises físico-químicas em uma indústria farmacêutica nacional.

> Exacta, vol. 16, núm. 1, 2018, Janeiro-Março, pp. 1-6 Universidade Nove de Julho Brasil

DOI: https://doi.org/10.5585/exactaep.v16n1.6587

Disponível em: https://www.redalyc.org/articulo.oa?id=81058841001

Número completo

Mais informações do artigo

Site da revista em redalyc.org

Sistema de Informação Científica Redalyc

Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa

acesso aberto

Aplicação da ferramenta PDCA na otimização de equipamentos de análises instrumentais (HPLC-UPLC) na rotina de análises físico-químicas em uma indústria farmacêutica nacional

Application of the PDCA tool in the optimization of instrumental analysis equipment (HPLC-UPLC) in the routine of physico-chemical analyzes in a national pharmaceutical industry

Amanda Carvalho Miranda¹ José Carlos Curvelo Santana²

Resumo

O uso de indicadores da qualidade vem sendo valorizado na gestão de laboratórios de controle de qualidade para otimizar a qualificação e a quantificação de falhas nos diferentes processos analíticos; bem como, para auxiliar a implantação de medidas corretivas e preventivas a fim de apontar a tomada de decisão. Este trabalho trata-se de um estudo experimental desenvolvido em uma indústria farmacêutica onde utilizou-se a ferramenta da qualidade PDCA pode promover a melhoria contínua na rotina analítica de um laboratório de controle de qualidade, quanto o uso de HPLC's e UPLC's. Pode-se observar redução de custos com manutenção de equipamentos e otimização da rotina de trabalho de funcionários.

Palavras-chave: PDCA, Controle de Qualidade, Gestão da Qualidade.

Abstract

The use of quality indicators has been valued in the management of laboratories of quality control to optimize the qualification and quantification of failures in the different analytical processes; As well as to assist in the implementation of corrective and preventive measures in order to identify decision making. This work is an experimental study developed in a pharmaceutical industry where the PDCA quality tool can be used to promote continuous improvement in the analytical routine of a quality control laboratory. One can observe reduction of costs with equipment maintenance, reduction of the use of reagents and optimization of the routine of work of employees.

Keywords: PDCA, Quality Control, Quality Management.

¹ Docente Curso Graduação Farmácia Universidade Nove de Julho e Doutoranda do Programa de Pós Graduação em Engenharia de Produção na Universidade Nove de Julho mirandaca1@hotmail.com

² Docente nos cursos de Mestrado e Doutorado de Engenharia de Produção na Universidade Nove de Julho ¡ccurvelo@yahoo.com.br

1 Introdução

Para suprir a crescente expectativa dos consumidores em relação à qualidade dos produtos e serviços, as organizações precisam investir, cada vez mais, em sistemas de gestão de qualidade a fim de garantir sua permanência no mercado.

A evolução do conceito de qualidade aconteceu paralelamente às mudanças tecnológicas ocorridas nas indústrias. (Costa, 2006, p. 26).

A história da qualidade teve início com a evolução industrial nos anos 1920, principalmente das indústrias bélicas, as quais, em decorrência da grande guerra mundial, necessitavam aumentar a produção de armamentos. Assim, surge a atividade de inspeção com finalidade de avaliar o produto final e separar os defeituosos, evitando sua comercialização. (Vieira, Shitara, Mendes & Sumita, 2011, p.202).

Em uma segunda fase, surge a preocupação com a qualidade em todos os processos de produção, admitindo-se que o grau de variabilidade do produto é devido às variações nas matérias-primas e máquinas utilizadas e ao operador destas. Tem início o controle estatístico por amostragem, com técnicas de limite de variação aceitável durante todo o processo fabril, não se restringindo apenas ao produto final. (Vieira et al. 2011, p. 202).

Nas décadas subsequentes, a evolução da qualidade tornou-se mais evidenciada, com destaque para o Japão, devido à necessidade de reconstrução econômica no pós guerra. Inicia-se a fase da garantia da qualidade, com o objetivo principal de prevenção. A preocupação com a qualidade chega ao gerenciamento das empresas. (Costa, 2006, p. 27).

Em 1950, W. Edwards Deming cria um novo conceito em qualidade denominado ciclo PDCA, cujas inicias, em inglês, significam *plan*, *do*, *check* e *act*, ou planejar, executar, verificar e atuar corretivamente. (Paladini, 2004, p. 339).

Os sistemas de medição de desempenho passam a ampliar seu papel nas organizações, incorporando-se cada vez mais ao gerenciamento do negócio. Os mesmos tornam-se parte integrante da implementação da estratégia e da avaliação de desempenho tanto de recursos humanos quanto da competitividade das empresas em relação ao seu mercado de atuação. (Costa, 2003, pp. 13-15).

Portanto, o objetivo deste trabalho é realizar um estudo experimental em uma indústria farmacêutica nacional sobre a aplicação da ferramenta da qualidade PDCA, na otimização de equipamentos de análise instrumental (HPLC-UPLC) em laboratório de controle de qualidade, visando à melhoria contínua de seus processos e produtos.

2 Justificativa

O mercado consumidor brasileiro está cada vez mais exigente quanto à qualidade dos produtos e serviços, levando as empresas a elevar os níveis de desempenho através da implantação de programas de melhoria da qualidade e produtividade. (Lantelme, 1994, pp. 30-31).

A ferramenta PDCA amplamente utilizada como gestão de estratégia e gestão operacional; têm sido pouco exploradas em rotinas de trabalhos dinâmicos, como o Controle de Qualidade de Indústrias Farmacêuticas. Por este motivo, buscou-se compreender a rotina de análises de uma Indústria Farmacêutica Nacional de grande porte, para um modelo experimental de aplicação da ferramenta.

Em relação ao Controle de Qualidade de Medicamentos; as análises físico químicas devem não apenas garantir qualidade, bem como: eficácia e segurança; e serem realizadas em tempo hábil por analistas experientes e treinados.

Essa rotina só é possível pois empresas farmacêuticas utilizam equipamentos de última geração (HPLC-UPLC) – Cromatógrafos Líquidos de Alta Eficiência, capazes de averiguar com especificidade e seletividade propriedades do fármaco a ser analisado.

O custo médio de um equipamento HPLC-UPLC é de R\$ 20.000,00 e recomenda-se sua manutenção preventiva anual (por um custo médio de R\$ 1.500,00).

Considerando a Indústria farmacêutica estudada nesse trabalho, continha 55 equipamentos como este, porém com necessidades de manutenções mensais, pelo mau uso do equipamento; foi proposto a utilização da ferramenta PDCA para otimização do trabalho e redução dos custos com manutenção.

3 Características do PDCA

O PDCA é um método que visa controlar e conseguir resultados eficazes e confiáveis nas atividades de uma empresa, podendo ser usado de forma contínua para o gerenciamento das atividades de uma organização. Consiste em uma sequência de procedimentos lógicos, baseados em fatos e dados. É um eficiente modo de apresentar melhorias no processo, padronizando as informações do controle da qualidade e tornando-as mais fáceis de manusear; também é uma maneira muito eficaz de manter melhorias alcançadas. (Deming, 1990, p. 38-39)

Foi utilizado durante a segunda guerra mundial fazendo com que os americanos conseguissem produzir alimentos militares com qualidade, em grande quantidade e com baixos custos.

Algumas décadas depois começou a ser também chamado de ciclo de Deming, pois foi Edward Deming seu maior divulgador, ficando amplamente conhecido ao ser aplicado nos conceitos de qualidade no Japão (Costa, 2006, p. 45-47).

Campos (1990) ressalta que se costumava atribuir o sucesso dos japoneses em qualidade e produtividade à "disciplina" do povo ou à sua cultura; no entanto o verdadeiro sucesso comercial dos japoneses nas últimas décadas é fruto do gerenciamento metódico e praticado por todos na empresa: o controle de processos pelo ciclo PDCA.

O ciclo PDCA é composto de quatro fases: Planejar, Executar, Verificar e Atuar corretivamente. Para isso no giro PDCA deve-se coletar dados, medir resultados, compara-los com a meta prevista e adotar as medidas corretivas mais adequadas.

Figura 1: O ciclo PDCAFonte: Instituto Brasileiro de Ensino e Pesquisa (2010).

São necessárias a utilização de ferramentas para a coleta, o processamento e a disposição de dados a fim de que sejam tomadas as devidas ações corretivas. (Deming, 1990, p.p 38-39).

Sendo baseado nos dados fornecidos e nos resultados obtidos é fácil perceber a importância que tem as medições realizadas para que os dados coletados sejam confiáveis para que se possa garantir que as ações tomadas a partir da análise

dos dados coletados sejam realmente adequadas. (Deming, 1990, pp. 41-42)

4 Aplicação do PDCA em Laboratório de Controle de Qualidade

O constante progresso tecnológico na área laboratorial tem possibilitado a ampliação do número e dos tipos de analitos (amostras), aumentando, significativamente, a demanda do número de análises realizadas. (Plebani, 2002, pp. 87-100).

Para aplicação do PDCA em equipamentos de HPLC/UPLC em laboratórios de controle de qualidade, foi necessário definir indicadores como uma informação de natureza qualitativa ou quantitativa, associada a um evento, processo ou resultado, sendo possível avaliar as mudanças durante o tempo e verificar ou definir objetivos ou utilizá-lo para a tomada de decisões ou escolhas.

A definição do número e dos tipos de indicadores costuma ter como base a complexidade e o tamanho da organização, assim como a missão e os objetivos do serviço. (Sciacovelli, 2007, pp. 756-765).

Sendo assim, durante o primeiro semestre do ano de 2014, a Indústria Farmacêutica em estudo definiu os indicadores demonstrados na tabela 1, como direcionamento para aplicação do PDCA:

Foi proposto a abordagem do PDCA por sistema de (rotina), sendo àquela conduzida em processos repetitivos tais como: extração de uma amostra, preparo do equipamento para análise, *checklist* de operações; dentre outros como explica Campos (1990). Os procedimentos para a execução destes serviços devem ser sempre os mesmos, por isso os processos devem ser padronizados.

5 Resultados

Durante o primeiro semestre de 2013 a empresa havia registrado um total de 17 chamados de manutenção preventiva para os equipamentos, totalizando um custo de R\$25,500,00. Uma média de 2,83 solicitações de manutenções preventivas ou corretivas para este período.

Após a implementação do Ciclo PDCA, no primeiro semestre de 2014, observou-se que muitos analistas foram negligentes quanto à preparação do equipamento, como: troca de reagentes e troca de água diárias obrigatórias; observou-se inabilidades ao operar o equipamen-

Plan (Planejar)	Do (Fazer)	Check (Verificação)	Act (Ação)
Avaliar quais os	Responsabilizar analistas	Catalogar e acompanhar	Mediante os resultados
problemas frequentes	para verificação e	através de gráficos a	obtidos, elaborar um
apresentados pelos	checagem diária dos	evolução da conservação	plano de manutenção
equipamentos de HPLC´s	equipamentos, com a	dos equipamentos	preventiva dos HPLC´S e
e UPIC´s relacionar	finalidade de conservá-los	e relacionar a	UPLC´s de modo evitar
estas causas com mau	e deixá-los sempre em	redução de visitas de	gastos excessivos com
uso, conservação e	boas condições de uso	manutenção. Avaliar	visitas desnecessárias
até mesmo falta de	ao início ou término de	o comprometimento	de técnicos e manter
conhecimento ao operar	qualquer análise. Realizar	dos analistas quanto	a vida útil das peças
o equipamento (uso	treinamentos sobre	à responsabilidade	e compartimentos do
indevido). Quantificar a	hardware e software do	diária de manter os	equipamento de acordo
abertura de chamados	equipamento, com intuito	equipamentos em boas	com a conservação e
feitos para manutenção	corrigir e informar o modo	condições de uso.	preservação contínua

correto de uso do mesmo.

Fonte: Autores

e avaliar os itens mais

frequentes de queixa.

Tabela 1

durante o uso.

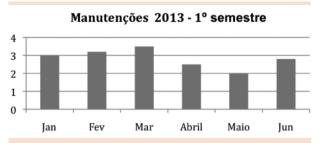


Gráfico 1: Número de manutenções em HPLC-UPLC, 1º semestre 2013

to. E foi possível então modificar a estratégia de trabalho, alocando um analista Júnior com um Sênior (assim minimizando erros operacionais do equipamento), programou-se treinamentos de reciclagem, eliminou-se aberturas de chamados desnecessários para falhas pontuais e ocasionais do sistema (onde na maioria das vezes um analista experiente resolveria o problema, sem necessidade de um técnico especializado). E obteve-se uma redução de custos significativas com manutenção preventiva e corretiva dos equipamentos.

Os custos com manutenção preventiva reduziram significativamente, sendo registrados 4 chamados de manutenção preventiva no primeiro semestre, totalizando um custo de R\$ 6.000,00, o que corresponde a 0,67 chamados para este período.

Com a economia de R\$ 19.500,00 a empresa praticamente pode investir na compra de um novo equipamento para o setor de Controle de Qualidade, bem como investir em treinamentos ou contratações de funcionários.

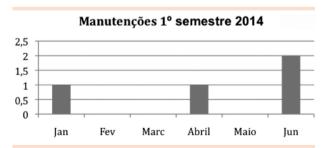


Gráfico 2: Número de manutenções em HPLC-UPLC, 2° semestre 2013

6 Conclusão

O trabalho comprovou que a aplicação da ferramenta PDCA em HPLC's e UPLC's no Controle de Qualidade, pode reduzir os custos com estes equipamentos (manutenção e ajustes), otimizar a rotina do analista, promovendo o uso racional da ferramenta, com aumento de produtividade analítica e maiores investimentos para o setor.

As limitações do trabalho explicitam-se pelo curto período em que foi observado a aplicação da ferramenta PDCA. Sugere-se para trabalhos futuros, a aplicação da ferramenta por um período maior de tempo, e a expansão para uso de outros equipamentos do setor de controle de qualidade que requerem manutenções preventivas e corretivas.

Referências

Campos, V. F. (1990). Gerência da Qualidade Total: Estratégia para Aumentar a

Competitividade da Empresa Brasileira (2a. ed). Belo Horizonte: Bloch.

Costa, A. F. (2006). *Avaliação Processo de Gestão da Qualidade de Fornecedores*. Dissertação de mestrado, Universidade de Taubaté, São Paulo, Brasil.

Costa, D. B. (2003). Diretrizes para a Concepção, Implementação e Uso de Sistema de Indicadores de Desempenho para Empresas da Construção Civil. Dissertação de Mestrado – Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.

Deming, W. E. (1990). *Qualidade: a revolução da administração* (2a. ed). Rio de Janeiro: Saraiva.

Lantelme, E. M. V. (2004) Proposta de um Sistema de Indicadores de Qualidade e Produtividade para a Construção Civil. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.

Paladini, E. P. (2004). *Gestão da qualidade: teoria e prática* (2a. ed). São Paulo: Atlas.

Plebani, M. (2002). Charting the course of medical laboratories in a changing environment. *Clin Chim Acta*, 319(2), p. 87-100.

mark and the second

Sciacovelli, L., Secchiero S., Zardo L., Plebani M. (2007). Risk management in laboratory medicine: quality assurance programs and professional competence. *Clin Chem Lab Med*, 45(6), 756-65.

Vieira, K. F., Shitara E. S., Mendes M.E., Sumita N. M. (2011). A Utilidade dos indicadores da qualidade no gerenciamento de laboratórios clínicos. *Jornal Brasileiro de Patologia Médica Laboratorial*, 47(3), 201-210.

Recebido em 5 jul 2016 / aprovado em 20 jan. 2017

Para referenciar este texto

Miranda, A. C., & Santana, J. C. C. Aplicação da ferramenta PDCA na otimização de equipamentos de análises instrumentais (HPLC-UPLC) na rotina de análises físico-químicas em uma indústria farmacêutica nacional. *Exacta – EP*, São Paulo, v. 16, n. 1, p. 1-6, 2018.